药物合成反应:酰化反应
酰化反应-药物合成反应

9
第三章 酰化反应
氧原子上的酰化反应(酯的制备)
•醇的结构对酰化反应的影响 •立体影响因素使酯化反应速度:伯醇>仲醇>叔醇
醇 CH3OH C2H5OH n-C3H7OH CH2=CHCH2OH PhCH2OH i-PrOH t-BuOH v 1 0.84 0.84 0.64 0.68 0.47 0.026
RCOOR'' +R'OH R'COOR'' +RCOOH RCOOR''' +R''COOR'
上述三种酯交换方式都是利用反应的可逆性来实现的,其中第 一种酯交换方式应用最广,其反应过程常用质子酸或醇钠进行 催化。
23
第三章 酰化反应
氧原子上的酰化反应(酯的制备)
酸催化机理:增强羧酸酯(酰化剂)的活性
第三章
酰化反应
Chapter 3 Acylation Reaction
1
概 论
酰化反应: 有机分子中碳、氧、氮等原子引入酰基的 反应。
碳原子(R´-)
酰化
(RCO-)
制醛、酮〔 RCO-R´〕 (制芳香醛、芳香酮) 制酯〔 RCO-OR´〕
氧原子(R´O-)
酰化(RCO-)
氮原子〔R'
R"N-〕
酰化(RCO-)
羧酸酯(RCOOR’)的结构对活性的影响: 1)酯羰基的a-位上连有吸电子基团时,吸电子效应使酯羰基 的碳原子上的电子云密度降低,亲核能力增强,所以活性顺序 为:a-位有吸电子基的酯> a-位无吸电子基的酯。同样酯羰基 的a-位有不饱和烃基和芳基时,除受到这些基团的吸电子诱导 效应外,还受到共轭效应的影响,所以一般地,不饱和脂肪酸 酯、芳酸酯的活性稍强于相应的饱和脂肪酸酯。 2)酰化能力与羧酸酯的OR’的共轭酸R’OH的酸性大小有关, R’OH酸性越强,酯的酰化能力越强,所以一般而言, RCOOAr>RCOOMe>RCOOEt. 3)由于在反应过程中常常采用蒸出所生成的低沸点的醇(如 甲醇、乙醇等)来打破平衡,所以一般选用甲酯和乙酯。
酰化反应(药物合成)

(CF3CO)2O H2N CH2OH
+ CH3CH2COOH
H2N
CH2OCOCH2CH3
73%
COOH
CH3
+
H3C
C
CH3
OH
(CF3CO)2O
COOBu-t
②羧酸-磺酸混合酸酐
RCOOH + R'SO2Cl RCOCl + R'SO2Cl O R R' C O R C
O
SO2
+
R'SO2OH
R R' N CHO POCl2 Cl
R R' N CH Cl
R R'
NR''2 -H CH NRR' Cl H2O
NR''2 CHO + RR'NH2Cl
H3C H3C
N
DMF/POCl3 H3C H3C Ph N N H COOC 2H5 CH3 CHO ,1h
N
CHO
/POCl3
CHO N H COOC 2H5
CHO
二、羰基化合物的-位C-酰化
1. 活性亚甲基化合物的C-酰化
芳香化合物、杂环化合物及活泼烯烃化合物用二取代
甲酰胺及氧氯化磷处理得到醛类的反应称Vilsmeier甲酰化
反应。是芳香环的甲酰化反应最普通的方法。
ArH +
R1 R2
N C H O
POCl3
R1 + ArCHO NH R2
机理:
R R' N CHO + POCl3 H R N C OPOCl2 R' Cl NR''2Cl N CH Cl OPOCl2 NR''2 H CH NRR' Cl
中国药科大学药物合成反应讲义酰化反应

C 反应溶剂的影响
■ 采用乙酸酐、丙酸酐等简单酸酐为酰化剂时,通常以酸酐本身作为溶剂 ■ 作为催化剂的吡啶、三乙胺也可作为溶剂 ■ 其他溶剂:水、二氯甲烷、氯仿、石油醚、乙腈、乙酸乙酯、苯、甲苯等
D 反应温度的影响
通常在低温下将酰化剂滴加入反应体系中,然后缓慢升温至室温,或加热回流
47
(4)应用特点
RCONR'R'' 'R''NH
O R C X -HX
H NR'R''
RCONR'R''
72
• 伯胺和仲胺均可与酰化剂反应生成酰胺 • 酰化剂的活性
• 胺的活性
(活性酯和活性酰胺除外)
伯胺>仲胺 脂肪胺>芳香胺 无位阻胺>有位阻胺
73
1. 羧酸为酰化剂
(1)反应通式 (2)反应机理
A 单一酸酐为酰化剂的酰化反应
■酸酐多用于反应困难或位阻较大的醇羟基的酰化 ■单一酸酐种类较少,限制了该方法的应用
48
应用实例
BF3.Et2O 催化选择 性酰化醇 羟基!
