平面向量的模、夹角测试题(人教A版)(含答案)
人教A版高中数学必修二第六章第1节《平面向量的概念》解答题 (21)(含答案解析)

必修二第六章第1节《平面向量的概念》解答题 (21)一、解答题(本大题共30小题,共360.0分)1.平面内给定三个向量a⃗=(3,2),b⃗ =(−1,2),c⃗=(4,1).(Ⅰ)求|3a⃗+b⃗ −2c⃗|;(Ⅱ)求满足a⃗=m b⃗ +n c⃗的实数m和n;(Ⅲ)若(a⃗+k c⃗ )⊥(2b⃗ −a⃗ ),求实数k.2.已知,与的夹角为.(1)求;(2)求为何值时,3.已知向量a⃗=(1,0),|b⃗ |=√2,a⃗、b⃗ 的夹角为45°,c⃗=a⃗+b⃗ ,d⃗=a⃗−b⃗ ,求c⃗在d⃗方向上的数量投影.4.已知向量a⃗=(cosα,sinα),b⃗ =(cosβ,sinβ),c⃗=(−1,0)(1)求向量b⃗ +c⃗的长度的最大值;(2)设α=π,且a⃗⊥(b⃗ +c⃗ ),求cosβ的值。
45.如图,平行四边形ABCD中,已知AD=1,AB=2,对角线BD=2,求对角线AC的长.6. 如图,平行四边形ABCD 中,|AB ⃗⃗⃗⃗⃗ |=2,|AD ⃗⃗⃗⃗⃗⃗ |=4,∠DAB =π3.求:(1)|DB⃗⃗⃗⃗⃗⃗ |; (2)cos∠CAB 的大小.7. 已知飞机从A 地按北偏东30°方向飞行2000km 到达B 地,再从B 地按南偏东30°方向飞行2000km 到达C 地,再从C 地按西南方向飞行 1000√2km 到达D 地.画图表示向量 AB ⃗⃗⃗⃗⃗⃗ , BC⃗⃗⃗⃗⃗ , CD ⃗⃗⃗⃗⃗ ,并指出向量 AD ⃗⃗⃗⃗⃗⃗ 的模和方向.8. 设两个非零向量a ⃗ 与b ⃗ 不共线.(1)若AB ⃗⃗⃗⃗⃗ =a ⃗ +b ⃗ ,,求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a ⃗ −b ⃗ 与a ⃗ −k b ⃗ 共线.9. 已知平面上一定点O ,不共线的三点A ,B ,C ,动点P 满足OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |),λ∈[0,+∞),求证:P 的轨迹一定通过△ABC 的内心.10. 已知点A(p,t)、B(q,t +4)、C(0,2),O 为坐标原点.若AB ⃗⃗⃗⃗⃗ //OC ⃗⃗⃗⃗⃗ 且OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =5,求|OA ⃗⃗⃗⃗⃗ |的取值范围.11.帆船比赛是借助风帆推动船只在规定距离内竞速的一项水上运动,如果一帆船所受的风力方向为北偏东30°,速度为20km/ℎ,此时水的流向是正东,流速为20km/ℎ.若不考虑其他因素,求帆船的速度与方向.12.已知向量a⃗、b⃗ 满足|a⃗|=2,|b⃗ |=1,|a⃗−b⃗ |=2,求|a⃗+b⃗ |.13.已知向量a⃗与b⃗ 的夹角θ=120°,且|a⃗|=4,|b⃗ |=2,求:(1)a⃗⋅b⃗ ;(2)(a⃗+b⃗ )⋅(a⃗−2b⃗ );(3)|a⃗+b⃗ |.14. 在△ABC 中,∠B =120°,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,且|a ⃗ |=2,|b ⃗ |=3,试用a ⃗ 、b ⃗ 表示与AC ⃗⃗⃗⃗⃗ 同向的单位向量c 0⃗⃗⃗ .15. 已知三棱柱ABC −A 1B 1C 1中,侧棱AA 1⊥底面ABC ,记a ⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ ,b ⃗ =AB⃗⃗⃗⃗⃗ ,c ⃗ =AC ⃗⃗⃗⃗⃗ .(1)用a ⃗ ,b ⃗ ,c ⃗ 表示AB 1⃗⃗⃗⃗⃗⃗⃗ ,A 1C ⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ ;(2)若AB 1⊥BC 1,A 1C ⊥BC 1,求证:AB 1=A 1C .16.已知向量a⃗=(1,−2),b⃗ =(−7,−6),求与a⃗+b⃗ 同向,且模等于20的向量c⃗.17.已知a⃗=(−6,8),2a⃗−b⃗ =(2,2),求b⃗ 和|b⃗ |.18.