不对中故障机理与诊断

合集下载

输油泵机组不对中故障分析

输油泵机组不对中故障分析


也会 造 成 轴 向 表 读 数 误 差 。 输 油 泵 轴 的 驱 动 端 和 电机 的驱 动端 通
通 常 采 用 百 分表 , 千分表 , 激 光 对 中 仪进 行
2. 2 单架 百分 表的 实 际应用
过 联轴 器联 接 。 电 机 的 地脚 有三 个 螺 栓 , 用
1 输 油泵机组 不对 中故障机理
Q:
SCI E NCE & TE CH N0L0eY油 泵 机 组 不对 中故 障 分 析
陈 眉 生 ( 中国石 油西部管 道 新疆输 油气 分公司 新 疆乌鲁 木齐
8 3 0 0 6 3 )
摘 要: 不对 中的种类较 多, 表 现的 形式也 并不相 同, 加之现 场工况比较 复杂 , 对 不对 中故障的确诊存 在较大的 困难。 在 西部 管道 , 输 油泵 机组做 为长输 管道的核 心设备 , 功 率大 , 使 用频率 高, 转子 系统的对 中越 好 , 功耗 将会越 4 、 , 将能保证机 组的平稳运行 。 本文介 绍 了转子不 对 中故障 的故 障机理 , 研完 了用百分表进 行轴 对 中的方 法, 介 绍激光对 中仪 的原 理和优 点。 关键词 : 输油泵机组 不对 中故障 百分表法 激光对 中仪 中 图分 类 号 ; T E 9 7 4 . 1 文献 标 识码 : A 文 章编 号 : 1 6 7 2 — 3 7 9 1 ( 2 0 1 3 ) 0 7 ( b ) 一0 1 1 5 — 0 2 输 油 泵 机 组 的转 子 系 统是 提 供 动 力 的
定 位 轴 向位 置 时 , 由于 每 次 的 固 定 位 置 不

中。 对 于 中小 型设 备 , 采 用 直 尺 和 目测来 确
定 两 个 联 轴 器 的径 向偏 差 , 用 塞 尺 测 量 两

烟气轮机联轴器不对中故障的诊断

烟气轮机联轴器不对中故障的诊断
害。

1 . 烟气轮机联 轴器不对 中故 障运行征兆

影 响联 轴 器 不 对 中 的 因素
() 1低转速(0 -0 r i) 3 0- 0/ n下联轴器动幅值 随转子负荷增 大 4 r a
而增大。
1 . 联轴器螺孔 间隙偏大或螺栓预紧力不足 如果 机组存 在联轴 器螺孔 问 隙偏 大或 螺栓预 紧力不 足隐
对 中。 二 、 气 轮 机 联 轴 器 不 对 中故 障 的 运 行 征 兆 及机 理分 析 烟
美国 T xs Mosno ea 州 nat 化工公 司所作的故 障诊 断案例 中 , 中 其
6%是 由 转 子不 对 中 引起 的 。 转 子 不 对 中 的 系 统 在 运 转 过 程 中 0
易出现轴挠 曲变形 、机械振动 、轴承早期损坏及油膜失稳等现 象, 对系统平稳运行危 害极 大。 烟气轮机联 轴器不对 中故 障率较 高 , 导致 油膜 温升高 、 它会 油膜失 稳 、 机组振动异常 , 产生不正常 噪声 , 从而造成轴承早期 损坏 、 轴器轮齿 咬死断齿 、 联 螺栓变形 断裂 、 碰摩烧损 , 至出现 “ 甚 锁定” 现象 , 对生产安 全造成极大危
2 , ms是西 门子 s — 0 L 7 3 0 P C的 5 8倍 ; P c编程人 员容易获 - ③ L
得 功 能强 大 的 I C 13 — 语 言资 源 。 E 1 3 1 4软 件 开 发 .
采用具 有远程 I / O的 P O I U R FB S接 口端 子 与控 制器通 信 , 1 0 1u 个R FB s连接器将 耦合器 、 阀岛 、 伺服控制器 以及变频 器信 息传 入 P O I U 端 口,"R FB S连接器与其他控制系统通 R FB S 2 O IU P 信。 () 1将倍佛公 司总线耦合器 和费斯通公 司电磁阀组控 制器