49
B 混合酸酐为酰化剂的酰化反应
(i)羧酸-三氟乙酸混合酸酐
适用于立体位阻较大的羧酸的酯化,对某些酸敏物质不宜采用此法! 50
S
R CH S
n-C4H9Li
S RC Li S
H2O/HgCl2
O R C R`
11
二、自由基反应机理
12
第二节 氧原子上的酰化反应
• 醇的O-酰化反应 • 酚的O-酰化反应 • 醇、酚羟基的保护
13
一、醇的O-酰化反应
1. 羧酸为酰化剂
药物合成反应第三章酰化反应

+ CH3OH
O O C(CH2)3CH3
+ H2O
CH=CH-COOCH3
COOH
对甲苯磺酸
TsOH
+ C12H25OH Xylene
HO
OH
OH
COOC12H25
HO
OH
OH
(c) DCC 二环己基碳二亚胺
R-N=C=N-R
CH3-N=C=N-C(CH3)3 CH3CH2-N=C=N-(CH2)3-NEt2 (CH3)2CH-N=C=N-CH(CH3)2
OH O=C-R
+OH R-C-OC(CH3)3
属于SN1机理
-H+
O
R-C-OC(CH3)3
按SN1机理进
行反应,是烷 氧键断裂
* 3oROH按此反应机理进行酯化。 * 由于R3C+易与碱性较强的水结合,不易与羧酸结合,
故逆向反应比正向反应易进行。所以3oROH的酯化 反应产率很低。
该反应机理也 从同位素方法 中得到了证明
②羧酸的结构
R带吸电子基团-利于进行反应;R带给电子不利于反应 R的体积若庞大,则亲核试剂对羰基的进攻有位阻,不利于反应进行 羰基的a位连有不饱和基和芳基,除诱导效应外,还有共轭效应,使酸性增强
③催化剂 i提高羧酸反应活性
(a)质子酸催化法: 浓硫酸,氯化氢气体,磺酸等
O
H+
R C OH
O R''OH + R C OH R'
O R'' HO C R ' - H+
R'' OH
H O
O
C
药物合成反应— 酰化反应

1. 羧酸为酰化剂
应用
DCC为催化剂的酰化反应 DCC:增强羧酸的酰化能力
2. 羧酸酯为酰化剂(酯的氨解反应)
应用 1)羧酸甲酯、乙酯的应用
2)活性酯的应用
3)在实际药物合成中的应用
3. 酸酐为酰化剂 机理
4. 酰氯为酰化剂 机理
应用 缚酸剂:(1)有机碱
三乙胺、吡啶等有机碱可中和反应中产生的HCl; 以吡啶、N,N-二甲氨基吡啶类为缚酸剂时,在中和产生的酸的同 时,还可以与酰氯生成络合物,起催化作用。
酰化反应
Acylation Reaction
第一节 概述
案例——神秘的阿司匹林(Aspirin)
➢ 镇痛 ➢ 解热 ➢ 消炎 ➢ 抗风湿 ➢ 对血小板聚集有抑制作用
O
COOH
CH3C
H+
+
O
OH
CH3C
O
被酰化物
酰化试剂
COOH
+
O CCH3 O
O CH3C OH
酰化反应:在有机物分子结构中的C、N、O或S等原子
(有机酸)对甲苯磺酸、萘磺酸
作用形式:与羧酸的羰基形成烊盐,增强羰基碳原子的正电性
Lewis酸 BF3、AlCl3、FeCl3、TiCl4 作用形式:与羧酸的羰基O形成络合物,增强羰基碳原子的正电性
副反应少\收率高\条件温和
DCC (P54)——良好的酯化缩合剂
作用形式:增强羧酸的活性 特点:条件温和、收率高、立体选择性强、价格贵
上导入酰基的反应。
1. 酰基是某些药物重要的药效基团; 2. 也是药物合成中官能团转换的重要合成手段; 3. 在涉及-OH、氨基等基团的保护时,将其酰化也是一种常见 的保护方法。
药物合成反应 第四章 酰化反应

O CHCl2 H2O
CHO
Vilsmeier甲酰化反应 芳香化合物、杂环化合物及活泼烯烃化合物用二取代 甲酰胺及氧氯化磷处理得到醛类的反应称Vilsmeier甲酰化 反应。是芳香环的甲酰化反应最普通的方法。
POCl3 R1 R1 + ArCHO ArH + N C H NH R2 R2 O
