椭圆综合测试题含答案
椭圆单元测试题及答案

椭圆单元测试题及答案一、选择题1. 椭圆的定义是什么?A. 所有点到两个固定点的距离之和等于常数的点的集合B. 所有点到一个固定点的距离等于常数的点的集合C. 所有点到两个固定点的距离之差等于常数的点的集合D. 所有点到一个固定点的距离之差等于常数的点的集合2. 椭圆的焦点到中心的距离称为什么?A. 长轴B. 短轴C. 焦距D. 半轴3. 椭圆的长轴和短轴的长度之和等于什么?A. 焦距B. 椭圆的周长C. 椭圆的面积D. 椭圆的直径4. 如果椭圆的长轴是2a,短轴是2b,那么它的面积是多少?A. πabB. π(a+b)C. π(a-b)D. π(a^2 + b^2)5. 椭圆的离心率e定义为什么?A. e = c/aB. e = a/cC. e = b/aD. e = a/b二、填空题6. 椭圆的标准方程是 \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \],其中a和b分别代表_________。
7. 当椭圆的离心率e等于0时,椭圆退化为_________。
8. 椭圆的周长是一个比较复杂的表达式,通常用近似公式来表示,其中一种近似公式是周长L = π[3(a+b) - \sqrt{(3a+b)(a+3b)}],其中a和b分别为椭圆的_________。
9. 椭圆的焦点在_________轴上。
10. 椭圆的离心率e的取值范围是_________。
三、解答题11. 已知椭圆的中心在原点,焦点在x轴上,长轴为6,短轴为4,求椭圆的标准方程。
12. 已知椭圆的离心率为0.6,焦点到中心的距离为2,求椭圆的长轴和短轴的长度。
答案:一、选择题1. A2. C3. A4. A5. A二、填空题6. 椭圆的长半轴和短半轴7. 圆8. 长半轴和短半轴9. 主10. (0, 1)三、解答题11. 椭圆的标准方程为 \[ \frac{x^2}{3^2} + \frac{y^2}{2^2} = 1 \]。
圆锥曲线(椭圆、双曲线)测试题

高二数学(文)练考题一.选择题:1、到两定点()13,0F -、()23,0F 的距离之差的绝对值等于6的点M 的轨迹( ) A .椭圆B .线段C .双曲线D .两条射线2.若方程2288x my m +=表示双曲线,则此双曲线的虚轴长为 (A ) A.B .m 2 C .m D3.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( D )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.离心率为23,且过点(2,0)的椭圆的标准方程是 ( ) A 2214x y +=. B.2214x y +=或2214y x += C.2241x y += D.2214x y +=或221416x y += 5、已知双曲线221259x y -=在左支上一点M 到右焦点F 1的距离为18,N 是线段MF 1的中点, O 为坐标原点,则|ON |等于 (A )A.4B.2C.1D.32 6、已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点, 若△ABF 2是正三角形,则这个椭圆的离心率是(C )二.填空题:7.双曲线2218y x -=的焦距为________________________6. 8. 椭圆16x 2+25y 2=400的长轴和短轴的长分别为__________,__________。
9.过双曲线221169x y -=左焦点F 1的弦AB 长为6,则2ABF D (F 2为右焦点) 的周长是2810.如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,则点M 的轨迹方程________________________..三.解答题:11.已知△ABC 的一边长BC =6,周长为16,求顶点A 的轨迹方程.12.求以椭圆221169x y +=短轴的两个顶点为焦点,且过点A (4,5)-的双曲线的标准方程.13.已知双曲线的中心在原点,焦点F 1、F 2且过点(4,10)-(1)求此双曲线的标准方程;(2)若点(3,)M m 在双曲线上,求证:12MF MF ^ (3)求12F MF D 的面积。
中职数学 椭圆、双曲线、抛物线测试卷(含答案)

数学拓展模块第二章椭圆、双曲线、抛物线(试卷A )一、选择题:(本大题有15个小题,每小题3分,共45分。
在每小题所给出的选项中只有一个符合题目要求)1.已知椭圆221169+=x y 上一点到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离为( ). A .3 B .4 C .5 D .62.椭圆2211625+=x y 的焦距是( ). A .6 B .4 C .10 D .93.已知椭圆方程是224520+=x y ,则它的离心率是( ).A .2B .C .D . 124.长轴是短轴的2倍,且经过点P (-2.0)的椭圆方程是( ).A . 2214+=x yB . 221416+=x yC . 221164+=x y 或2214+=x y D . 221416+=x y 或2214+=x y 5.焦点在x 轴上,长轴长为8.离心率为12,那么椭圆的标准方程为( ). A .2211612+=x y B . 2211612-=x y C . 2211216+=x y D . 