制药机械选材的要求

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:以GMP和制药工艺对制药机械的选材要求为切入点,重点对制药机械中常用奥氏体不锈钢选用原则进行了探讨,并结合实例阐述了其应用、选材与加工之间的关系。同时,简述了非金属材料的选用原则。

关键词:制药机械;选材;奥氏体不锈钢;原则;非金属材料;耐腐蚀;不溶性微粒

在当今,中国制药机械伴随着GMP在制药工业的实施,其已相当成熟,但制药企业的设备管理与采购人员对制药机械选材概念仍处于模糊状态,特别是对金属材料的选用更为扑朔迷离。认为选了316L材质便是符合了GMP,这个观念在中国乃至国外相关人士的世界观上有一定的沉淀,类似此类观点是否正确,回答很明确:非也。虽然,笔者撰写过此类文章,人们对此有所改观,但仍有部分业内人士仍沉溺于此,这是对GMP的一种曲解,其也与GMP内含所相悖的。因而,本文从GMP和制药工艺的内含出发,再议制药机械的选材原则。

1.GMP和制药工艺对制药机械选材的要求

1.1GMP对制药机械的选材要求

笔者查阅了GMP相关文件,现把涉及到制药机械选材做条款归纳如下:

(1)GMP(98版)1第32条认为:“与药品直接接触的设备表面应光洁、平整、易清洗或消毒、耐腐蚀,不与药品发生化学变化或吸附药品。”第34条认为:“……储罐和输送管道所用材料应无毒、耐腐蚀。……注射用水储罐的通气口应安装不脱落纤维的疏水性除菌滤器。”

(2)GMP(98版)附录2第一节3款第7条认为:“洁净室(区)内应使用无脱落物、易清洗、易消毒的卫生工具……。”第二节3款认为:“与药液接触的设备、容器具、管路、阀门、输送泵等应采用优质耐腐蚀材质,……。过滤器材不得吸附药液组份和释放异物。禁止使用含石棉的过滤器材。”

再看美国cGMP3中211.65条(a)款,其认为:“设备表面与组份、中间物料或药品接触时应不起反应,无吸着、吸附作用,以不致改变药品的安全性、鉴别特征、含量(或效价)、质量或纯度而使之超出法定或其它既定要求。”

可以说,查遍GMP相关文件均未见到制药机械选材的强制性条文,GMP对制药机械选材只作了定向的规定,而没有作具体的规定。虽然,在《药品生产验证指南》4这本国内权威性的专著中,对一些生产过程中设备和管道的选材作了若干陈述,如类似注射用水管路材质为316L,其是有的放矢,而不是一遇到制药机械与物料直接接触的材质便是316L这样叙述的,何况此书的前言中明确表示“是一本验证工作方面的指导性工具书,不具有法规性的验证规定4。”这说明:GMP对制药机械选材只作定向性的规定。

1.2制药工艺对制药机械的选材要求

人们在关注制药机械选材应“易清洗或消毒、耐腐蚀,不与药品发生化学变化或吸附药品”的同时,更不要遗忘另一个选材原则,这便是不溶性微粒的有效控制。

在药品中微粒大致有尘粒、金属或其它微粒,微粒的存在直接影响药品质量,危及人们的生命安全。大量临床资料表明,如药品被7-2μm的尘粒污染了,尤其是静脉注射用药,可以导致热原反应、肺动脉炎、微血栓或异物肉芽肿等,严重的会致人死命4。因此,我国药典1985年首次对输液不溶性微粒作出限定,规定每毫升中大于或等于10μm的粒子不得超过50个,大于或等于25μm的粒子不得超过5个4。

同时,文献4中也明确指出:无菌性及不溶性微粒的污染是无菌原料药区别于非无菌原料药的两大主要特征,也是生产工艺中与控制的最重要项目之一。不溶性微粒的污染的控制在无菌原料生产中最难控制的一项指标,每个无菌产品的不溶性微粒必须是在一定的范围内,

