大一上学期微积分复习资料
大一上微积分知识点重点

大一上微积分知识点重点微积分作为数学的一门基础课程,是大一上学期中不可忽视的一门学科。
它的重要性和广泛应用性使其成为大学学习过程中必不可少的一环。
在本文中,我将为您详细介绍大一上微积分的知识点重点,并逐一阐述其核心概念和应用。
1. 函数与极限函数是微积分的基础概念之一。
在微积分中,我们学习了各种类型的函数,例如常数函数、幂函数、指数函数、对数函数、三角函数等。
理解函数的性质以及它们的图像是学习微积分的第一步。
极限是微积分的核心概念之一。
通过极限的概念,我们可以研究函数的趋势和性质。
在学习极限时,需要掌握定义、性质和计算方法。
例如,当自变量趋近于某个值时,函数的极限是什么?如何计算无穷大和无穷小?2. 导数与微分导数是微积分中的重要概念,它刻画了函数在给定点的变化率。
学习导数的定义、性质和计算方法十分关键。
同时,我们还需要熟悉一阶导数和高阶导数的概念,并能够应用它们解决实际问题。
微分是导数的一个应用,它可用于求函数在给定点的线性近似值。
在学习导数和微分的过程中,需要重点掌握基本函数的导数性质,如常数函数导数为0,幂函数导数的求法,指数函数和对数函数的导数等等。
此外,还需了解导数在生活和科学领域的应用,如速度、加速度、边际效应等。
3. 积分与定积分积分是微积分的另一个重要概念,它与导数相对应。
积分的概念可以理解为函数的反导数,并且它还可以用于计算区域的面积、体积、质量、位移等。
定积分是积分的一种形式,在学习过程中需要深入理解定积分的定义和计算方法。
积分的应用非常广泛,可以应用于物理、经济、统计学、几何学等各个领域。
例如,利用定积分可以计算曲线下面积、求解定积分方程、计算概率密度函数,以及求解平面曲线的弧长等。
4. 微分方程微分方程是微积分中的一个重要分支,它建立了函数与其导数之间的关系。
通常情况下,微分方程会涉及到一个或多个未知函数的导数,我们需要求解这些方程来获得函数的解析形式。
学习微分方程时,需要了解常微分方程和偏微分方程的概念,学习解微分方程的常用方法如变量分离、常系数线性微分方程的特征方程求解、齐次方程和非齐次方程的求解等。
微积分大一上学期知识点

微积分大一上学期知识点微积分是数学的一个分支,主要研究函数的极限、连续性、可导性以及积分等概念和性质。
在大一上学期的微积分课程中,我们学习了许多重要的知识点。
本文将对这些知识点进行简要介绍,以帮助回顾和巩固我们所学的内容。
1. 极限与连续在微积分中,极限是一个基础且重要的概念。
我们研究函数在某一点上的极限,可以帮助我们理解函数在该点的趋势和性质。
极限的定义通常用到ε-δ语言,即对于任意给定的ε(大于0),存在与之对应的δ(大于0),使得当自变量x与该点的距离小于δ时,函数值f(x)与极限L的差的绝对值小于ε。
另外,我们还学习了一些常用的极限公式和性质,如极限的四则运算法则、一些基本函数的极限等。
连续性是函数的一个重要特性,它描述了函数在某一点上的无间断性。
我们学习了连续函数的定义与性质,以及常见的连续函数的例子。
如果一个函数在某一点上连续,并且在该点的左右两侧的极限存在且相等,那么该函数在该点处可导。
2. 导数与微分导数是微积分中的另一个基本概念,它描述了函数在某一点上的变化率。
我们学习了导数的定义和计算方法,包括导数的极限定义、基本导数公式以及求导法则(如常数因子法则、和差法则、链式法则等)。
通过导数,我们可以求解函数的极值、最优化问题等。
微分是导数的另一种表达方式,它是函数在某一点处的线性近似。
微分的计算方法包括利用导数公式、微分中值定理等。
微分在物理学、经济学等领域有着广泛的应用,如速度、加速度的计算等。
3. 积分与定积分积分是微积分的核心内容之一,它是函数的反过程。
我们学习了不定积分和定积分两种积分的概念和计算方法。
不定积分是积分的基本形式,它是一个函数族。
我们了解了如何计算一些基本函数的不定积分,并学习了一些基本的积分表达式和求积分的方法,如换元积分法、分部积分法等。
定积分是对函数在一个区间上的积分运算,它代表了函数在该区间上的累积效应。
我们学习了定积分的定义和性质,掌握了定积分的计算方法,如定积分的几何意义与计算、定积分的线性性质、定积分的基本公式等。
大一上学期微积分复习资料

10-11学年第一学期“微积分”期末复习指导第一章 函数一.本章重点复合函数及分解,初等函数的概念. 二.复习要求1、 能熟练地求函数定义域;会求函数的值域。
2、理解函数的简单性质,知道它们的几何特点。