2211216-=x y6.与椭圆2211625+=x y 有共同的焦点且过点(-的双曲线的方程是( ). A .22154-=y x B . 22153-=y x C . 22154-=x y D . 22153-=x y 7.双曲线的两个焦点坐标是1F (0,-5), 2F (0,5),且2a =8.则双曲线的方程为( ).A .221169-=y x B . 2211625-=y x C . 2211625-=x y D . 2216425-=x y 8.若双曲线焦点在x 轴上,且它的一条渐进线方程为34=y x ,则离心率是( ).A .54B . 4C . 7D . 79.双曲线221169-=x y ,若过右焦点2F ,且在双曲线右半支上的弦AB 长为5,另一焦点为1F 则△AB 1F 的周长为( ).A .16B .11C . 26D .610.设()0,απ∈,方程221sin cos αα+=x y 表示中心在坐标原点,焦点在x 轴上的双曲线,则α的取值范围是( ).A . ()0,π В. [)0,π C . ,2ππ⎛⎫⎪⎝⎭D .,2ππ⎡⎫⎪⎢⎣⎭11.抛物线250-=x y 的准线方程是( ).A . 54=-x B . 52=x C . 54=y D . 54=-y 12.顶点在原点,准线方程为y =4的抛物线标准方程为( ). A . 216=y x B . 216=-y x C . 216=x y D . 216=-x y13.顶点在原点,对称轴是y 轴,顶点与焦点的距离等于2的抛物线方程是( ). A . 24=±x y B . 24=±y x C . 28=±x y D . 28=±y x 14.顶点在原点,以坐标轴为对称轴且过点(2,-3)的抛物线方程是( ). A . 292=y x 或243=-x y B . 292=-y x C . 292=-y x 或243=x y D . 243=-x y 15.顶点在坐标原点,焦点是(0,-1)的抛物线的标准方程是( ). A . 24=x y B . 24=-x y C . 24=-y x D . 24=y x 二、填空题(本在题有15个小空,每空2分,共30分) 16.已知椭圆221625400+=x y ,其离心率为___________.17.已知椭圆的右焦点F (3,0),F 到右顶点距离为3,则椭圆的方程为___________.18.已知曲线的方程22194+=--x y k k为椭圆的标准方程,则k 的取值范围为___________.19.椭圆各22214+=x y a 与双曲线器22212-=x y a 有相同的焦点,则2a =___________. 20如果方程222+=x ky 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是___________.21.已知1F ,2F 是椭圆221259+=x y 的两个焦点,过1F 的直线与椭圆交于M .N 两点,则△MN 2F 的周长是___________.22.双曲线222516400-=x y 的两条渐近线方程是___________.23.双曲线的实轴长为6,离心率2=e ,焦点在x 轴上,则双曲线的标准方程为___________. 24.双曲线2288-=kx ky 的一个焦点是(0,3),那么k =___________.25.与双曲线221916-=x y 有相同的渐近线,且过点(3,-C 的双曲线方程是___________. 26.方程22125-=--x y k k表示双曲线,则k 的取值范围是___________. 27.抛物线214=-y x 的焦点坐标是___________.28.抛物线上24=-y x 上一点M 到焦点的距离是6,则M 到准线的距离是___________. 29.若抛物线22=y px 上到焦点距离为3的点的横坐标为2.则p =___________.30.抛物线218=-y x 的准线方程是___________.三、解答题:(本大题共45分)31.已知椭圆的短轴长是2,中心与抛物线24=y x 的顶点重合,椭圆的一个焦点是此抛物线的焦点,求该椭圆的方程及离心率.32.椭圆的长轴是短轴的3倍,过点P (3,0),求椭圆的标准方程.33.一椭圆的中心在坐标原点,焦点在x 轴上,焦距为 的焦点,且双曲线的实半轴比椭圆的长半轴小4,且双曲线的离心率与椭圆的离心率之比为73,求此椭圆和双曲线的方程。
椭圆综合测试题含答案

椭圆综合测试题含答案题目一已知椭圆的长轴长为12cm,短轴长为8cm。
求椭圆的周长和面积。
解答一椭圆的周长计算公式为:周长= π * (a + b)其中,a和b分别表示椭圆的长轴和短轴长。
将已知数据代入公式进行计算:周长= π * (12 + 8)≈ 3.1416 * 20≈ 62.832cm椭圆的面积计算公式为:面积= π * a * b将已知数据代入公式进行计算:面积= π * 12 * 8≈ 3.1416 * 96≈ 301.592cm²因此,椭圆的周长约为62.832cm,面积约为301.592cm²。
题目二已知椭圆的焦点到准线的距离为3cm,椭圆的长轴长为10cm。
求椭圆的短轴长。
解答二根据椭圆的定义,焦点到准线的距离与长轴、短轴的关系满足以下公式:c² = a² - b²其中,c表示焦点到准线的距离,a和b分别表示椭圆的长轴和短轴长。
将已知数据代入公式进行计算:3² = 10² - b²9 = 100 - b²b² = 100 - 9b² = 91b ≈ √91b ≈ 9.54cm因此,椭圆的短轴长约为9.54cm。