典型故障机理识别和表征方法

典型故障机理识别和表征方法

典型故障机理识别和表征方法1.引言1.1 概述概述在工程和科技领域,机器和设备的故障是无法避免的。

当发生故障时,准确地识别和理解故障的机理对于及时修复和预防类似问题的再次发生至关重要。

然而,由于故障机理本质上是复杂和多变的,常常需要借助专业知识和先进的分析方法来进行识别和表征。

本文旨在介绍典型故障机理识别和表征的方法。

首先,我们将详细介绍故障机理的识别方法,包括方法1和方法2。

这些方法基于不同的原理和技术,可以从不同角度揭示故障发生的原因和机制。

通过对故障机理的准确识别,可以为故障的解决提供有力的依据和指导。

其次,我们将介绍故障机理的表征方法,包括方法1和方法2。

一旦故障机理被识别出来,我们需要进一步进行表征,以便更好地理解故障的性质和特点。

这些方法可以通过各种手段,如数学建模、实验测试和数据分析等,将故障机理具体化和可视化。

通过对故障机理的深度表征,我们可以更好地理解其引发的原因和对系统性能的影响。

最后,在结论部分,我们将对本文所介绍的典型故障机理识别和表征方法进行总结,并展望未来的研究方向和发展趋势。

希望本文能够为读者提供一个全面的视角,以便更好地应对和解决机器和设备故障带来的挑战。

1.2文章结构文章结构的主要目的是为了帮助读者更好地理解文章的内容和组织。

本文的结构主要包括三个部分:引言、正文和结论。

引言部分将首先对文章的主题进行概述,介绍典型故障机理识别和表征的重要性和应用领域。

接下来,文章将介绍整篇文章的结构,并简要说明每个部分的内容和目的。

最后,引言部分将阐明本文的目的,即通过对典型故障机理识别和表征方法的深入研究,来提高故障检测和预防的准确性和效率。

正文部分将详细介绍典型故障机理识别方法和表征方法。

在典型故障机理识别方法的部分,将列举并详细描述两种具体的方法,即方法1和方法2。

对于每种方法,将提供相关的理论基础、算法原理和应用案例,以便读者全面了解其优缺点和适用范围。

在典型故障机理表征方法的部分,同样会介绍两种具体的方法,并对其进行详细的解释和评估。

故障及诊断

故障及诊断

机械设备故障1.故障的定义:设备(系统)或零部件丧失了规定功能的状态。

故障的含义:一是机械系统偏离正常功能;二是功能失效。

2. 故障率:指在每一个时间增量里产生故障的次数,或在时间t 之前尚未发生故障,而在随后的dt时间内可能发生的故障的条件概率。

3. 故障率基本类型浴盆曲线型1)早期故障期:故障率高,但故障随设备工作时间的增加而迅速下降它相当于机电设备安装试车后,经过磨合、调整将进入正常工作阶段。

若进行大修或技术改造后,早期故障期将再次出现。

2)随机故障期:故障率低而稳定,近似为常数。

此时期是机电设备的最佳工作期。

3)耗损故障期:故障率随设备运转时间增加而迅速增高。

机械设备或零部件经长期运转,磨损严重,产生故障的机会增大。

在这一时期出现前进行预防维修,或在这一时期刚出现时就进行小修,防止故障大量出现,降低故障率和减少维修工作量。

机械零件的主要失效形式一、磨损失效1.磨损:运动副之间的摩擦将导致零件表面材料的逐渐损失,这种现象称为磨损。

单位时间内材料的磨损量称为磨损率。

磨损的后果:①毁坏工作表面;②消耗材料;③影响机械设备的功能;④降低寿命工程上常利用磨损的原理来减小零件表面的粗糙度,如磨削、研磨、抛光、跑合等。

2. 磨损的规律磨损过程大致可分为以下三个阶段:(1)跑合(磨合)磨损阶段将金属突出部分磨平,凹处补齐,接触面积加大,光洁度提高影响因素:载荷、相对速度、润滑条件(选择合理的载荷、相对运动速度和润滑条件等参数是缩短磨合期的关键因素)(2)稳定磨损阶段:磨损速率小且稳定,持续时间长影响因素:合理使用、维护与保养是延长该阶段的关键(3)剧烈磨损阶段:此阶段的特征是磨损速度及磨损率都急剧增大,机械效率明显下降,精度降低。

