单分子磁体:基本概念与磁性表征
单分子磁体发展综述

3. SMMs的发展历史 Ueff = 76 K
3. SMMs的发展历史
3. SMMs的发展历史
J. D. Rinehart, J. R. Long, et al., Nat. Chem. 2011, 3, 538-542.
TB = 14 K Ueff = 227 cm-1
3. SMMs的发展历史 J. Am. Chem. Soc., 2012, 134 (45), pp 18546–18549
2. SMMs的特点和性质
2. SMMs的特点和性质
1 K = 0.695039 cm-1
2. SMMs的特点和性质
2. SMMs的特点和性质
2. SMMs的特点和性质
2. SMMs的特点和性质
3. SMMs的发展历史
3. SMMs的发展历史
Mn19
U = S2|D|
S = 83/2,D = 0.004 cm-1
3. SMMs的发展历史
3. SMMs的发展历史 Ueff1 = 181 cm-1
3. SMMs的发展历史
J. M. Zadrozny, J. R. Long, et al., Nat. Chem. 2013, 5, 577-581
[Fe(C(SiMe3)3)2]2UeffJ. Am. Chem. Soc., 2014, 136 12213– 12216
3. SMMs的发展历史
3. SMMs的发展历史
3. SMMs的发展历史
3. SMMs的发展历史
Ueff = 1025 K
3. SMMs的发展历史
3. SMMs的发展历史
Ueff = 1815 K
4. SMMs未来的发展方向 Chem. Commun., 2015,51, 101-103
单分子磁体量子

单分子磁体量子近几年,单分子磁体量子(SMM)在研究中受到了越来越多的关注,它具有独特的机械性质,其磁性和化学性质可操控,从而具有重要的应用价值。
体的研究始于20世纪60年代,目前大多数研究集中在具有极高磁性的材料上,例如铁磁性金属铁素体以及稀土磁性合金。
然而,随着技术的不断发展,研究者可以利用单个分子来实现磁体。
单分子磁体(SMM)是指由一种单分子构成的磁体,它们具有独特的机械性质,可以在单个分子层次上进行操控。
一方面,SMM可以将复杂的有机分子转化为简单易维护的磁性结构;另一方面,它可以提供有关磁性性质的新信息,也可能对科学发展和实际应用都有重要的意义。
最早发现的单分子磁体是在1995年发现的碳链磁性分子[1],后来还发现了多种其他的磁性分子,包括铁键分子、稀土分子等等,它们都具有极强的磁性。
除了磁性外,它们还具有其他能量状态或化学性质,可以用来模拟物理和化学过程。
SMM对单子分子的磁性进行控制,从而可以调控制单子分子的化学性质,使得它们在特定的磁场中具有可控的行为。
它们的发现为制备高度精密的分子结构,设计新的分子材料和改变材料性能提供了新的机会。
具体来讲,目前最受关注的SMM应用包括能源存储和转换、生物传感、环境检测、纳米机器人、磁性探测器等。
例如,研究者可以利用SMM来改变纳米机器人的移动速度和转弯能力,它们也可以作为磁性传感器用于检测磁场的大小和方向。
同样,SMM还可以作为能源存储和转换的器件,用于有效地将太阳能转换成可以用于其他应用的能量,这对于未来的能源技术研究具有重要意义。
SMM有着巨大的应用前景,其中最有希望的方面是有机分子分子磁体。
有机分子磁体可以实现更为灵活的结构,它们也具有很好的包覆性和良好的磁性,提供了另一种潜在的电子器件。
新近发现的有机分子磁体包括芳烃分子、碳链分子、硅烷分子和酞菁等。
近几年,我国也在单分子磁体方面取得了大量的研究成果,其中最突出的是研究有机分子磁体的新进展,这些新发现的有机分子磁体为磁体物理和材料制备提供了一个新的框架。
单分子磁体