题目三已知椭圆的长轴长为16cm,短轴长为12cm。
求椭圆的离心率和焦距。
解答三根据椭圆的定义,离心率的计算公式为:离心率 = c / a其中,c表示焦点到准线的距离,a表示椭圆的长轴长。
焦距的计算公式为:焦距= √(a² - b²)将已知数据代入公式进行计算:离心率 = c / a = 0.8焦距= √(16² - 12²)= √(256 - 144)= √112≈ 10.583cm因此,椭圆的离心率约为0.8,焦距约为10.583cm。
以上就是关于椭圆综合测试题的解答,希望对您有所帮助!。
椭圆测试题

:r~ if—+ -- 8、椭圆•的右焦点到直线站=V 总的距离是()椭圆的定义及几何性质 测试题考试时间:100分钟 满分:120分、选择题(满分 50分,每题5分,共10小题)点在*边上,则A. ; ■:的周长是()迹是()二+丄=13、椭圆—, ' 上点;’到右焦点的4、椭圆- * --的长轴长、短轴长、离心率依次是()A.2 代 B .MC .M D. M6、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(43 21A. 'B. ■-C. :D. '1、■JE J*1已知■的顶点 L 在椭圆: 上,顶点「是椭圆的一个焦点,且椭圆的另外一个焦A.吩旳B.D.12g2、设定点二',动点:满足条件°■';,",则点,的轨A.椭圆B. 线段C.不存在 D.椭圆或线段A.最大值为5,最小值为4B. 最大值为 10,最小值为8C.最大值为10,最小值为6D.最大值为 9,最小值为1A.5,3,0.8B.10,6,0.8C.5,3,0.6D.10,6,0.65、若椭圆■'过点则其焦距为()7、已知两椭圆+『=呂与2十巫"=的焦距相等,则口的值(9A/或1B.3 33 9 3-或- C. '或- D. 丨或-10、如图所示,一圆形纸片的圆心为「,•是圆内一定点是圆周上一动点,把纸片 折叠使与,,重合,然后抹平纸片,折痕为■,设「与「交于点:, 则点,的轨迹是()A.椭圆B. 双曲线C. 抛物线D. 圆 二、填空题(满分 25分,每题5分,共5小题)方程亍汀卜「空「二-■'?的两个实数根分别是’和•.,则点'- 到原点的距离为椭圆”,,’,•分别是它的左焦点和右顶点,「是它短轴的一个端点(1)两个焦点的坐标分别为(-4,0 )和(4,0 ),且椭圆经过点(5,0) (2)经过点 A ( .3,-2 )和点 B ( -23,1)2 2xf T017、已知椭圆mx 5y5m m 0)的离心率为,求m 的值.A*B./ ,则实数斤的取值范围是((0,3) UC.11、 12、已知焦点在x 轴上的椭圆,长轴长为4,右焦点到右顶点的距离为 1,则椭圆的标准方程为10 一 FJ1已知椭圆■ 的长轴在•’轴上,焦距为,则:等于13、 椭圆…-=1 的离心率为14、=1 (a > ^ > 0)e 1的离心率V5- 115、我们把离心率为黄金比 的椭圆称为“优美椭圆” •设+ ^2 = l(a > A > 0)为“优美三、解答题(写出必要的解答过程或步骤)16、求适合下列条件的椭圆的标准方程C.9、设•是椭圆.e e的离心率,且A 」' B.笊沪 J、 .—+ T7T = l(u > 6 > 0)18、已知椭圆的离心率的距离为一.求椭圆的方程.19、闵为何值时,直线农厂亠和曲线' U 有两个公共点?有一个公共点?没有公共点?数学12月份月考试题答案抽酗定乂牖EL-点乘篙血藕2和等就帐2诃得A 朋C 的周长为M = 4省藏超 1、C 2、D/6 3T2, 2把欄13的方程写成标准方程— 1.知门=B、b — 3,广=4925.2a =L (k 2A = 6,- = »tffii2b = a + c.Xi 2 = fl 2 _^4(a 2 -?) -o® + 2ac+/北爵同馴制/+ 2—3 = 0龈£ = g 或椭诙焦却 忌的酸如-£ -兽分焦点在』轴与瞬由两种情;兄讨论.当4 >上时卡=- a曰 口 ] d 4 — & 2 2!)池> 0“+ ->6o3fl + -=6=网冯陆由点朋跌frlPFil + \PF 2\ = a+-=血尸揣点P a AaqQ削+ - > 6二|FH 时抽点X 靛条件PF — PF 2\ = a + -> f 】力得点P 鶴曲埶H F 诙黠的繩.a 综上直P 的嗽畦鵝HF?或帼放齟 考焦本颈主甦酬圃陆辺:涯讯甌乐fl 斛淋现了*类讹褪洋思熟 淞褴垓艇動+a3、a =存、亡=4,门十口=9血c =1分Wi 橢圆上一点到右焦点的最大、最小距离4、5、6将点的坐标代人■求b 进而求出C,再求出焦距2C 。
椭圆与双曲线综合测试题

椭圆与双曲线综合测试题椭圆与双曲线综合测试题一、选择题(本题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个符合题目要求。
)1、以x2/412+y2/16=1的焦点为顶点,顶点为焦点的椭圆方程是()。
A、x2/16+y2/4=1B、x2/4+y2/16=1C、x2/9+y2/16=1D、x2/16+y2/9=12、已知双曲线x2/9-y2/4=1上的一点P为该双曲线的两个焦点,设P到F2的距离为3,到F1的距离为2,则三角形F1PF2的面积是()。
A、12B、63C、123D、2433、已知以x2/20+y2/16=1为焦点的椭圆C与直线L:x+3y+4=0有且仅有一个交点,则椭圆C的长轴长是()。