如图,正方形ABCD,P是对角线BD上的一点,四边形PECF是矩形,用向量法证明:(1)PA=EF;(2)PA⊥EF.19.在下图田字格中,以图中的结点为向量的起点或终点.⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 相等的向量;(1)写出与A1A2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 平行的向量;(2)写出与A1B2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的负向量.(3)写出A1A3⃗⃗⃗⃗⃗ 共20.如图,D、E、F分别是△ABC的边AB、BC、CA的中点,写出与AB线(平行)的向量.21. 设a ⃗ 、b ⃗ 是两个不共线的非零向量(t ∈R ).(1)若OA ⃗⃗⃗⃗⃗ =a ⃗ ,OB ⃗⃗⃗⃗⃗⃗ =t b ⃗ ,OC ⃗⃗⃗⃗⃗=13(a ⃗ +b ⃗ ),则当实数t 为何值时,A 、B 、C 三点共线? (2)若|a ⃗ |=|b ⃗ |=1,且a ⃗ 与b ⃗ 的夹角为120°,则当实数x 为何值时,|a ⃗ −x b⃗ |的值最小?22. 已知|a ⃗ |=2,|b ⃗ |=3,|a ⃗ −b ⃗ |=√7.求:(1)a ⃗ 与b ⃗ 的夹角;(2)向量a ⃗ 在b ⃗ 方向上的数量投影.23. 在△ABC 中,D 、E 分别是边AB 、AC 的中点,F 、G 分别是DB 、EC 的中点,判别下列命题是否正确.(1)DE⃗⃗⃗⃗⃗⃗ =FG ⃗⃗⃗⃗⃗ ; (2)DE ⃗⃗⃗⃗⃗⃗ 和FG⃗⃗⃗⃗⃗ 是平行向量; (3)DE ⃗⃗⃗⃗⃗⃗ <FG⃗⃗⃗⃗⃗ .24. 如图,质点O 受到两个力F 1和F 2的作用,已知∠F 1OF 2=135°,|OF 1⃗⃗⃗⃗⃗⃗⃗ |=8 N ,|OF 2⃗⃗⃗⃗⃗⃗⃗ |=4√2 N ,求这两个力的合力OF ⃗⃗⃗⃗⃗ 的大小以及∠FOF 1的大小.25. 已知O 、A 、B 是平面上不共线的三点,记OA ⃗⃗⃗⃗⃗ =a ⃗ ,OB ⃗⃗⃗⃗⃗⃗ =b ⃗ ,若平面上另一点C 满足OC ⃗⃗⃗⃗⃗ =12(a ⃗ +b ⃗ ),求证:A 、B 、C 三点共线,且C 恰为线段的中点.26.已知a⃗=(3,−1),b⃗ =(1,−2),求a⃗⋅b⃗ ,|a⃗|,|b⃗ |,⟨a⃗,b⃗ ⟩.27.已知平面向量a⃗与b⃗ 满足|a⃗|=2,|b⃗ |=1,且a⃗与b⃗ 的夹角为2π.3(1)求|2a⃗+b⃗ |;(2)若2a⃗+b⃗ 与a⃗+λb⃗ (λ∈R)垂直,求λ的值.28.已知,|b⃗ |=4,a⃗与b⃗ 的夹角为135°.求:;(2)|a⃗+b⃗ |.29.已知|a⃗|=|b⃗ |=3,且向量a⃗与b⃗ 的夹角为120°.求|a⃗+b⃗ |,|a⃗−b⃗ |.30.如图,在边长为2的正六边形ABCDEF中,O为其中心,分别写出:⃗⃗⃗⃗⃗ 的起点、终点和模;(1)向量OA⃗⃗⃗⃗⃗ 共线的向量;(2)与向量OA⃗⃗⃗⃗⃗ 相等的向量.(3)与向量OA【答案与解析】1.答案:解:(Ⅰ)根据题意,向量a ⃗ =(3,2),b ⃗ =(−1,2),c ⃗ =(4,1). 则3a ⃗ +b ⃗ −2c ⃗ =(0,6),故|3a ⃗ +b ⃗ −2c ⃗ |=6; (Ⅱ)若a ⃗ =m b ⃗ +n c ⃗ ,即(3,2)=m(−1,2)+n(4,1), 则有{3=−m +4n 2=2m +n ,解可得{m =59n =89, 故m =59,n =89;(Ⅲ)根据题意,a ⃗ +k c ⃗ =(3+4k,2+k),2b ⃗ −a ⃗ =(−5,2),若(a ⃗ +k c ⃗ )⊥(2b ⃗ −a ⃗ ),则(a ⃗ +k c ⃗ )⋅(2b ⃗ −a ⃗ )=(−5)(3+4k)+2(2+k)=0, 解可得k =−116, 故k =−116.解析:本题考查平面向量数量积的计算,涉及向量的坐标和向量模的计算,属于基础题. (Ⅰ)根据题意,求出3a ⃗ +b ⃗ −2c ⃗ 的坐标,由向量模的计算公式计算可得答案;(Ⅱ)根据题意,由向量的坐标计算公式可得若a ⃗ =m b ⃗ +n c ⃗ ,必有{3=−m +4n 2=2m +n ,求出m 、n 的值,即可得答案;(Ⅲ)根据题意,求出a ⃗ +k c ⃗ 与2b ⃗ −a ⃗ 的坐标,由向量数量积的计算公式可得(a ⃗ +k c ⃗ )⋅(2b ⃗ −a ⃗ )=0,求出k 的值,即可得答案.2.