即大于10μm和小于25μm的不溶性微粒控制在300个/g以下,而大于25μm的不溶性微粒控制在30个/g以下4。

所列举的不溶性微粒的来源在生产过程中有四个方面,即公用设施系统、操作系统、工艺物料系统以及设备或用具系统。其中设备或用具系统不溶性微粒控制的关键与材质选用密切相关,有部分物料在材质表面作高速接触时,基于材质表面硬度低而产生一定量的金属微粒,如像316L不锈钢表面硬度相对软,物料高速运动与相对软的材质表面接触必然产生金属微粒。为了确保不溶性微粒污染的数量就必须严格控制各个相关环节,特别是材质的选用尤为重要。

2.制药机械中常用奥氏体不锈钢选材原则的探讨

在金属材料中,奥氏体不锈钢是制药机械产品使用最为广泛的材质,常见的品种有316L(00Cr17Ni14Mo2)、316(0Cr17Ni12Mo2)、304L(00Cr19Ni11)、304(0Cr19Ni9)及1Cr18Ni9Ti(俗称18-8),它们的共同特点便是具有耐蚀性和较好的耐热性。这些奥氏体不锈钢的共性是耐蚀,而其“耐蚀”性是相对的,其是指在一定的外界条件和一定的腐蚀介质中具有高的化学稳定性的特性。但是,此类奥氏体不锈钢在某些介质情况下使用时,就会产生晶间腐蚀、点蚀等类型的腐蚀,特别是在含Cl-介质中极易产生腐蚀,通常采用超低碳或低碳的方法解决(即选316L或304L)。然而,超低碳不是解决此类腐蚀的根本方法,还与其它因素有关。需指出的超低碳奥氏体不锈钢在制药机械产品易产生的三个问题:

(1)当介质中Cl-含量超过一定值时,即便是超低碳奥氏体不锈钢照样会腐蚀;

(2)当介质中Cl-含量少量时,由于加工与处理不当,超低碳奥氏体不锈钢也会腐蚀;

(3)超低碳奥氏体不锈钢由于含C量的减少,使得其综合机械性指标也相对较低,特别是表面硬度相应低,在高速与物料运行中易产生不溶性微粒。

因而,人们要注意到316L不是不腐蚀的不锈钢,也不是没有金属微粒产生的材质,更不要认为选了316L就一定符合GMP了。

2.1奥氏体类不锈钢的腐蚀及防止措施

2.1.1奥氏体类不锈钢的腐蚀机理

奥氏体类不锈钢常见的腐蚀有晶间腐蚀和点蚀二类,其腐蚀机理5:

(1)晶间腐蚀。当奥氏体不锈钢在制造和焊接时,加热温度和加热速度处敏化温度区域时,材料中过饱和碳就会在晶粒边界首先析出,并与铬结合形成碳化铬,此时碳在奥氏体内的扩散速度比铬扩散速度大,铬来不及补充晶界由于形成碳化铬而损失的铬,结果晶界的铬含量就随碳化铬的不断析出而不断降低,形成所谓的贫铬区,使电极电位下降。当与含Cl-等腐蚀介质接触时,就会引起微电池腐蚀。虽然腐蚀仅在晶粒表面,但却迅速深入内部形成晶间腐蚀。

(2)点蚀。材料与含Cl-等腐蚀介质接触时,Cl-在材料钝化膜的缺陷地方,如夹杂物、贫铬区、晶界、焊缝热影响区或位错等处,侵入钝化膜,与金属离子结合形成强酸盐而溶解钝化膜,Cl-使膜产生缺位破坏,形成“钝化-活化”微电池,产生点状腐蚀,腐蚀电流使材质产生穿孔。

2.1.2影响奥氏体类不锈钢腐蚀的因素

(1)介质氯离子。Cl-含量应控制在一定值(详细可查相应材料腐蚀手册),对Cl-含量超值时选用超低碳奥氏体不锈钢应慎而慎之。在国家标准《钢制压力容器》(GB150-98)中,对不锈钢容器水压试验的水的氯离子含量要求不能大于25ppm(1ppm为百万分之一),由此可见,连水压试验对氯离子的要求都这么苛刻6,可见制药机械产品就更不必谈了。

(2)晶间腐蚀影响因素7。当温度在敏化区域外,碳原子不可能造成晶界的贫铬。只有当温

相关文档
最新文档