A、32B、26C、27D、424、已知双曲线C的对称中心在原点,对称轴是坐标轴,且一条渐近线方程是3x+4y=0,双曲线C过点P(2,1),则双曲线C的方程是()。
A、9x2/25-4y2/9=1B、4x2/9-9y2/25=1C、9x2/16-4y2/25=1D、4x2/25-9y2/16=15、已知椭圆E:9x2/4+y2/16=1的左右焦点是(-5,0)和(5,0),点P为E上一动点,当∠EPF2为钝角,则点P的横坐标的取值范围是()。
A、(-3,3)B、(-5,3)C、(-5,5)D、(3,5)6、若F1、F2是椭圆的两个焦点,满足MF1/MF2=2,则椭圆的离心率的取值范围是下列的选项()。
A、(2/3,1)B、(1/2,1)C、(1,2/3)D、(1,1/2)7、已知椭圆x2/5+y2/4=1(n>2)和双曲线-3y2/5+x2/9=1有相同的焦点F1、F2,P(7,2)是两条双曲线的一个交点且PF1⊥PF2,则△PF1F2的面积是()。
A、1B、1/2C、2D、3/28、如果已知双曲线的左右焦点分别是F1、F2,在左支上过F1的弦AB的长是5,若半轴a=5,则三角形ABF2的周长是()。
椭圆单元测试题(含答案)

椭圆单元测试题(含答案)一. 选择题1. 下列哪个不是椭圆的性质?A. 任何椭圆都有两个焦点B. 椭圆的离心率小于1C. 椭圆是一条闭合曲线D. 直径是椭圆上任意两点的距离的最大值答案:D2. 下列哪个公式可以用来计算椭圆面积?A. $S = \frac{\pi}{2}ab$B. $S = \pi ab$C. $S = \frac{4}{3}\pi ab$D. $S = 2\pi ab$答案:B3. 一个椭圆的长轴长度是6,短轴长度是4,则该椭圆的离心率是多少?A. $\frac{3}{4}$B. $\frac{\sqrt{2}}{2}$C. $\frac{4}{5}$D. $\frac{5}{6}$答案:C二. 填空题1. 椭圆的离心率等于$\rule{1.5cm}{.15mm}$除以$\rule{1.5cm}{.15mm}$。
答案:焦距差,长轴长度2. 设椭圆的长轴长度为$a$,短轴长度为$b$,则其离心率的计算公式为$\rule{5cm}{.15mm}$。
答案:$\epsilon = \frac{\sqrt{a^2 - b^2}}{a}$三. 计算题1. 已知一个椭圆的长轴长度是10,短轴长度是8,求它的面积。
解:由公式$S = \pi ab$可得,该椭圆的面积为$S = \pi \times 10 \times 8 = 80\pi$。
答案:$80\pi$2. 已知一个椭圆的长轴长度是12,离心率是$\frac{1}{2}$,求它的短轴长度。
解:由公式$\epsilon = \frac{\sqrt{a^2 - b^2}}{a}$可得,$b =a\sqrt{1-\epsilon^2}$。
代入数据,可得$b = 6\sqrt{3}$。
答案:$6\sqrt{3}$。
2020年【通用版】高考数学(艺术生)考前冲刺专题《椭圆》测试题(含答案)

专题12椭圆测试题【高频考点】本知识涉及椭圆的定义,标准方程以及简单的几何性质的应用,直线与椭圆的位置关系。
【考情分析】本阶段是高考考查重点内容之一,涉及客观题和解答题,客观题主要考查椭圆方程的求解,椭圆的几何性质等,难度中等,在解答题中多以椭圆为载体,考查直线与椭圆的位置关系,定值定点,以及最值问题,常常以探索性问题形式出现,难度较大。
【重点推荐】基础卷第11题,数学文化题,第22题考察与不等式的交汇,考察综合解决问题的能力。
一.选择题1.方程表示焦点在x轴上的椭圆,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1] C.(0,1)D.(﹣1,0)二.【答案】C三.【解析】:方程表示焦点在x轴上的椭圆,可得m∈(0,1).故选:C.四. 2. 设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()五.A.2 B.2 C.2 D.4六.【答案】:C七.【解析】椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.八.故选:C.九. 3. 设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,|PF1|+|PF2|=10,则椭圆的短轴长为()十.A.6 B.8 C.9 D.10十一.【答案】:A十二.【解析】设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,可得c=4,十三.|PF1|+|PF2|=10,可得a=5,则椭圆的短轴长为:2b=2=6.故选:A.十四.十五. 4. (2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()十六.A.2 B.C.4 D.十七.【答案】:C十八.【解析】如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.十九.二十.二十一.5若点F1,F2为椭圆的焦点,P为椭圆上的点,满足∠F1PF2=90°,则△F1PF2的面积为()二十二.A.1 B.2 C.D.4二十三.【答案】:A二十四.6. (2018•齐齐哈尔二模)已知椭圆+=1(a>b>0)的离心率为,短轴长大于2,则该椭圆的长轴长的取值范围是()二十五.A.(2,+∞)B.(4,+∞)C.(2,4)D.(4,8)二十六.【答案】:B二十七.