答案:解:(1)因为|a ⃗ |=4,|b ⃗ |=8,a ⃗ 与b ⃗ 夹角是,所以,因此|a ⃗ +b ⃗ |=√a ⃗ 2+b ⃗ 2+2a ⃗ ⋅b ⃗ =√42+82+2×(−16)=4√3;(2)因为(a ⃗ +2b ⃗ )⊥(k a ⃗ −b ⃗ ),所以(a ⃗ +2b ⃗ )⋅(k a ⃗ −b ⃗ )=k a ⃗ 2−2b ⃗ 2+(2k −1)a ⃗ ⋅b ⃗ =0,整理得16k −128+(2k −1)×(−16)=0, 解得k =−7.即当k =−7值时,(a ⃗ +2b ⃗ )⊥(k a ⃗ −b ⃗ ).解析:本题考查了向量的数量积和向量垂直的判断与证明,属于基础题.(1)利用向量的数量积计算得a ⃗ ⋅b ⃗ =−16,再利用|a ⃗ |2=a ⃗ 2计算得结论;(2)利用向量垂直得16k −128+(2k −1)×(−16)=0,计算求解即可.3.答案:解:设b ⃗ =(m,n),又|b ⃗ |=√2.所以m 2+n 2=2,因为a⃗ 、b ⃗ 的夹角为45°, 所以cos 45∘=a⃗ ⋅b ⃗ |a ⃗ |⋅|b⃗ |=m √2=√22,联立方程组, 可解得:{m =1,n =1,或{m =1,n =−1.当b ⃗ =(1,1)时,c ⃗ =(2,1),d ⃗ =(0,−1), 所以c ⃗ 在d⃗ 方向上的数量投影为c ⃗ ⋅d ⃗⃗ |d|=−11=−1;当b ⃗ =(1,−1)时,c ⃗ =(2,−1),d⃗ =(0,1), 所以c ⃗ 在d⃗ 方向上的数量投影为c ⃗ ⋅d ⃗⃗|d|=−11=−1, 综上所述:c ⃗ 在d⃗ 方向上的数量投影为−1解析:本题考查向量的投影以及向量夹角和向量模的计算,首先设b ⃗ =(m,n),利用已知条件求出m ,n 然后分别求出c ⃗ 和d⃗ ,进而通过向量投影公式求出结果,属于基础题. 4.答案:解:,c ⃗ =(−1,0),∴b ⃗ +c ⃗ =(−1+cosβ,sinβ),=√2−2cosβ,当cosβ=−1时,上式取最大值2; (2)由(1)知,b ⃗ +c ⃗ =(−1+cosβ,sinβ),当α=π4时, a ⃗ =(√22,√22), 由向量垂直可得a ⃗ ·(b ⃗ +c ⃗ )=0, 故√22(−1+cosβ)+√22sinβ=0, 由三角函数公式化简可得sin(β+π4)=√22,∴β+π4=2kπ+π4,或β+π4=2kπ+3π4,k ∈Z ,故β=2kπ或β=2kπ+π2,k ∈Z , ∴cosβ=1或0.解析:本题考查平面向量和三角函数的综合,解决问题的关键是熟练掌握先关的结论. (1)由已知可得b ⃗ +c ⃗ 坐标,可得|b ⃗ +c ⃗ |,由三角函数最值可得答案;(2)由(1)可得向量坐标,由垂直可得数量积为0,由等式和三角函数可得sin(β+π4)=√22,可得β=2kπ或β=2kπ+π2,k ∈Z ,求其余弦值可得答案.5.答案:解:设AD ⃗⃗⃗⃗⃗⃗ =a →,AB ⃗⃗⃗⃗⃗ =b →,则BD ⃗⃗⃗⃗⃗⃗ =a →−b →,AC⃗⃗⃗⃗⃗ =a →+b →, 而|BD ⃗⃗⃗⃗⃗⃗ |=|a →−b →|=√a →2−2a →·b →+b →2=√1+4−2a →·b →=√5−2a →·b →=2, 所以5−2a →·b →=4,所以a →·b →=12,又|AC⃗⃗⃗⃗⃗ |2=|a →+b →|2=a →2+2a →·b →+b →2=1+4+2a →·b →=6, 所以|AC ⃗⃗⃗⃗⃗ |=√6, 即AC =√6.解析:【试题解析】本题考查了向量的线性运算,考查了向量的数量积,根据条件可以得到BD ⃗⃗⃗⃗⃗⃗ =a →−b →,AC⃗⃗⃗⃗⃗ =a →+b →,然后由向量数量积求解即可.6.