R. Sessoli,
Department of Chemistry, University of Florence,Italy
D. Gatteschi Department of Chemistry University of Florida PO Box 117200 Gainesville, FL 32611 USA 352-392-6737 (voice) 352-392-8757 (fax) email: christou@
Figure. (top) Magnetization hysteresis loop at 1.85 K for oriented crystals of (PPh4)[Mn12O12(O2CEt)16(H2O)4]; and (bottom) plot of the first derivative of the hysteresis loop emphasizing the positions of the steps.
实现器件的功能性。 在与分子基磁性相关的研究中,制备了仅含s和p电子的分 子铁磁性材料、利用分子组装方法设计合成了导电的分子铁磁 体、在单分子磁体中观察到量子隧道效应等。成为材料科学研 究和发展的重要新材料来源,也为凝聚态物理的研究提供了丰 富的研究对象和模型化合物。
单分子磁体作为分子固体材料中的新型研究领域引起科学 家的广泛关注。 在某一温度下其磁行为类似于微尺度(如纳米 尺度)磁体的经典磁性质。同时,单分子磁体还表现出量子隧 道磁化效应和量子干涉效应,有可能应用于量子计算机。由于
单分子磁体性质的分子。
1. Mn簇合物单分子磁体
第一个单分子磁体 [Mn12O12(O2CMe)16 (H2O)4 是Lis 1980年报导的通过醋 酸锰和MnO2反应制得的。
单分子磁体

簇合物 %G(+ G
纳米材料
信息材料
量子隧穿效应
设计和合成具有特定结构和物理功能的分子材
图( E2Q+ (
H D8(! F(! @ F! KP C (% @ L! F C G I 核的结构 R:;=?:=;9 *S :T9 ?*;9 *S :T9 H D8(! F(! @ F! KP C (% @ L! F C G I ?3=N:9;
法的研究可以提供重要信息 % 特别是要研究它们在 低温下的行为是否符合单分子磁体的要求。单分子 磁体的特点是通过磁偶合而具有较大的基态自旋 值 % 大的磁各向异性和较长的弛豫时间。 因而除了最 基本的分子结构鉴定方法 % 如 FG 射线单晶衍射 % 红 外光谱等外% 还使用一些特殊的研究手段来帮助确 定结构和测定磁性。 包括超导量子干涉仪 * HIJKL + % 高频电子顺磁共振 * M/GNOP + % 中子衍射% 热分析% 电 化学分析% 穆斯堡尔谱等。 研究分子磁性时最重要的几个参数是 * " + 式中 的郎德 * QB-R0 + 因子 $、 交换常数 %<% S 和零场分裂常 数 "。得到这些参数有两种方法 ) 一是量子化学计 算法 2 ’D 3 % 二是实验数据的拟合 2 ’E% ’# 3 。 在用拟合方法推求 $ 值和 % 值时就需要磁化 率 ! 和磁化强度 & 等实验数据。 HIJKL 是当前精度 最高的测量方法。 对 ,-!’ T1 2 !U 3 单晶的交流磁化率实
" " " "#
单分子磁体
王天维 林小驹 韦吉宗 黄 辉 游效曾!
!(""’B C
@ 南京大学配位化学研究所 A 配位化学国家重点实验室A 南京
单分子磁体的制备及其磁性质研究