【解析】根据题意,椭圆+=1(a>b>0)的离心率为,即e==,则c=a,又由椭圆短轴长大于2,即2b>2,则b>1,则有a2﹣c2=b2>1,即>1,解可得a>2,则该椭圆的长轴长2a>4,即该椭圆的长轴长的范围为(4,+∞);故选:B.二十八.7. (2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C 交于A,B两点,则△AFB周长的取值范围是()二十九.A.(2,4)B.C.(6,8)D.(8,12)三十.【答案】:C三十一.【解析】∵椭圆的左焦点为F(﹣,0),右焦点F2(,0),直线l:y=kx (k≠0)与椭圆C交于A,B两点,连结BF2,则AF=BF2,AB=2OB,由一的定义可知:BF+BF2=2a=4,OB∈(1,2),则△AFB周长的取值范围是(6,8).故选:C.三十二.15. 设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点,线段AQ 的垂直平分线与CQ的连线交于点M,则M的轨迹方程为.三十三.三十四.【答案】:三十五.【解析】由圆的方程可知,圆心C(﹣1,0),半径等于5,设点M的坐标为(x,y ),三十六.∵AQ的垂直平分线交CQ于M,∴|MA|=|MQ|.又|MQ|+|MC|=半径5,∴|MC|+|MA|=5>|AC|.三十七.依据椭圆的定义可得,点M的轨迹是以 A、C 为焦点的椭圆,且2a=5,c=1,∴b=,三十八.故椭圆方程为+=1,即+=1.故答案为:三十九.16(2018•西宁二模)已知椭圆C:=1,F1,F2是该椭圆的左右焦点,点A(4,1),P是椭圆上的一个动点,当△APF1的周长取最大值时,△APF1的面积为.四十.【答案】:四十一.【解析】:如图所示,由椭圆C=1可得a=5,右焦点F2(4,0).|F1F2|=8四十二.∵|PF1|+|PF2|=2a=10,∴|PF1|+|PA|=10﹣|PF2|+|PA|≤10+|AF2|.四十三.△APF1的周长取最大值时,三点P、A、F2共线,且点P在第四象限,四十四.此时F1F2⊥AP,|PF2|==,△APF1的面积S=|F1F2|×|PA|=.四十五.故答案为:.四十六.四十七.四十八.三.解答题四十九.17. 已知椭圆的离心率为22,其中左焦点F(-2,0).五十.(1)求椭圆C的方程;五十一.(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m 的值.五十二. 【解析】:(1) 由题意,得五十三. 解得22,2.a b ⎧=⎪⎨=⎪⎩∴椭圆C 的方程为22184x y +=.…………5分五十四.(2) 设点A 、B 的坐标分别为(x1,y1),(x2,y2),线段AB 的中点为M(x0,y0),五十五. 由消y 得,3x2+4mx+2m2-8=0,五十六.Δ=96-8m2>0,∴-23<m <23.…………8分五十七. .五十八.∵点M(x0,y0)在圆x2+y2=1上,五十九.,355m ∴=±.……10分六十. 18. (2018•广陵区校级四模)已知椭圆C :(a >b >0)的左焦点为F ,上顶点为A ,直线AF 与直线x+y ﹣3垂直,垂足为B ,且点A 是线段BF 的中点.六十一. (1)求椭圆C 的方程;六十二.(2)若M ,N 分别为椭圆C 的左,右顶点,P 是椭圆C 上位于第一象限的一点,直线MP 与直线x=4交于点Q ,且=9,求点P 的坐标.六十三.六十四.【分析】(1)由直线AF 与直线x+y ﹣3垂直,可得:=1,则直线AF 的方程为:y=x+c .与椭圆方程联立可得B(,),于是﹣c=0,解得c,即可得出椭圆方程.六十五.(2)设P(x0,y0),则直线MP的方程为y=(x+2),可得Q.9==2(x0+2)+,由点P在椭圆上可得:=2﹣,代入解出即可得出.六十六.六十七.(2)设P(x0,y0),则直线MP的方程为y=(x+2),∴Q.六十八.∴9==2(x0+2)+,………7分六十九.由点P在椭圆上可得:=2﹣,代入可得:9=2(x0+2)+,七十.化为:+x0﹣2=0,解得x0=1或﹣2.(舍),七十一.∴P.…………12分七十二.19. (2018•江苏一模)已知椭圆C:(a>b>0)经过点,,点A是椭圆的下顶点.七十三.(1)求椭圆C的标准方程;七十四.(2)过点A且互相垂直的两直线l1,l2与直线y=x分别相交于E,F两点,已知OE=OF,求直线l1的斜率.七十五.【分析】(1)根据题意,将两点的坐标代入椭圆的方程有,解可得、的值,即可得椭圆的方程;七十六.(2)设直线l1:y=k1x﹣1,与直线y=x联立方程有,可得E的坐标,设直线l2:,同理可得F的坐标,又由OE=OF,所以,解可得k的值,即可得答案.七十七.【解析】:(1)根据题意,椭圆C:(a>b>0)经过点,,七十八.则有,解得,…………3分七十九.所以椭圆C的标准方程为;…………5分八十.(2)由题意知A(0,﹣1),直线l1,l2的斜率存在且不为零,八十一.设直线l1:y=k1x﹣1,与直线y=x联立方程有,得,八十二.设直线l2:,同理,…………7分八十三.因为OE=OF,所以,八十四.①,无实数解;八十五.②,,,解得,八十六.综上可得,直线l1的斜率为.……12分八十七.20 (2018•辽宁模拟)已知M()是椭圆C:(a>b>0)上的一点,F1F2是该椭圆的左右焦点,且|F1F2|=2.八十八.(1)求椭圆C的方程;八十九.(2)设点A,B是椭圆C上与坐标原点O不共线的两点,直线OA,OB,AB的斜率分别为k1,k2,k3,且k1k2=k2.