3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。
其中⑴。
对于对数函数ln y x =不仅要熟记它的运算性质,还能熟练应用它与指数函数 xy e=互为反函数的关系,能熟练将幂指函数作如下代数运算: ln vu v ue =⑵。
对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值.4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。
5、 知道分段函数,隐函数的概念. 。
三.例题选解例1。
试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的? ⑴.2sin x y e =⑵.21arctan()1y x =+ 分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。
解:⑴.2,,sin u y e u v v x===⑵。
21arctan ,, 1.y u u v x v===+例2。
cot y arc x =的定义域、值域各是什么?cot1arc =? 答:cot y arc x = 是cot ,(0,)y x x π=∈ 的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知cot y arc x =的定义域是(,)f D =-∞+∞,值域为(0,)f Z π=。
cot14arc π=四.练习题及参考答案1. ()arctan f x x =则f (x )定义域为 ,值域为 f (1) = ;(0)f = 。
2。
()arcsin f x x =则f (x )定义域为 ,值域为 f (1) =;2f = 。
大一微积分复习总结

微积分期中复习第一章 函数与极限一、函数1、数轴、区间、领域2、函数的概念:设有两个变量x 和y ,如果当某非空集合D 内任取一个数值时, 变量y 按照一定的法则(对应规律)f ,都有唯一确定的值y 与之对应,则称y 是x 的函数。
记作()y f x =,其中变量x 称为自变量,它的取值范围D 称为函数的定义域;变量y 称为因变量,它的取值范围是函数的值域,记作()Z f ,即(){|(),}Z f y y f x x D ==∈。
函数的表示:函数的表示有三种。
公式法、表格法和图示法。
3、函数的几种特性函数的有界性、奇偶性、单调性和周期性。
4、初等函数(1) 基本初等函数① 幂函数:y x μ=(μ为任意实数), y kx b =+, 2y ax bx c =++ ② 指数函数:x y a =(0a >且1a ≠) ③ 对数函数:log a y x =(0a >且1a ≠)。
恒等式: log (0,1)a N a N a a =>≠ 换底公式: log log log c a c bb a=运算的性质:log log log a a a xy x y =+,log log log aa a yy x x=-。
④ 三角函数:sin ,cos ,tan ,cot ,sec ,csc y x y x y x y x y x y x ======。
⑤ 反三角函数:arcsin ,arccos ,arctan ,cot y x y x y x y arc x ====。
(2) 反函数: (3) 复合函数: 5、常见的经济函数(1) 成本函数、收益函数和利润函数01()()C x C C x =+, ()()R x p x x =⋅,()()()L x R x C x =-。
(2) 需求函数与供给函数 (),()d d s s Q f p Q f p ==二、极限的概念与性质1、数列的极限 (1) 数列(2) 数列极限的定义 (3) 数列极限的几何意义 2、函数的极限(1) 当自变量x →∞时函数()f x 的极限 (2) 当自变量0x x →时函数()f x 的极限 (3) 左右极限3、函数极限的主要性质极限的唯一性、局部有界性、局部保号性。
大一微积分上知识点总结笔记

大一微积分上知识点总结笔记微积分是数学中的一个重要分支,它主要涉及到数的变化量和求取曲线下的面积。
学习微积分需要掌握一系列的概念、定理和方法。
在大一学习微积分时,我们主要学习了导数和积分两个方面的知识。
本文将对大一微积分上的知识点进行总结说明。
一、导数导数是微积分中的重要概念,是用来描述函数在某一点的变化率。
在导数的学习中,我们主要掌握了以下几个知识点:1. 导数的定义:导数可以通过极限的概念来定义,即函数f(x)在某一点x处的导数f'(x)等于函数f(x)在该点的极限。