单分子磁体的制备及其磁性质研究单分子磁体(Single-Molecule Magnets,简称SMMs)是一种具有特殊磁学性质的分子。
由于其特殊的磁学性质,单分子磁体已成为磁性材料研究领域的热点之一。
在此,将介绍单分子磁体的制备及其磁性质研究的相关内容。
一、单分子磁体的概念及特征单分子磁体一般由一个或多个金属离子和有机配体组成。
所含的磁性金属离子在配体的帮助下,可以形成具有磁性的“单分子”。
与普通的磁性材料不同,单分子磁体是非常小的,其大小一般在数纳米以下。
单分子磁体的最大特征是具有磁性滚珠的行为。
即在外层磁场的作用下,单分子磁体的自旋可以上下翻转,呈现类似于磁滚珠的磁性行为。
而SMMs磁滚珠的大小一般在几个纳米左右,这使得其具有优异的磁性性质。
二、单分子磁体的制备单分子磁体的制备是一个非常复杂的过程,需要设计新的配体分子并通过化学合成制备。
一般而言,单分子磁体的制备分为以下几个步骤:1、选择合适的金属离子。
通常使用的金属离子如铁、锰、铜、铬以及钴等。
2、制备配体分子。
常见的配体分子如porphyrin、phthalocyanine等。
3、将金属离子与配体分子作用。
制备单分子磁体是一种典型的自组装过程,金属离子与配体分子之间的作用力进而促进单分子磁体的形成。
4、对制备好的单分子磁体进行物理和化学表征。
磁学能级结构测量是单分子磁体表征的核心之一。
一般情况下,磁学测量需要通过其他技术手段(如电子顺磁共振、核磁共振等)来进行协助。
三、单分子磁体的磁性质研究单分子磁体的磁性质涵盖了多方面。
其中最重要的特征之一是单分子磁体对于外部磁场的响应行为。
对于磁斯托克差分(Magnetization)行为的研究被认为是研究SMMs的入门关键。
研究表明,单分子磁体的磁滚珠行为是非常稳定的,通常具有极长的自旋时间(spin relaxation)这也让单分子磁体成为了可高拓展的磁存储设备的一个热门发展方向。
此外,单分子磁体还具有潜在的应用价值,例如可应用于磁性催化、量子计算和磁性能量转换等领域。
单分子磁体

单分子磁体近日,国际上出现了“单分子磁体”,它是利用“人造分子”制造出的超导材料,单个分子有磁矩,分子间相互作用力大于斥力,构成一种新的材料。
单分子磁体具有许多优点:不但磁性能量高,且磁场稳定,几乎不受温度影响;由于单个分子的电磁力特别强,因此特别容易制成磁体。
单分子磁体的分子结构十分简单,可以自组织排列起来,形成一种均匀的三维网状结构,能在常温下达到超导态,形成特殊的单分子磁体。
单分子磁体具有许多优点:不但磁性能量高,且磁场稳定,几乎不受温度影响;由于单个分子的电磁力特别强,因此特别容易制成磁体。
单分子磁体的分子结构十分简单,可以自组织排列起来,形成一种均匀的三维网状结构,能在常温下达到超导态,形成特殊的单分子磁体。
单分子磁体对实验物理学和基础物理学都有重要意义,是最佳材料之一,有着广阔的应用前景。
我想,在未来世界,电脑能像打字机那样轻松地进行文字输入和数据处理,那时我们人类就不再被困在办公室里了。
在自然界中,所有的生物都靠不停地吞食外界的物质才能生存,没有了食物,它们只能死亡。
但是,动物在长期的进化过程中,逐渐掌握了通过消化道摄取营养物质的本领,并保证其在各个生命阶段都能顺利获得充足的营养。
随着科技的发展,新型材料不断被发现。
比如“磁性树脂”能让一般磁铁在空气中自由悬浮,还能吸收太阳能,转换成电能,这使得人类将太阳能利用到极致,可谓“一石三鸟”。
而同时也意味着人类的生存环境将得到极大改善。
作为一名科学家,我希望在未来的科技研究中,能更多地运用先进的单分子磁体材料。
单分子磁体代表着一种崭新的发展方向。
从某种角度说,它甚至可以称得上是我们的祖先留给我们的遗产。
当前,很多国家都在加紧对这一新材料的研究。
美国科学家提出“纳米晶体”概念,旨在利用纳米技术把传统材料做成纳米尺寸。
纳米材料具有表面积大、比表面积高、导电导热性能好等特点。
研究人员认为,纳米材料与金属材料或半导体材料相比,在光电器件、传感器及信息储存、显示等方面具有独特优势。
单分子磁体发展综述课件