机理
B: PhCOCl
CH3COCHCOOC2H5 COPh
PhCOOH + CH2
X -CN -H -CN
X DEPC/Et3N/DMF X PhCOCH Y r.t. Y
Y -COOC2H5 -NO2 -CN 收率 93.4% 85.5% 92.8% 96.8%
-COOC2H5 -COOC2H5
(2). 酮及羧酸衍生物的-位C-酰化 Claisen酯缩合反应 含有-氢的酯在醇钠等碱性缩合剂作用下发生缩合作 用,失去一分子醇得到酮酯的反应称为Claisen酯缩合反应。
N CH3.I
C O + ( CH2 )n O
n=5 (89%) n=11 (69%)
N O CH3
(3) 羧酸三硝基苯酯
O R''OH+ R-C-OH + Cl
O2N NO2
O R-C-OR''
O2N
O R C O
O2N NO2
难 于 分 离 ,所 以 三 种 物 质 一 起 加 入
O2N
酸酐为酰化剂
73%
COOH
CH3
+
H3C
C
CH3
OH
(CF3CO)2O
COOBu-t
混合酸酐的应用 ②羧酸-磺酸混合酸酐
药物合成反应第三章讲解

• 脱除方法:
• 50%氨-甲醇溶液:氨解,时间长,苯甲酰基脱除 • 氢氧化钠-吡啶:酰氨基较稳定 • Bu3SnOMe在二氯乙烷中或三氟化硼-乙醚在湿乙腈中:选择性地脱
除葡萄糖差向异构体羟基上的乙酰基 • DBU或甲氧基镁:苯甲酰基和乙酰基共存时,选择性地脱除乙酰基 • 碳酸钾-甲醇水溶液:仲醇及烯丙醇(100% ) • 氰化钾-乙醇:对酸、碱敏感的物质
O HO C OEt
碳酸乙酯
RCOOH
O Cl S Cl
RCOOH
O Cl P Cl
Cl
RCOOH
O
O
R C O C Cl
O
O
R C O S Cl
O
R CO
O
P Cl
Cl
• 3.1.3 酰卤作酰化剂
无水有机溶剂
RCO2H + SOCl2
RCOCl + SO2 + HCl
去酸剂 RCOCl + R'OH
叔醇的酯化:SN1机理
主要影响因素
• 底物的结构:底物为醇或酚,亲核物种为羟基氧原子。
当氧原子电子云密度降低时反应活性会降低,由此可知, 与烷基醇相比酚及烯丙醇的酰化会困难一些,而难以酰化 的底物就需要较强的酰化剂,比如酚的酰化一般要用酸酐 或酰卤。空间障碍也是一个较大的影响因素,如仲醇的反 应速率低于伯醇,而叔醇在酸催化下会形成碳正离子,所 以叔醇的酯化一般是单分子亲核取代(SN1)机理。
• 酰化剂:在一定的反应条件下,酰化活性顺序一般为
酰卤(Br>Cl)>酸酐>酯>酸>酰胺,这一顺序实际上与离 去基团的离去能力一致。
• 催化剂:
• 3.1.1 羧酸为酰化剂 • 3.1.2 羧酸酯为酰化剂 • 3.1.3 酸酐为酰化剂 • 3.1.4 酰氯为酰化剂 • 3.1.5 酰胺为酰化剂 • 3.1.6 乙烯酮为酰化剂
《药物合成反应》-闻韧主编第三章酰化反应-知识点总结

#2.11打卡# 完成学习目标第三章酰化反应Acylation Reaction1 定义:有机物分子中O、N、C原子上导入酰基的反应.2 分类:根据接受酰基原子的不同可分为:氧酰化、氮酰化、碳酰化3 用途:药物本身有酰基活性化合物的必要官能团结构修饰和前体药物羟基、胺基等基团的保护。
酰化机理:加成-消除机理加成阶段反应是否易于进行决定于羰基的活性:若L的电子效应是吸电子的,不仅有利于亲核试剂的进攻,而且使中间体稳定;若是给电子的作用相反。
根据上述的反应机理可以看出,作为被酰化物质来讲,无疑其亲核性越强越容易被酰化。
具有不同结构的被酰化物的亲核能力一般规律为;RCH2->R—NH->R—O->R—NH2>R—OH。