2. 导数的性质:导数具有一些重要的性质,比如导数存在的条件、导数的四则运算规则等。
3. 常见函数的导数:我们需要熟练地掌握常见函数的导数,如幂函数、指数函数、对数函数、三角函数等。
4. 高阶导数:高阶导数是指导数的导数。
我们需要了解高阶导数的计算方法及其应用。
二、积分积分是微积分中的另一个重要概念,是用来求取曲线下面积的工具。
在积分的学习中,我们主要掌握了以下几个知识点:1. 不定积分:不定积分是指求取函数的原函数。
我们需要熟练地掌握不同类型函数的不定积分计算方法。
2. 定积分:定积分是用来求取曲线下的面积。
我们需要了解定积分的定义及其计算方法,掌握微元法和换元法等积分方法。
3. 定积分的应用:定积分具有广泛的应用,比如求取图形的面积、求取物体的质量和重心等。
4. 反常积分:反常积分是指在无穷区间上的积分。
我们需要了解反常积分的收敛性和计算方法。
三、微分方程微分方程是微积分的一个重要分支,它是描述函数之间关系的方程。
在微分方程的学习中,我们主要掌握了以下几个知识点:1. 一阶常微分方程:一阶常微分方程是指未知函数的导数只出现一次的微分方程。
我们需要了解一阶常微分方程的基本概念、解的存在唯一性以及求解方法。
2. 高阶常微分方程:高阶常微分方程是指未知函数的高阶导数出现在方程中的微分方程。
我们需要掌握高阶常微分方程的求解方法,如特征根法和常数变易法等。
大一微积分知识点详细

大一微积分知识点详细微积分是大学数学的重要组成部分,作为大一学生,学习微积分是必不可少的。
微积分通过对函数的研究,帮助我们揭示数学规律,并应用于各个领域,如物理学、经济学和工程学等。
本文将详细介绍大一微积分的主要知识点,帮助你对该学科有更全面的了解。
一、函数及其性质函数是微积分中的基本概念之一,它描述了输入与输出之间的关系。
函数可以通过方程、图像或表格等多种形式表示。
在微积分中,函数的性质如连续性、可导性和导函数等非常关键。
1.1 连续性函数连续性是指函数在某一点的函数值与该点的极限值相等,即函数在该点没有间断。
连续性可以通过极限的定义来判断,如果函数在某一点的左右极限存在并相等,则函数在该点连续。
1.2 可导性函数的可导性是指函数在某一点的导数存在。
导数描述了函数在该点的变化率,也可理解为函数的斜率。
如果函数在某一点可导,则该点的切线即为函数的导数值。
1.3 导函数导函数是函数的导数函数,用来计算函数在每一点的导数值。
导函数由函数的极限定义得到,它是微积分中最基本的运算之一。
二、极限与连续性2.1 极限的概念极限是微积分的核心概念之一,表示函数在某一点无限接近某个值。
例如,当自变量趋近某一点时,函数的函数值也趋近于某个常数。
极限可以用符号表示,包括左极限、右极限和无穷大极限等。
2.2 极限的计算计算极限是微积分的重要内容之一,可以通过代数方法、函数性质以及洛必达法则等进行计算。
代数方法包括因式分解、有理化等,函数性质包括连续性、导数等,洛必达法则则是处理0/0型极限的有效方法。
2.3 连续性与极限的关系函数的连续性与极限密切相关。
当函数在某一点连续时,该点的极限等于函数值。
反之,如果函数在某一点的极限不等于函数值,则函数在该点不连续。
三、导数与微分3.1 导数的定义导数是函数的变化率,描述了函数在某一点的瞬时变化速度。
在微积分中,导数可以用极限的概念来定义,即函数在某一点的导数等于函数在该点的极限。
大一微积分重点知识点总结

大一微积分重点知识点总结微积分是数学的一门重要分支,也是大一学习的一门必修课程。
通过学习微积分,我们可以研究数学中的变化以及极限问题。
下面是大一微积分的重点知识点总结:1. 函数与极限函数是微积分的基础,它描述了自变量与因变量之间的关系。
函数的概念、性质以及函数图像的绘制是大一微积分的第一部分内容。
极限是微积分中的重要概念,通过极限,我们可以研究函数在某一点的变化趋势。
大一微积分研究的主要是一元函数的极限,其中包括函数的左极限、右极限以及无穷大极限等。
2. 导数与微分导数是描述函数变化率的工具,它表示函数在某一点的切线斜率。
大一微积分中,我们主要研究一元函数的导数,其中包括导数的定义、性质以及常见函数的导数计算方法。
微分是导数的一个应用,它表示函数在某一点上的微小变化量。
微分的计算方法包括差分法、高阶微分以及隐函数微分等。
3. 积分与定积分积分是求解函数面积或曲线长度的工具,它是导数的逆运算。
在大一微积分中,我们主要学习一元函数的不定积分,其中包括不定积分的基本性质、基本积分表以及换元积分法等。