试探究|OA|2+|OB|2是否为定值,若是,求出定值,若不是,说明理由.九十.【分析】(1)根据椭圆的定义及椭圆的性质,即可求得a和b的值,即可求得椭圆方程;九十一.(2)设直线AB的方程,代入椭圆方程,利用韦达定理及直线的斜率公式,求得k2=,即可求得|OA|2+|OB|2=5为定值.九十二.【解析】:(1)由题意,F1(﹣,0),F2(,0),根据椭圆定义|PF1|+|PF2|=2a,九十三.所以2a=+=4,九十四.所以a2=4,b2=a2﹣c2=1九十五.椭圆C的方程;…………5分九十六.(2)设直线AB:y=kx+m,(km≠0),A(x1,y1),B(x2,y2),九十七.由,消去y得(1+4k2)x2+8kmx+4m2﹣4=0,九十八.△=(8km)2﹣4(1+4k2)(4m2﹣4)>0,x1+x2=﹣,x1x2=,九十九.因为k1k2=k2,所以•=k2,百.即km(x1+x2)+m2=0(m≠0),解得k2=,…………8分百一.|OA|2+|OB|2=x12+x22+y12+y22=[(x1+x2)2﹣2x1x2]+2=5,百二.所以|OA|2+|OB|2=5为定值.…………12分百三.21. (2018•南充模拟)已知椭圆C :+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.百四.(1)求椭圆C的方程;百五.(2)直线l平行于OM,且与椭圆C交于A,B两个不同的点,若∠AOB为钝角,求直线l在y轴上的截距m的取值范围.百六.【分析】(1)由椭圆C :+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上,列出方程组,求出a,b,由此能求出椭圆C的方程.百七.(2)设l的方程为y=x+m,再与椭圆方程联立,将∠AOB 为钝角,转化为<0,且m≠0,利用韦达定理,即可求出直线l在y轴上的截距m的取值范围.百八.【解析】:(1)∵椭圆C :+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.百九.∴,解得a=2,b=,c=,…………3分百十.∴椭圆C 的方程为=1.………………5分百十一.(2)由直线l平行于OM,得直线l的斜率k=kOM=,百十二.又l在y轴上的截距为m,∴l的方程为y=12x m.百十三.由,得x2+2mx+2m2﹣4=0.…………8分百十四.又直线l与椭圆交于A、B两个不同点,△=(2m)2﹣4(2m2﹣4)>0,于是﹣2<m<2.百十五.∠AOB为钝角等价于<0,且m≠0,百十六.设A(x1,y1),B(x2,y2),百十七.则=x1x2+y1y2==,百十八.由韦达定理x1+x2=﹣2m,x1x2=2m2﹣4,代入上式,百十九.化简整理得m2<2,即,故所求范围是(﹣)∪(0,). (12)分百二十.22. (2018•聊城一模)已知圆x2+y2=4经过椭圆C:的两个焦点和两个顶点,点A(0,4),M,N是椭圆C上的两点,它们在y轴两侧,且∠MAN的平分线在y轴上,|AM|≠|AN|.百二十一.(Ⅰ)求椭圆C的方程;百二十二.(Ⅱ)证明:直线MN过定点.百二十三.【分析】(Ⅰ)根据题意,由圆的方程分析可得椭圆的焦点和顶点坐标,即可得c、b的值,由椭圆的几何性质计算可得a的值,即可得椭圆的标准方程;百二十四.(Ⅱ)设直线MN的方程为y=kx+m,与椭圆的方程联立,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.设M(x1,y1),N(x2,y2),由根与系数的关系分析直线AM、AN的斜率,进而分析可得k1+k2==0,解可得m的值,由直线的斜截式方程即可得答案.百二十五.百二十六.(Ⅱ)证明:设直线MN的方程为y=kx+m.百二十七.由,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.百二十八.设M(x1,y1),N(x2,y2),则,.百二十九.直线AM的斜率=;百三十.直线AN的斜率=.百三十一.k1+k2===.…………8分百三十二.由∠MAN的平分线在y轴上,得k1+k2=0.百三十三.即=0,百三十四.又因为|AM|≠|AN|,所以k≠0,百三十五.所以m=1.百三十六.因此,直线MN过定点(0,1).……12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆测试题一、选择题:(本大题共12小题,每小题5分,共60分) 1、离心率为32,长轴长为6的椭圆的标准方程是( ) (A )22195x y += (B )22195x y +=或22159x y += (C )2213620x y += (D )2213620x y +=或2212036x y += 2、动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为( )A.椭圆B.线段12F FC.直线12F FD.不能确定3、已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为( )A.(B.(0,C.(0,3)±D.(3,0)±4、已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是( )A.3B.2C.3D.6 5、如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值围为( ) A.