答案:解:(1)BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ , ∵AB =2,AD =4, ∴BA ⃗⃗⃗⃗⃗ ⋅AD⃗⃗⃗⃗⃗⃗ =−4, ∴|BD⃗⃗⃗⃗⃗⃗ |2=(AD ⃗⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )2=16+4−2×4=12, ∴|DB⃗⃗⃗⃗⃗⃗ |=2√3. (2)由|AC ⃗⃗⃗⃗⃗ |2=(AD ⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )2=16+4+2×2×4×cos60°=28, 故|AC⃗⃗⃗⃗⃗ |=2√7, 在△ABC 中,AB =2,AC =2√7,BC =4, 根据余弦定理得出:cos∠CAB =AB 2+AC 2−BC 22AB⋅AC=2×2×2√7=2√77.解析:本题综合考察了平面向量的运算,几何意义,三角形中的定理,考察了学生的计算能力,运用图形的能力.(1)根据向量的加法几何意义得出BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ ,得出BA ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ =−4,再求解|BD ⃗⃗⃗⃗⃗⃗ |2=(AD ⃗⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )2,即可得出|DB⃗⃗⃗⃗⃗⃗ | (2)在△ABC 中,AB =2,AC =2√7,BC =4,运用余弦定理求解即可.7.答案:解:以A 为原点,正东方向为x 轴正方向,正北方向为y 轴正方向建立直角坐标系.据题设,B 点在第一象限,C 点在x 轴正半轴上,D 点在第四象限,向量AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ , 如图所示,由已知可得△ABC 为正三角形,所以AC =2000km .又∠ACD =45°,CD =1000√2 km ,所以△ADC 为等腰直角三角形, 所以AD =1000√2 km ,∠CAD =45°. 故向量AD⃗⃗⃗⃗⃗⃗ 的模为1000√2 km ,方向为东南方向.解析:本题主要考查平面向量问题有生产生活中的实际应用,是中档题,解题认真审题,注意向量加法法则和数学结合思想的合理运用,是高考中常见的题型.8.答案:(1)证明:∵AB ⃗⃗⃗⃗⃗ =a ⃗ +b ⃗ ,BC ⃗⃗⃗⃗⃗ =2a ⃗ +8b ⃗ ,CD ⃗⃗⃗⃗⃗ =3(a ⃗ −b ⃗ ).∴BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =2a ⃗ +8b ⃗ +3(a ⃗ −b ⃗ ) =2a ⃗ +8b ⃗ +3a ⃗ −3b ⃗=5(a ⃗ +b ⃗ )=5AB ⃗⃗⃗⃗⃗ , ∴AB⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ 共线, 又它们有公共点B , ∴A ,B ,D 三点共线.(2)解:∵k a ⃗ −b ⃗ 和a ⃗ −k b ⃗ 共线, ∴存在实数λ,使k a ⃗ −b ⃗ =λ(a ⃗ −k b ⃗ ), 即k a ⃗ −b ⃗ =λa ⃗ −λk b ⃗ , ∴(k −λ)a ⃗ =(1−λk)b ⃗ . ∵a ⃗ ,b ⃗ 是不共线的两个非零向量, ∴k −λ=1−λk =0, ∴k 2−1=0,∴k =±1.解析:略9.答案:证明:如图所示,因为AB⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |,AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |均为单位向量,且两向量方向分别与AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 同向. 记AM ⃗⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |,AN ⃗⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |, 由向量加法的几何意义知AB⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |对应一个平行四边形AMQN 的对角线AQ ⃗⃗⃗⃗⃗ . 