可能伴有振动和温度升高,直至零件失效。

及时发现和修理即将进入该阶段工作的零部件。

3. 磨损的类型和机理按照磨损的机理以及零件表面磨损状态的不同把磨损分为:(1)磨粒磨损由于摩擦表面上的硬质突出物或从外部进入摩擦表面的硬质颗粒,对摩擦表面起到切削或刮擦作用,从而引起表层材料脱落的现象,称为磨粒磨损。

轴不对中故障机理以及滚动轴承故障机理分析

轴不对中故障机理以及滚动轴承故障机理分析

轴不对中故障机理以及滚动轴承故障机理分析一、轴不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。

轴不对中可分为联轴器不对中和轴承不对中,联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。

轴不对中的主要故障特征:(1)平行不对中:径向出现轴的一倍频、二倍频峰值,尤以二倍频显著。

(2)偏角不对中:轴向振动大,在基频、二倍频甚至三倍频处有稳定的高峰。

(3)平行偏角不对中:轴向和径向均发生振动。

二、滚动轴承故障机理滚动轴承的监测诊断技术有很多种,如振动信号分析诊断、声发射诊断、油液分析诊断、光纤监测诊断等,它们各具特点,其中振动信号分析诊断技术应用最为广泛。

在轴承工况监视与故障诊断的各方法中,振动法由于其适用性强,效果好,测试及信号处理简单直观等优点而被广泛采用。

振动信号作为预知滚动轴承故障的载体,具有很优良的性质。

1.滚动轴承的基本类型分类滚动轴承已是标准化、系列化、通用化、商品化的部件。

滚动轴承是机械构造中的基础运动元件,对机械的运动、做功和发挥机械的功能与效率具有直接的制约功能。

滚动轴承的数据信息繁多复杂,分类方式主要依据轴承所能承受的负荷方向、公称接触角及滚动体形状按照轴承类型对滚动轴承库的数据进行分类,基本类型如图所示。

2.滚动轴承的典型故障滚动轴承的主要故障形式有:(1)疲劳剥落滚动轴承工作时,滚道和滚动体表面既承受载荷又相对滚动,由于交变载荷的作用,首先在表面下一定深度处(最大剪应力处)形成裂纹,继而扩展到接触表面层发生剥落坑,最后发展到大片剥落,这种现象就称为疲劳剥落。

(2)磨损由于滚道和滚动体的相对运动(包括滚动和滑动)和尘埃异物的侵入等都会引起表面磨损,而当润滑不良时更会加剧表面磨损。

磨损的结果使轴承游隙增大,表面粗糙度增加,降低运转精度。

(3)塑性变形在工作负荷过重的情况下,轴承受到过大的冲击载荷和静载荷,或者因为热变形引起的额外的载荷,或者当有高硬度的异物侵入时,都会在滚道表面上形成凹痕或划痕。

设备状态监测与故障诊断技术第5章-旋转机械故障诊断技术

设备状态监测与故障诊断技术第5章-旋转机械故障诊断技术

2024/8/1
图5.8 典型不对中谱图
可编辑课件PPT
பைடு நூலகம்
19
19
实例四: 转子不对中故障的诊断
MO MI PI PO
电机
水泵
出现2×频率成分。 轴心轨迹成香蕉形或8字形。 振动有方向性。 轴向振动一般较大。 本例中, 出现叶片通过频率。
2X频率 1X频率
叶片通 过频率
2024/8/1
可编辑课件PPT
转子不平衡故障包括: ①转子质量不平衡、 ②转子偏
心、 ③轴弯曲、 ④转子热态不平衡、 ⑤转子部件
脱落、 ⑥转子部件结垢、 ⑦ 联轴器不平衡等,不
同原因引起的转子不可编平辑课衡件P故PT 障规律相近,但也各有 3
2024/8/1
3
第一节 旋转机械典型故障的机理和特征
1.转子质量不平衡
力不平衡: 不平衡产生的振动幅值在转子第一临界转速以下随转速的 平方增大。例如,转速升高1倍,则振动幅值增大3倍。在转子重 心平面内只用一个平衡修正重量便可修正之。
4.转子热态不平衡: 在机组的启动和停机过程中,由于热交换速
度的差异,使转子横截面产生不均匀的温度分布,使转子发生
瞬时热弯曲,产生较大的不平衡。热弯曲引起的振动一般与负
荷有关。
可编辑课件PPT
5
2024/8/1
5
第一节 旋转机械典型故障的机理和特征
5. 转子部件脱落 可以将部件脱落失衡现象看作对工作状态的转子
掌握滚动轴承故障诊断技术、齿轮故障诊断技术;
了解电动机故障诊断技术、皮带驱动故障诊断技术;
2024/8/熟1 悉利用征兆的故障诊可断编辑方课件法PPT。
2
2
第一节 旋转机械典型故障的机理和特征