在消除阶段反应是否易于进行主要取决于L的离去倾向:L-碱性越强,越不容易离去,Cl- 是很弱的碱,-OCOR的碱性较强些,OH-、OR-是相当强的碱,NH2-是更强的碱。
RCOCl>(RCO)2O>RCOOH 、RCOOR′ >RCONH2>RCONR2′R: R为吸电子基团利于进行反应;R为给电子基团不利于反应R的体积若庞大,则亲核试剂对羰基的进攻有位阻,不利于反应进行酸碱催化碱催化作用是可以使较弱的亲核试剂H-Nu转化成亲核性较强的亲核试剂Nu-,从而加速反应。
酸催化的作用是它可以使羰基质子化,转化成羰基碳上带有更大正电性、更容易受亲核试剂进攻的基团,从而加速反应进行。
氧原子的酰化反应是一类形成羧酸酯的反应,是羧酸和醇的酯化反应,是羧酸衍生物的醇解反应醇的结构对酰化反应的影响伯醇(苄醇、烯丙醇除外)>仲醇>叔醇1) 羧酸为酰化剂:提高收率:(1)增加反应物浓度(2)不断蒸出反应产物之一(3)共沸除水、添加脱水剂或分子筛除水。
(无水CuSO4,无水Al2(SO4)3,(CF3CO)2O,DCC。
)加快反应速率:(1)提高温度(2)催化剂(降低活化能)催化剂(1)质子酸催化法: 无机酸:浓硫酸,氯化氢气体,有机酸:苯磺酸,对甲苯磺酸等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(iii) Vesley法 采用强酸型离子交换树脂加硫酸钙 催化能力强、收率高、条件温和
Vesley法
CH3COOH + CH3OH 10min
CH3COOCH3 (94%)
20
(iv) DCC法( dicyclohexylcarbodiimide,二环己基碳二亚胺)
21
DCC类似物:
CH3-N=C=N-C(CH3)3
41
抗胆碱药溴美喷酯(宁胃适)的合成
肌肉M3受体阻滞剂素立芬新的合成
42
3. 酸酐为酰化剂
(1)反应通式 (2)反应机理
43
(3)影响因素
A 酸酐结构的影响
羰基的α位连有吸电子基团时,活性增强
S
R CH S
n-C4H9Li
S RC Li S
H2O/HgCl2
O R C R`
11
二、自由基反应机理
12
第二节 氧原子上的酰化反应
• 醇的O-酰化反应 • 酚的O-酰化反应 • 醇、酚羟基的保护
13
一、醇的O-酰化反应
1. 羧酸为酰化剂
(1)反应通式
(2)反应机理
提高收率:
■ 增加反应物浓度
38
羧酸异丙烯酯:
n-C18H37
A
C4H9-n C COOH + H3C C C7H15-n
Zn2+
CH
175℃
n-C18H37 OH/H+ △ ,6min
C4H9-n n-C18H37 C COO C18H37-n
C7H15-n
92%
n-C18H37
O + H3C C
C4H9-n C COO C7H15-n
酰化反应
Acylation Reaction
1
概述
• 1 定义:在有机分子中的碳,氧,氮,硫等原子上引 入酰基的反应
2
• 酰基:从含氧的有机酸或无机酸分子中去掉一个或几个 羟基后所剩余的基团
3
4
• 2 应用: • 药物本身有酰基 • 活性化合物的必要官能团 • 结构修饰和前体药物 • 羟基、胺基等基团的保护
24
例:镇痛药盐酸哌替啶的合成 例:降血脂药氯贝丁酯的合成
25
B 仲醇酯的制备:仲醇羟基活性中等,一般需加催化剂 构型翻转的应 用
26
C 叔醇酯的制备:叔醇羟基活性较差,反应中一般需加入DCC类催化剂
27
D 内酯的制备:一般分子内酰化优于分子间酰化
28
2. 羧酸酯为酰化剂
(1)反应通式 (2)反应机理
多羟基化合物 ,一般采用以硅藻土为载体的Lewis酸或强酸型离子交换树脂。
31
(4)应用特点
反应条件温和,可利用减压蒸馏迅速将生成的醇蒸出,反应温度较低,反应时间较短 A 羧酸甲酯或羧酸乙酯的应用
32
B 活性酯的应用 一些取代的酚酯、芳杂环酯和硫醇酯的活性较强, 可用于活性较差的醇和结构复杂的化合物的酯化