又因为|AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ ||=|AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ ||=1, 所以▱AMQN 是菱形. 所以AQ 在∠BAC 的平分线上.因为OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |)=OA ⃗⃗⃗⃗⃗ +λAQ ⃗⃗⃗⃗⃗ , 所以AP ⃗⃗⃗⃗⃗ =λAQ ⃗⃗⃗⃗⃗ .所以点P 在∠BAC 的平分线上,即P 的轨迹必过△ABC 的内心.解析:本题考查平面向量的加减运算和向量运算的平行四边形法则,先根据AB⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |,AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗|分别表示向量AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 上的单位向量,判断AQ 在∠BAC 的平分线上,确定OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =AP⃗⃗⃗⃗⃗ ,据此可判断. 10.答案:解:AB ⃗⃗⃗⃗⃗ =(q −p,4),OC ⃗⃗⃗⃗⃗ =(0,2),而AB ⃗⃗⃗⃗⃗ //OC ⃗⃗⃗⃗⃗ ,∴2(q −p)=0,即p =q ,则OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =(p,t)⋅(p,t +4)=p 2+t 2+4t =5.∴|OA⃗⃗⃗⃗⃗ |2=p2+t2=5−4t,∵p2+t2+4t=5,∴p2=5−t2−4t≥0,解得−5≤t≤1,1≤|OA⃗⃗⃗⃗⃗ |2≤25,∴1≤|OA⃗⃗⃗⃗⃗ |≤5.|OA⃗⃗⃗⃗⃗ |的取值范围:[1,5].解析:通过向量平行,推出p=q,利用向量的数量积,求解p,t的关系式,通过p2=5−t2−4t≥0求解即可.本题考查向量的数量积的应用,向量的模的求法,考查转化思想以及计算能力.11.答案:解:建立如图所示的直角坐标系,风的方向为北偏东30°,速度为|v1⃗⃗⃗⃗ |=20(km/ℎ),水流的方向为正东,速度为|v2⃗⃗⃗⃗ |=20(km/ℎ),设帆船行驶的速度为v⃗,则v⃗=v1⃗⃗⃗⃗ +v2⃗⃗⃗⃗ .由题意,可得向量,向量v2⃗⃗⃗⃗ =(20,0),则帆船的行驶速度v⃗=v1⃗⃗⃗⃗ +v2⃗⃗⃗⃗ =(10,10√3)+(20,0)=(30,10√3),所以.因为tanα=10√330=√33(α为v和v2的夹角,α为锐角),所以α=30°.所以帆船向北偏东60°的方向行驶,速度为20√3km/h.解析:本题考查了向量的物理运用、向量的模和平面向量的坐标运算,建立如图所示的直角坐标系,设帆船行驶的速度为v ⃗ ,则v ⃗ =v 1⃗⃗⃗⃗ +v 2⃗⃗⃗⃗ .由向量坐标运算得出v⃗ ,再求模即可. 12.答案:解:|a ⃗ −b ⃗ |2=(a ⃗ −b ⃗ )2=a ⃗ 2+b ⃗ 2−2a ⃗ ·b ⃗ =4+1−2a ⃗ ·b ⃗ =4, 故a ⃗ ·b ⃗ =12,|a ⃗ +b ⃗ |=√(a ⃗ +b ⃗ )2=√4+1+2×12=√6.解析:此题考查向量的模,属于基础题.将|a ⃗ −b ⃗ |=2完全平方求得a ⃗ ·b ⃗ ,进而再对|a ⃗ +b ⃗ |平方求解即可.13.答案:解:(1)a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |cosθ=4×2×cos120°=−4.(2)(a ⃗ +b ⃗ )⋅(a ⃗ −2b ⃗ )=a ⃗ 2−a ⃗ ⋅b ⃗ −2b ⃗ 2=16+4−8=12. (3)|a ⃗ +b ⃗ |2=a ⃗ 2+2a ⃗ ⋅b ⃗ +b ⃗ 2=16−8+4=12,∴|a ⃗ +b ⃗ |=√12=2√3.解析:本题考查了平面向量的数量积运算,以及向量的模,属于基础题. (1)利用数量积的定义进行计算; (2)利用数量积的运算法则展开计算; (3)先计算(a ⃗ +b ⃗ )2,再开方即可.14.