转子不对中故障的分类有哪几种

转子不对中故障的分类有哪几种

转子不对中故障的分类有哪几种?1、旋转机械常见不对中形式及新分类在工程实际中,基础下沉、缸体变形、轴承座安装不当、热膨胀不均等均会造成转子不对中故障,尽管产生不对中故障的原因千差万别,但是究其直接原因,应是由于轴承中心的不一致造成的,图1给出了由两根转子通过柔性联轴器联接组成的轴系常见的不对中形式,图中1~4表示轴承,虚线框起来的为联轴器部分,z为轴线方向,X为水平方向,y为竖直方向,由于对称原因,图1中未列出那些对称的不对中形式。

图I中,(a)、(b)两种不对中形式,实际上在静态时转子是对中的,不对中的是轴承,这两种不对中形式的共同之处在于,在4个径向支承轴承中,有3个轴承是等高的,一个轴承中心偏高或偏低,转子间实际上是对中的。

在文中,把这种不对中形式称为同侧轴承不对中(即由同一侧某一轴承相对于初始轴承位置发生变化引起的不对中故障);(c)中的不对中形式,同一侧的两个轴承都是中心对中的,但是异侧的两对轴承中心是不对中的,而且这种不对中形式转子间也是不对中的,在文把这种不对中形式称为异侧轴承不对中;(d)、(e)、(f)、(g)4种不对中形式既有轴承不对中存在也有转子不对中存在,在文中称为混合不对中。

2、各类不对中故障机理及特征传统的转子不对中形式按照联轴器两端转子轴线之间的关系分为:轴线平行位移不对中、轴线角度位移不对中和轴线综合位移不对中。

从时域波形、频率成分、相位特征、轴心轨迹、稳定性等方面给出了不对中故障的振动特征,并提供了区分平行不对中、角度不对中的方法,这里不再详述,下面讨论作者提出的新不对中分类中各类不对中故障的机理及特征。

根据前面定义,同侧轴承不对中形式,实际上转子间是对中的,也就是说,该类不对中只有轴承不对中,而没有转子不对中。

以图l(a)为例,当转予运动时,由于轴承3、4不对中,使得这两个轴承在不对中方向(图中为y方向)上的轴瓦间隙发生变化,蕞小油膜厚度变小,从而使支承刚度发生变化,就有可能使间隙变小的地方发生轴颈与轴瓦间的摩擦,对于以在一阶振型为主要振动型态的转子系统,就会使轴承3、4承受2倍工频的周期激励,根据作用力与反作用力原理,同样的力也会作用到转子上面,但是由于转子间对中情况良好,这种2倍频激励在转子轴振信号中不一定表现明显,因此对于此类不对中形式,应以瓦振(或座振)信号为准,而且由于转子间不存在不对中,因此与之相连的转子振动不会受到不对中的影响。

转子不平衡故障诊断方法及应用实例分析

转子不平衡故障诊断方法及应用实例分析
4.结论:分析认为造成该机组高振值的主要原因是机组轴系不平衡,结合机组 运行实际情况认为转子存在严重损伤,建议立即停车检查。
5.生产验证:在次日对该机组进行检修,发现第二级叶片上有明显裂纹,第一、 三级叶片上分别存在多处细小裂纹,叶片出现了较严重缺损。因此证明பைடு நூலகம்此次诊 断的正确性。