(2,)-+∞B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R6、关于曲线的对称性的论述正确的是( )A.方程220x xy y ++=的曲线关于X 轴对称 B.方程330x y +=的曲线关于Y 轴对称 C.方程2210x xy y -+=的曲线关于原点对称 D.方程338x y -=的曲线关于原点对称7、方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ). A.有相同的离心率B.有共同的焦点C.有等长的短轴.长轴D.有相同的顶点.8、已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )29、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.54 B.53 C. 52 D. 51 10、若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( )A .2B .3C .6D .811、椭圆()222210x y a a b+=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值围是( )(A )(0] (B )(0,12] (C )1,1) (D )[12,1)12 若直线y x b =+与曲线3y =b 的取值围是( )A.[1-1+B.[1C.[-1,1+D.[1-二、填空题:(本大题共5小题,共20分.)13 若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是14 椭圆2214924x y +=上一点P 与椭圆两焦点F 1, F 2的连线的夹角为直角,则Rt △PF 1F 2的面积为. 15 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D , 且D F F B 2=,则C 的离心率为 .16 已知椭圆22:12x c y +=的两焦点为12,F F ,点00(,)P x y 满足2200012x y <+<,则|1PF |+2PF |的取值围为三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)已知点M 在椭圆221259x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂足为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程.18.(12分)椭圆221(045)45x y m m+=<<的焦点分别是1F 和2F ,已知椭圆的离心率e =O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF 的面积是20,求:(1)m 的值(2)直线AB 的方程19(12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.20(12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,2AF FB =.(I) 求椭圆C 的离心率; (II) 如果|AB|=154,求椭圆C 的方程.21(12分)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-. (Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。
22 (12分)已知椭圆22221x y a b+=(a>b>0)的离心率面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点A 、B ,已知点A 的坐标为(-a ,0).(i )若AB5||=,求直线l 的倾斜角; (ii )若点Q y 0(0,)在线段AB 的垂直平分线上,且4Q Q =•,求y 0的值.椭圆参考答案1.选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBCCBCABBCDD【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.910【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=,解得22003(1)4x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++203(1)4x -=20034x x ++,此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅取得最大值222364++=,选C 。
【命题意图】本题考查椭圆的方程、几何性质、平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力。