3. SMMs的发展历史
[MnIII6O2(Etsao)6(O2CPh(Me)2)2(EtOH)6]
S = 12, D = -0.43 cm-1, Ueff = 86.4 K
学习交流PPT
17
3. SMMs的发展历史
3d-4f
学习交流PPT
18
3. SMMs的发展历史
Ueff 1 = 11.0 cm-1 , t1 = 7.7 x 10-4 s, Ueff 2 = 82.1 cm-1 , t2 = 6.2 x 10-7 s
学习交流PPT
36
3. SMMs的发展历史
Ueff1 = 19.7 K Ueff2 = 173 K
学习交流PPT
37
3. SMMs的发展历史
学习交流PPT
38
3. SMMs的发展历史
Ueff (Tb) = 331 K
学习交流PPT
39
3. SMMs的发展历史
[Pc2Tb]-
学习交流PPT
40
Ueff2 = 71 K
学习交流PPT
25
3. SMMs的发展历史
学习交流PPT
26
3. SMMs的发展历史
学习交流PPT
27
3. SMMs的发展历史
U 学习交流PPT eff1 = 150 K, Ueff2 = 198 K
28
3. SMMs的发展历史
Ueff ห้องสมุดไป่ตู้ 76 K
学习交流PPT
29
[1] R. Sessoli, D. Gatteschi, et al., J. Am. Chem. Soc. 1993, 115, 1804-1816.
[2] R. Sessoli, D. Gatteschi, et al., Nature 1993, 365, 14学1-习14交3.流PPT
单分子磁体和单链磁体

Single Chain Magnet !
Chain: Co(bt)(N3)2
Co-Co: 3.334-3.636(2)Å
Dimer
Co-Co: 3.325(1) Å
S…S and S…N separations between chains: 3.859(2), and 3.430(5) Å, the sum of van der Waals radius (3.70, 3.39 Å, respectively). Co…Co: 8.541(1) Å Gao, S. et al, J.Am.Chem.Soc., 2003; 125(46); 13976.
反铁磁体
反铁磁体不同于抗磁体: 1. 有自旋磁矩
2. 高温是顺磁性的
亚铁磁性物质
• 在温度TN以下 单个磁矩有序排步, TN称为 Néel温度。 • 存在自发磁化
亚铁磁体
1. 微观磁结构上类似 于反铁磁体。 2. 从宏观磁特性上类 似于铁磁体。
弱铁磁性物质
两个自旋反铁磁相互作用 ,但因为太小而没有达到 反平行排步,而是有一定 的夹角(小于 180°)
重要的结论: 1.闭壳层原子(离子)是没有磁性的。如:2p6,3d10 2.半满轨道没有轨道贡献。例如:Mn2+ ( 3d5 ) , 可以用仅自旋式来计算磁矩:
Hale Waihona Puke S n(n 2) B二、宏观物质的磁性
物质种类 典型特征 典型代表 理论解释
抗磁性物质
0,10-710-6
惰性气体,大多数有 没 有 成 单 电 子 的 机物。 存在
Mn12acetato
16(H2O)4]•2CH3COOH
•4H2O
S=2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单分子磁体:基本概念与磁性表征
吴树旗;寇会忠
【期刊名称】《辽宁大学学报(自然科学版)》
【年(卷),期】2013(040)002
【摘要】在分子磁体领域,一些多核或单核配合物呈现宏观磁体行为,这些配合物的磁性来源于孤立的分子内,因而吸引了许多化学家、物理学家和材料学家的研究兴趣,相继开展了这方面的研究.综述了近年来国内外相关研究进展,介绍了相关量子力学理论和一些具有代表性的实例,并进一步展望了今后的研究和发展方向.
【总页数】10页(P135-144)
【作者】吴树旗;寇会忠
【作者单位】清华大学化学系,北京100084;清华大学化学系,北京100084
【正文语种】中文
【中图分类】O611.4
【相关文献】
1.单分子磁体及其磁学表征 [J], 王庆伦;廖代正
2.基于2-甲基-8-羟基喹啉的镝单分子磁体的晶体结构及磁性 [J], 王慧娜;刘颖昕;李荣;周琦;付文升
3.脱水对六核锰单分子磁体磁性的影响 [J], 刘雪霆;李建新;费霞;武其亮;杨波
4.叶酸修饰磁性氧化石墨烯载体的制备、表征及其磁性研究 [J], 赵鹏慧; 王彦; 刘雪颖; 王永利; 刘家园; 王立华
5.氰基桥联的Fe2Ni2单分子磁体的合成与磁性 [J], 吴家起;孟银杉;朱海浪;矫成奇;刘涛
因版权原因,仅展示原文概要,查看原文内容请购买。