转子不平衡故障诊断应用实例
鉴于质量不平衡引起的激励力F是一个交变力,它会使转子产生振动,当转 子每旋转一周,离心力就会改变一次方向,不平衡故障的振动频率为转子的转频, 振动的时域波形近似为正弦波。
图2 不平衡转子时域波形
时域分析仅能为机械故障诊断提供非常有限的信息, 通常只能粗略地回答机械设备是否有故障以及故障严重 的程度,但不能检测和定位故障发生的位置。因此,时 域分析只用于设备的简易诊断。对于设备管理和维修人 员,诊断出设备是否有故障,这只是解决问题的开始, 更重要的工作在于确定哪些零部件出现了故障,以便采 取针对性的措施。因此,故障定位问题在设备故障诊断 与检测研究中显得尤为重要。
2012, 15(3):57-59. [4] 黄永东. 转子不平衡现象的分析[J]. 发电设备, 2009, 23(3):164-169. [5] 徐福泽. 转子系统不平衡-不对中耦合故障的动力学分析与诊断[D]. 湖南科技大学, 2013. [6] 张茉. 转子系统振动故障的诊断方法及时频分析技术研究[D]. 东北大 学, 2008. [7]楼向明. 运转状态下转子不平衡识别方法的研究[D]. 浙江大学, 2001.
图12 转子正常运转时时域信号波形图 图14 转子正常运转频谱图
图11转子不平衡故障仿真实验装置
图13 转子不平衡时时域信号波性特征 图15 转子不平衡频谱图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不对中故障机理与诊断大型机组通常由多个转子组成,各转子之间用联轴器联接构成轴系,传递运动和转矩。

由于机器的安装误差、工作状态下热膨胀、承载后的变形以及机器基础的不均匀沉降等,有可能会造成机器工作时各转子轴线之间产生不对中。

具有不对中故障的转子系统在其运转过程中将产生一系列有害于设备的动态效应,如引起机器联轴器偏转、轴承早期损坏、油膜失稳、轴弯曲变形等,导致机器发生异常振动,危害极大。

一、转子不对中的类型如图1-1所示,转子不对中包括轴承不对中和轴系不对中两种情况。

轴颈在轴承中偏斜称为轴承不对中。

轴承不对中本身不会产生振动,它主要影响到油膜性能和阻尼。

在转子不平衡情况下,由于轴承不对中对不平衡力的反作用,会出现工频振动。

机组各转子之间用联轴节连接时,如不处在同一直线上,就称为轴系不对中。

通常所讲的不对中多指轴系不对中。

造成轴系不对中的原因有安装误差、管道应变影响、温度变化热变形、基础沉降不均等。

由于不对中,将导致轴向、径向交变力,引起轴向振动和径向振动。

由于不对中引起的振动会随不对中严重程度的增加而增大。

不对中是非常普遍的故障,即使采用自动调位轴承和可调节联轴器也难以使轴系及轴承绝对对中。

当对中超差过大时,会对设备造成一系列有害的影响,如联轴节咬死、轴承碰磨、油膜失稳、轴挠曲变形增大等,严重时将造成灾难性事故。

J.—_…L一如图1-2所示,轴系不对中一般可分为以下三种情况:(1)轴线平行位移,称为平行不对中;(2)轴线交叉成一角度,称为角度不对中;(3)轴线位移且交叉,称为综合不对中。

图1-2齿式联轴器转子不对中形式二、不对中振动的机理大型高速旋转机械常用齿式联轴器,中小设备多用固定式刚性联轴器,不同类型联轴器及不同类型的不对中情况,振动特征不尽相同,在此分别加以说明。

1.齿式联轴器连接不对中的振动机理齿式联轴器由两个具有外齿环的半联轴器和具有内齿环的中间齿套组成。

两个半联轴器分别与主动轴和被动轴连接。

这种联轴器具有一定的对中调节能力,因此常在大型旋转设备上采用。

在对中状态良好的情况下,内外齿套之间只有传递转矩的周向力。

当轴系对中超差时,齿式联轴器内外齿面的接触情况发生变化,从而使中间齿套发生相对倾斜,在传递运动和转矩时,将会产生附加的径向力和轴向力,引发相应的振动,这就是不对中故障振动的原因。