11解析:由题意,椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,即F点到P点与A点的距离相等而|FA|=22 a bcc c-=|PF|∈[a-c,a+c]于是2bc∈[a-c,a+c]即ac-c2≤b2≤ac+c2∴222222ac c a ca c ac c⎧-≤-⎪⎨-≤+⎪⎩⇒1112cac ca a⎧≤⎪⎪⎨⎪≤-≥⎪⎩或又e∈(0,1)故e∈1,12⎡⎫⎪⎢⎣⎭答案:D12(2010文数)9.若直线y x b=+与曲线234y x x=--有公共点,则b的取值围是A.[122-,122+] B.[12-,3]C.[-1,122+] D.[122-,3]二、填空题:(本大题共4小题,共16分.)13 若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是14 椭圆2214924x y+=上一点P与椭圆两焦点F1, F2的连线的夹角为直角,则Rt△PF1F2的面积为.15 (2010全国卷1文数)(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C于点D , 且BF 2FD =,则C 的离心率为.3【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.【解析1】如图,||BF a ==, 作1DD y ⊥轴于点D 1,则由BF 2FD =,得1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a =-=-又由||2||BF FD =,得232,c a a a=-3e ⇒=【解析2】设椭圆方程为第一标准形式22221x y a b+=,设()22,D x y ,F 分 BD 所成的比为2,222230223330;122212222c c c c y b x b y b bx x x c y y -++⋅-=⇒===⇒===-++,代入 222291144c b a b +=,3e ⇒=16(2010文数)15.已知椭圆22:12x c y +=的两焦点为12,F F ,点00(,)P x y 满足2200012x y <+<,则|1PF |+2PF |的取值围为_______。
【答案】[,0【解析】依题意知,点P 在椭圆部.画出图形,由数形结合可得,当P 在原点处时12max (||||) 2 PF PF +=,当P 在椭圆顶点处时,取到12max (||||)PF PF +为1)-+,故围为[.因为00(,)x y 在椭圆2212x y +=的部,则直线0012x x y y ⋅+⋅=上的点(x, y )均在椭圆外,故此直线与椭圆不可能有交点,故交点数为0个.二.填空题: 133514 24 1516[,0三.解答题:17.解:设p 点的坐标为(,)p x y ,m 点的坐标为00(,)x y ,由题意可知000022yy x x x x y y ====⎧⎧⇒⎨⎨⎩⎩① 因为点m 在椭圆221259x y +=上,所以有 22001259x y +=② , 把①代入②得2212536x y +=,所以P 点的轨迹是焦点在y 轴上,标准方程为2212536x y +=的椭圆.18.解:(1)由已知c e a ==a ==5c =, 所以222452520m b a c ==-=-=(2)根据题意21220ABF F F BS S==,设(,)B x y ,则121212F F B S F F y =,12210F F c ==,所以4y =±,把4y =±代入椭圆的方程2214520x y +=,得3x =±,所以B 点的坐标为34±±(,),所以直线AB 的方程为4433y x y x ==-或 19(2010文数)(20)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解:(Ⅰ)设焦距为2c,由已知可得1F 到直线l 2.c ==故 所以椭圆C 的焦距为4.(Ⅱ)设112212(,),(,),0,0,A x y B x y y y <>由题意知直线l的方程为2).y x =-联立2222422222),(3)30.1y x a b y y b x y a b ⎧=-⎪++-=⎨+=⎪⎩得解得22122222(22)(22),.33a a y y a b a b+-==++因为22122,2.AF F B y y =-=所以即222222(22)(22)2.33a a a b a b+-=⋅++得223.4,a a b b =-==而所以故椭圆C 的方程为221.95x y += 20(2010理数)(20)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l的倾斜角为60o,2AF FB =.(III) 求椭圆C 的离心率; (IV) 如果|AB|=154,求椭圆C 的方程. 解:设1122(,),(,)A x y B x y ,由题意知1y <0,2y >0. (Ⅰ)直线l 的方程为)y x c =-,其中c联立2222),1y x c x y a b ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y cy b ++-=解得12y y ==因为2AF FB =,所以122y y -=. 即2=得离心率 23c e a ==. ……6分(Ⅱ)因为21AB y =-154=.由23c a =得b =.所以51544a =,得a=3,b =椭圆C 的方程为22195x y +=. ……12分 21(2010理数)(19)(本小题共14分)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-. (Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。