定积分是求解曲线下面积的工具,它表示函数在一定区间上的积累效应。
大一微积分中,我们主要学习一元函数的定积分,其中包括定积分的定义、性质以及常见函数的定积分计算方法。
4. 微分方程微分方程是描述变化规律的方程,它将导数和未知函数联系在一起。
大一微积分中,我们主要学习一阶常微分方程,其中包括常微分方程的基本概念、解的存在唯一性以及常见微分方程的求解方法。
5. 应用领域微积分在各个科学领域和工程技术中都有广泛应用。
在物理学中,微积分被用于描述物体的运动和力学问题;在工程学中,微积分被用于解决电路、材料以及流体力学等问题;在经济学中,微积分被用于求解最优化问题和经济模型等。
总结:大一微积分是复杂而重要的学科,通过学习微积分可以培养我们的逻辑思维能力和问题解决能力。
本文对大一微积分的重点知识点进行了总结,包括函数与极限、导数与微分、积分与定积分、微分方程以及应用领域等。
大一微积分理论知识点

大一微积分理论知识点微积分是数学中非常重要的一个分支,其理论知识点为我们深入了解和应用微积分奠定了基础。
下面将介绍大一学生在学习微积分时需要掌握的一些理论知识点。
一、导数与导数的应用1. 导数的定义:导数表示函数在某一点上的变化率,可以通过极限来定义。
2. 导数的基本性质:导数具有线性性、可导函数的和差积商的导数、导数的复合等性质。
3. 微分学基本定理:导数可以用来求函数的极值、判别函数的单调性等。
4. 高阶导数:高阶导数表示对函数进行多次求导的结果。
5. 泰勒公式与泰勒展开:泰勒公式可以将函数近似表示为多项式的形式,用于计算复杂函数的近似值。
二、积分与积分的应用1. 不定积分与定积分:不定积分是求导运算的逆运算,用于确定函数的一个原函数;定积分是求函数在一定区间上面积的运算。
2. 积分的计算方法:常用的计算方法包括换元积分法、分部积分法、定积分的几何意义等。
3. 微积分基本定理:微积分基本定理将导数和积分联系在一起,反映了导数和积分的基本性质。
4. 曲线长度与曲面面积的计算:利用积分可以计算曲线长度和曲面面积,对应于一维和二维几何问题的求解。
三、微分方程1. 微分方程的概念与分类:微分方程是含有未知函数及其导数的方程,根据方程中未知函数、自变量和导数的不同形式,可以将微分方程分为常微分方程和偏微分方程。
2. 一阶常微分方程:一阶常微分方程是指方程中最高阶导数为一阶的微分方程,常见的一阶常微分方程包括可分离变量方程、线性方程、一阶齐次与非齐次线性方程等。
3. 高阶常微分方程:高阶常微分方程是指方程中最高阶导数为高阶的微分方程,可以通过特征方程、待定系数法等方法求解。
4. 常微分方程的应用:常微分方程在物理、化学、工程等领域中有广泛的应用,例如模拟振动系统、生长模型、电路分析等问题。
总结起来,大一微积分的理论知识点主要包括导数与导数的应用、积分与积分的应用以及微分方程。
这些知识点对于建立数学思维、掌握分析问题的方法和提高数学应用能力具有重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易错点10—11学年第一学期“微积分”期末复习指导第一章 函数一.本章重点复合函数及分解,初等函数的概念。
二.复习要求 1、 能熟练地求函数定义域;会求函数的值域。
2、理解函数的简单性质,知道它们的几何特点。
3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。
其中⑴. 对于对数函数ln y x =不仅要熟记它的运算性质,还能熟练应用它与指数函数x y e =互为反函数的关系,能熟练将幂指函数作如下代数运算: ln vu v ue =⑵.对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值.4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。
5、 知道分段函数,隐函数的概念。
. 三.例题选解例1. 试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的?⑴.2sin x y e = ⑵.21arctan()1y x=+ 分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。