(1)平行不对中联轴器的中间齿套与半联轴器组成移动副,不能相对转动。

当转子轴线之间存在径向位移时,中间齿套与半联轴器间会产生滑动而作平面圆周运动,中间齿套的中心是沿着以径向位移y为直径作圆周运动。

如图1-3所示。

图1-3联轴器平形不对中图1-4联轴器齿套运动分析如图1-4所示,设A为主动转子的轴心投影,B为从动转子的轴心投影,K为中间齿套的轴心,AK为中间齿套与主动轴的连线,BK为中间齿套与从动轴的连线,AK垂直BK , 设AB长为D, K 点坐标为K (x , y),取?为自变量,则有jx - Dsin^costf «-yDsin2ffly = Deo 虻加-对?求导,得|dz = Dcca2tfdtf・Dsin2(M0K点的线速度为沦•涤越泡曲浊卩吃:,沁(1-3)由于中间套平面运动的角速度(d?/dt )等于转轴的角速度,即d?/dt =3,所以K点绕圆周中心运动的角速度3K为曲广2*/D二為(1-4)式中,V K为点K的线速度,由式(1-4)可知,K点的转动速度为转子角速度的两倍,因此当转子高速转动时,就会产生很大的离心力,激励转子产生径向振动,其振动频率为转子工频的两倍。

此外由于不对中而引起的振动有时还包含有大量的谐波分量,但最主要的还是2倍频分量。

(2)偏角不对中当转子轴线之间存在偏角位移时,如图1-5所示,从动转子与主动转子的角速度是不同的。

从动转子的角速度为式中,3 1, 3 2分别为主动转子和从动转子的角速度;a为从动转子的偏斜角;$1为主动转子的转角。

从动转子每转动一周其转速变化两次,如图1-6所示,变化范围为霜脚朗翹磁咕晟(1-6)图1-5联轴器偏角不对中图1-6转速比的变化曲线偏角不对中使联轴器附加一个弯矩,弯矩的作用是力图减小两轴中心线的偏角。

转轴每旋转一周,弯矩作用方向交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。

(3)综合不对中在实际生产中,轴系转子之间的对中情况往往是既有平行位数不对中,又有角度不对中的综合移不对中,因而转子振动的机理是两者的综合结果。

当转子既有平行位移不对中又有角度不对中时,其动态特性比较复杂。

激振频率为角频率的2倍;激振力的大小随速度而变化,其大小和综合不对中量△『、△ a、安装距离厶L以及中间齿套质量m等有关。

联(1-2)(1-5)轴器两侧同一方向的激振力之间的相位差在0°〜180°之间。

其他故障物理特性也介于轴线平行不对中和角度不对中之间。

同时,齿式联轴器由于所产生的附加轴向力以及转子偏角的作用,从动转子以每回转一周为周期,在轴向往复运动一次,因而转子轴向振动的频率与角频率相同,如图1-7所示。

图1-7转子不对中的轴向振动2.刚性联轴器连接转子不对中的故障机理刚性联轴器连接的转子对中不良时,由于强制连接所产生的力矩,不仅使转子发生弯曲变形,而且随转子轴线平行位移或轴线角度位移的状态不同,其变形和受力情况也不一样,如图1-8所示。

图1-8刚性联轴器连接不对中的情况用刚性联轴器连接的转子不对中时,转子往往是既有轴线平行位移,又有轴角度位移的综合状态,转子所受的力既有径向交变力,又有轴向交变力。

弯曲变形的转子由于转轴内阻现象以及转轴表面与旋转体内表面之间的摩擦而产生的相对滑动,使转子产生自激旋转振动,而且当主动转子按一定转速旋转时,从动转子的转速会产生周期性变动,每转动一周变动两次,因而其振动频率为转子转动频率的两倍。

转子所受的轴向交变力与图1-7相同,其振动特征频率为转子的转动频率。

3.轴承不对中的故障机理轴承不对中实际上反映的是轴承坐标高和左右位置的偏差。

由于结构上的原因,轴承在水平方向和垂直方向上具有不同的刚度和阻尼,不对中的存在加大了这种差别。

虽然油膜既有弹性又有阻尼,能够在一定程度上弥补不对中的影响,但不对中过大时,会使轴承的工作条件改变,在转子上产生附加的力和力矩,甚至使转子失稳或产生碰磨。

轴承不对中同时又使轴颈中心和平衡位置发生变化,使轴系的载荷重新分配,负荷大的轴承油膜呈现非线性,在一定条件下出现高次谐波振动;负荷较轻的轴承易引起油膜涡动进而导致油膜振荡。