质子酸 Lewis酸 Vesley法
DCC
b 用来提高醇反应活性的催化剂 (偶氮二羧酸二乙酯法)
17
(i) 质子酸催化法 ■无机酸:浓硫酸、磷酸、氯化氢气体、高氯酸、四氟硼酸等 ■有机酸:苯磺酸,萘磺酸、对甲苯磺酸等 ■简单,但对于位阻大的醇及叔醇容易脱水。
18
(ii) Lewis酸催化法 (BF3、AlCl3、FeCl3、CoCl2、SnCl4 等)
N
r.t., 12 min
(96%)
H3C
CH3 COOC(CH3)3
金属离子Hg2+、Ag+、Cu+、Cu2+等对反应有催化作用
35
(ii) 羧酸吡啶酯
36
(iii) 羧酸三硝基苯酯( 一锅煮合成法 )
37
(iv) 其他活性酯
羧酸异丙烯酯
羧酸二甲硫基烯醇酯
1-羟基苯并三唑(HOBt)的羧酸酯
5
教学内容
1.酰化反应机理 2.氧原子上的酰化反应 3.氮原子上的酰化反应 4.碳原子上的酰化反应
6
第一节 酰化反应的机理
7
一、电子反应机理
1.亲电反应机理: (1) 单分子历程
限速步骤:动力学一级反应
采用酰卤、酸酐等强酰化剂的酰化反应趋向于单分子历程进行。
8
(2) 双分子历程
限速步骤:动力学二级反应
(i) 羧酸硫醇酯(气味难闻,有毒性)
33
34
OO
OH
CH3
COOH
HO
CH3
N SH
H3C
CH3
COCl
N S
N 2
(V)
CH3
N S
N 2
(VI)
O (IV) 或(V)Ph3P/HOAc/THF O
OO
OH O CH3
O
O
O (75%)
CH3
CH3
H3C
CS O CH3
(CH3)3COH/CH3CN/CuCl2
R-N=C=N-R CH3CH2-N=C=N-(CH2)3-NEt2
(CH3)2CH-N=C=N-CH(CH3)2
N C N (CH2)2 N O
22
(v)偶氮二羧酸二乙酯法(DEAD)(Mitsunobu reaction)
23
(4)应用特点
A 伯醇酯的制备:伯醇羟基活性最大,对伯醇进行选择性酰化或保护 伯、仲醇的选 择性
CH3
CH2 C
CH3
适用于立体阻碍大的羧酸!
39
羧酸二甲硫基烯醇酯:
O R' SMe
Ph O SMe
+ HO
BuLi/ THF
CH2OH
HO
r.t. , 1h
O CH2OCPh (87%)
1-羟基苯并三唑(HOBt)的羧酸酯:
酚、醇选择性酯化
40
应用实例 局麻药普鲁卡因的合成
局麻药丁卡因的合成
29
(3)影响因素
A 羧酸酯结构的影响
■ R基团的影响:α位连有吸电子基团或不饱和烃基或芳基时,活性较强 ■ R1基团的影响:RCOOAr > RCOOCH3 > RCOOC2H5
B 醇结构的影响
醇羟基的亲核能力越强,其反应活性越强 甲醇 > 伯醇 > 仲醇 > 叔醇、烯丙醇、苄醇
30
C 催化剂的影响 含有碱性基团的醇或叔醇进行酯交换反应,一般适宜采用醇钠等碱性催化剂。
采用羧酸、羧酸酯和酰胺等为酰化剂的酰化反应趋向于双分子历程进行。
9
(3)酰化剂的反应活性
(活性酯和活性酰胺除外) (4)被酰化物的活性
10
2.亲核反应机理
O CO
O
NH4Cl
s-BuLi -110 0C
s-BuC
Li
-110 0C
OH C Bu-s O
HS R CHO +
HS
R`X
RS
C
- LiX R S
■ 减少生成物的浓度
■ 除去反应中生成的水
■ 添加催化剂,增加反应物的活性
14
(3)影响因素
A 羧酸结构的影响
羧酸的酸性越强,其酰化能力越强
空间位阻的影响
15
B 醇结构的影响
醇羟基的亲核能力越强,其反应活性越强 甲醇 > 伯醇 > 仲醇 > 叔醇、烯丙醇、苄醇
16
ห้องสมุดไป่ตู้
C 催化剂的影响
a 用来提高羧酸反应活性的催化剂