解: ⑴.2,,sin u y e u v v x===⑵.21arctan ,, 1.y u u v x v===+例2. cot y arc x =的定义域、值域各是什么?cot1arc =? 答:cot y arc x = 是cot ,(0,)y x x π=∈ 的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知cot y arc x =的定义域是(,)f D =-∞+∞,值域为(0,)f Z π=.cot14arc π=四.练习题及参考答案1. ()arctan f x x =则f (x )定义域为 ,值域为f (1) = ;(0)f = .2.()arcsin f x x =则f (x )定义域为 ,值域为 f (1) =;2f = .3.分解下列函数为简单函数的复合: ⑴.3x y e -= ⑵.3ln(1)y x =- 答案:1.(-∞ +∞), (,)22ππ-,,04π2. []1,1,,,,2223ππππ⎡⎤--⎢⎥⎣⎦ .3. ⑴.,3u y e u x ==-⑵.3ln ,1.y u u x ==-自我复习:习题一.(A )55.⑴、⑵、⑶; 习题一.(B ).11.第二章 极限与连续一.本章重点极限的计算;函数的连续及间断的判定;初等函数的连续性。
二.复习要求1.了解变量极限的概念,掌握函数f (x )在x 0点有极限的充要条件是:函数在x 0点的左右极限都存在且相等。
2.理解无穷小量与无穷大量的概念和关系,掌握无穷小量的运算性质,特别是无穷小量乘以有界变量仍为无穷小。
例如:01sin lim sin 0,lim 0x x xx x x→→∞== 3.会比较无穷小的阶。
在求无穷小之比的极限时,利用等价无穷小代换可使运算简化,常用的等价无穷小代换有:当()x α0时,有:sin ()x α~()x α; tan ()x α~()x α()1x e α-~()x α;ln(1())x α+~()x α;1()1nx α+~()x nα1cos ()x α-~2()2x α.…….(参见教材P79)4.掌握两个重要极限: (Ⅰ).0sin lim1x xx→=(Ⅱ).101lim(1)lim(1)xx x x e x x→∞→+==+记住它们的形式、特点、自变量的变化趋势及扩展形式(变形式).并能熟练应用其求极限,特别是应用重要极限(Ⅱ)的如下扩展形式求1∞型未定式极限:10lim(1)lim(1)x kx x x k e kx x→∞→+==+ 10lim(1)lim(1)x kx x x k e kx x-→∞→-==- 5.掌握函数连续的概念, 知道结论:初等函数在其定义区间内都是连续的,分段函数在定义区间内的不连续点只可能是分段点。
函数f (x )在分段点x 0处连续的充要条是:函数在x 0点极限存在且等于0()f x ,即:0lim ()()x x f x f x →=当分段函数在分段点0x 的左右两边表达式不相同时,函数f (x )在分段点x 0处连续的充要条件则是:0lim ()lim ()()x x x x f x f x f x -+→→==.6. 掌握函数间断点及类型的判定。
函数的不连续点称为间断点,函数()f x 在0x 点间断,必至少有下列三种情况之一发生:⑴、()f x 在0x 点无定义; ⑵、0lim ()x x f x →不存在;⑶、存在0lim ()x x f x →,但00lim ()()x x f x f x →≠.若0x 为()f x 的间断点,当)(lim 0x f x x +→及)(lim 0x f x x -→都存在时,称0x 为()f x 的第一类间断点,特别)(lim 0x f x x +→=)(lim 0x f x x -→时(即0lim ()x x f x →存在时),称0x 为()f x 的可去间断点;)(lim )(lim 00x f x f x x x x -+→→≠时称0x 为()f x 的跳跃间断点。
不是第一类间断点的都称为第二类间断点。
7.了解连续函数的运算性质及闭区间上连续函数的性质,特别要知道闭区间上的连续函数必有最大值与最小值。
8.能够熟练地利用极限的四则运算性质;无穷小量、无穷大量的关系与性质;等价无穷小代换;教材P69公式(2.6);两个重要极限;初等函数的连续性及洛必达法则(第四章)求函数的极限。