支承负荷的变化还会使轴系的临界转速和振型发生改变。

三、转子不对中的故障特征实际工程中遇到的转子不对中故障大多数为齿式联轴器不对中,在此以齿式四、转子不对中的故障诊断转子不对中的故障诊断依 据主要见表表1-2 转子不对中故障振动敏感参数联轴器不 对中为 例介绍 其故障特 征。

由上述分析知,齿式联轴器连接不对中的转子系统,其振动主要特征如下。

1 )故障的特征频率为角(2)由不对中故障产生的对 旋转机械应更加注重转 (3) 激励力与不对 (4) 联轴器同一侧 轴器两侧同一方向的相 综合位移不对中时为0 子的对中 中量成正 相互垂直 位在平行 °〜180°。

频率的 转子的 要求。

比,随 的两个 位移不 2倍。

激励力 不对中 方向,对中时 随转速的 升高而 加大,因此,高 速量的增加,激励力呈线性增大。

2倍频的相位差是基频的2倍;联 为0°在角位移不对中时为180°, (5) 轴系转子在不对中情况 生相对运动,在平行位移不对中 双锥体,综合位移不对 量决定。

(6)轴系具有过大的 运动中产生巨大的附加 坏,对转子系统具有较 中时是介 不对中量径向力和 大的破坏 下,中 时的回 于二者 间齿套 转轮廓 之间的 的轴心线 为一圆柱 形状。

回 相对于 体,角 转体的 联轴器 位移不 回转范 的轴心线对中时为围由不对时,会由于 附加轴向力, 性。

联轴器不符合其运 使转子产生异常 动条件 振动, 而使转子 轴承过早1-1 和表 1-2 。

五、故障原因与治理措施转子不对中故障原因与治理措施见表1-3。

六、诊断实例某厂一台透平压缩机组整体布置如图1-9所示。

机组年度检修时,除正常检查、调整工作外,还更换了连接压缩机高压缸和低压缸之间的联轴器的连接螺栓,对轴系的转子对中情况进行了调整等。

图1-9 机组布置示意图图1-10 异常振动特征压缩机高压缸主要振动特征如下:(1) 连接压缩 机高、低压缸 之间的 联轴器 两端振动 较大;(2) 测点5的振动波形畸变为基频与倍频的叠加波,频谱中 2频谐波具有较 大峰值; (3) 轴心轨迹 为双椭圆复合 轨迹; (4) 轴向振动较大。

诊断意见:压缩机高压缸与低压缸之间转子对中不良,联轴器发生故障,必 须紧急停机检修。

生产验证:检修人员做好 准备工作后,操作人员 按正常停机处理。

根据诊断 结论,重点对机组联轴器局部解体检查发现,连接压缩机高压缸与低压缸之间的 联轴器(半刚性联轴器)固定法兰与内齿套的连接螺栓已断掉三只。

复查 转子 对中情 况,发现 对中严 重超差 ,不对中 量大于 设计要 求 16 倍。

同时 发现 连接螺 栓的机械 加工和 热处理 工 艺不符 合要求 ,螺纹 根部应力 集 中,且热 处理后 未进检修后启 动机组 时,透平和 压缩机 大(在允 许范围 内); 机组运行 一周后 的径向振 动增大 ,其中 测点5振动值增 压缩机低 压缸的 振动无 明显变化 ;机组 然增加一 倍,超 过设计 允许值, 振动剧低压缸运行正常,而压缩机高压缸振动较 压缩机高压缸振动突然加剧,测点4、5 加两倍,测点6的轴向 振动加 大,透平 和 运行两周后,高压缸测点 5的振动值又突 烈,危及生产。

如图1-10所示。

3HEE KI他缸5行正火处理,金相组织为淬火马氏体,螺栓在拉应力作用下脆性断裂。

根据诊断意见及分析检查结果,重新对中找正高压缸转子,并更换上符合技术要求的连接螺栓,重新启动后,机组运行正常,避免了一次恶性事故。

相关文档
最新文档