三.例题选解例1.单项选择题⑴下列极限中正确的是( )A.sin lim 1x x x→∞= B. 1sinlim11x x x→∞= C. 20sin lim1x x x→= D. 0tan lim 1x x x →= ⑵ 当0x →1是2sin x 的( )A.低阶无穷小;B.高阶无穷小;C.同阶无穷小,但不是等价无穷小;D. 等价无穷小; 分析与解:⑴. A 与 C 显然都不对,对于D,记tan ()xf x x=,则tan 0()tan 0x x xf x x x x ⎧>⎪⎪=⎨⎪<⎪-⎩∴0tan lim ()lim 1x x xf x x++→→==tan lim ()lim 1x x xf x x--→→==--0lim ()x f x +→≠ 即D 也不对,剩下的B 就是正确答案。
⑵. 由于22222000212lim lim lim 1sin x x x x x x x x→→→-===代换∴ 应选择D. 例3.求极限:⑴0lim x →2ln(1)1cos x x-- ⑵lim x →∞2()5xx x --解: ⑴ 此极限为型 ∵当0x →时,有2ln(1)x -~2()x -, 1cos x -~22x∴0lim x →2ln(1)1cos x x-- 220lim 22x x x →-==-⑵ 此极限为1∞型,可用重要极限()II 。
lim x →∞2()5x x x -- =xx x )531(lim -+∞→x x x x x ⋅-⋅-∞→-+=5335)531(lim x x x x x ⋅--∞→⎥⎦⎤⎢⎣⎡-+=5335)531(lim3e =. )353lim 53lim(=-=⋅-∞→∞→x x x x x x例2.判断函数2296x y x x -=-- 的间断点,并判断其类型。
解:由于229(3)+3)6(3)(2)x x x y x x x x --==---+(∴3,2x x ==-是函数y 无定义的点,因而是函数y 的间断点。
∵33(3)(3)36limlim (3)(2)25x x x x x x x x →→-++==-++∴ 3x =为函数 y 的可去间断点;∵22(3)(3)3limlim (3)(2)2x x x x x x x x →-→--++==∞-++ ∴ 2x =-为函数 y 的第二类(无穷型)间断。
例3.函数21cos 2()00x f x x x x k ⎧-⎪⎪=≠⎨⎪=⎪⎩在点0x =处连续,求常数k .分析与解:由于分段函数()f x 在分段点0x =的左右两边表达式相同,因此()f x 在0x =连续的充要条件是lim ()(0).x f x f k →==∵2220001cos 82lim ()lim limx x x x xf x x x →→→-==代换1.8= ∴1.8k =四.练习题及参考答案1.填空⑴.当0x →时,(1)sin 2xe x -与1)ln(12)x +相比,是__________________无穷小; ⑵.21lim()23xx x x →∞-=+ __________________;⑶.220[cos(3)1]tan3lim (1)ln(15)xx xx e x →-=-+______________.2.单项选择题⑴.设2(3)(2)56x x y x x +-=-+,下面说法正确的是________; A.点3,2x x =-=都是可去间断点;B. 点2x =是跳跃间断点,点3x =是无穷间断点;C. 点2x =是可去间断点,点3x =是无穷间断点;D. 点2x =是可去间断点,点3x =是跳跃间断点;⑵.下面正确的是______________. A.0tan lim1x xx→= ; B.1lim sin0x x x→=; C. 0tan lim x x x →不存在;D.0tan lim 1x x x→=. 答案:1. ⑴.同阶而不等价的 ;⑵.2e - ;⑶.320-.2. ⑴.C; ⑵.B . 自我复习.习题二(A) 11. (4).24. ⑴,(4),⑺. 27.⑴. (4).28.⑴,⑵. 30.⑵.37.⑴,⑶. 习题二(B).14.第三章 导数与微分一.本章重点.导数的概念,导数及微分的计算.二.复习要求1.掌握函数()x ƒ在0x 处可导的定义,并能熟练应用导数的定义式求分段函数在分段点的导数。
导数是一个逐点概念,()x ƒ在0x 处的导数的定义式常用的有如下三种形式:0000()()()limx f x x f x f x x∆→+∆-'=∆000()()limh f x h f x h→+-=00()()limx x f x f x x x →-=- .2.知道导数的几何意义,会求()x ƒ在0x 处的切线方程。
3.熟记基本求导公式及求导的运算法则,熟练掌握下列求导方法,并能熟练应用它们求函数的导数:⑴运用基本求导公式及求导的四则运算法则求导; ⑵复合函数求导法; ⑶隐函数求导法; ⑷取对数求导法。