答案:解:∵AB ⃗⃗⃗⃗⃗ =a ⃗ ,∴AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =a ⃗ +b ⃗ , ∴与AC ⃗⃗⃗⃗⃗ 同方向的单位向量c 0⃗⃗⃗ =AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |=√1919(a ⃗ +b⃗ ).解析:此题考查了平面向量的知识.注意掌握单位向量,三角形法则以及向量的坐标运算. 由在直角三角形ABC 中,∠B =120°,AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ 且|a ⃗ |=2,|b ⃗ |=3,直接利用AC ⃗⃗⃗⃗⃗ 同方向的单位向量c 0⃗⃗⃗ ▱AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=a⃗ +b ⃗ |a ⃗ +b⃗ |求解即可求得答案. 15.答案:(1)解:AB 1⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =a ⃗ +b ⃗ ,A 1C ⃗⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗ −AA 1⃗⃗⃗⃗⃗⃗⃗ =c ⃗ −a ⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ =AC 1⃗⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =a ⃗ +c ⃗ −b ⃗ ; (2)证明:∵AA 1⊥底面ABC ,∴AA 1⊥AC ,AA 1⊥AB , ∴a ⃗ ·c ⃗ =0,a ⃗ ·b ⃗ =0, ∵AB 1⊥BC 1,∴(a ⃗ +b ⃗ )·(a ⃗ +c ⃗ −b ⃗ )=0,∴|a ⃗ |2−|b ⃗ |2+a ⃗ ·c ⃗ +b ⃗ ·c ⃗ =|a ⃗ |2−|b ⃗ |2+b ⃗ ·c ⃗ =0,∵A 1C ⊥BC 1,∴(c ⃗ −a ⃗ )·(a ⃗ +c ⃗ −b ⃗ )=0,∴|c ⃗ |2−|a ⃗ |2−b ⃗ ·c ⃗ =0, ∴|b ⃗ |2=|c ⃗ |2,∴|b ⃗ |=|c ⃗ |,即AB 1=A 1C .解析:本题考查向量线性运算、向量数量积、向量的模,属于基础题. (1)由向量加减法可得BC 1⃗⃗⃗⃗⃗⃗⃗ =AC 1⃗⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =a ⃗ +c ⃗ −b ⃗ ; (2)由题意得(a ⃗ +b ⃗ )·(a ⃗ +c ⃗ −b ⃗ )=0,且(c ⃗ −a ⃗ )·(a ⃗ +c ⃗ −b ⃗ )=0,化简得 |b ⃗ |2=|c ⃗ |2,即可得AB 1=A 1C .16.答案:解:∵向量a ⃗ =(1,−2),b ⃗ =(−7,−6),∴a ⃗ +b ⃗ =(−6,−8),与之同向的单位向量为c 0⃗⃗⃗ =(−35,−45), 故:c ⃗ =20c 0⃗⃗⃗ =(−12,−16).解析:本题主要考查了向量的模以及向量同向共线的概念,平面向量的坐标运算,属于基础题. 先求出与a ⃗ +b ⃗ 同向的单位向量为c 0⃗⃗⃗ =(−35,−45),再由c ⃗ =20c 0⃗⃗⃗ 可得结论.17.答案:解:由题意可得:b ⃗ =2a ⃗ −(2,2)=2(−6,8)−(2,2)=(−12,16)−(2,2)=(−14,14), 那么|b ⃗ |=√(−14)2+142=14√2,综上所述,结论为:b ⃗ =(−14,14),|b ⃗ |=14√2.解析:本题主要考查平面向量的坐标运算,以及向量的模,属于基础题. 直接利用平面向量的坐标运算可的结论.18.答案:证明:(1)建立如图所示坐标系,设正方形边长为1,设| DP ⃗⃗⃗⃗⃗ |=λ,则A(0,1), P(√22λ, √22λ),E(1, √22λ),F(√22λ,0), ∴PA⃗⃗⃗⃗⃗ =(−√22λ,1− √22λ), EF ⃗⃗⃗⃗⃗⃗⃗ =( √22λ−1,− √22λ), | PA⃗⃗⃗⃗⃗ |2=(−√22λ)2+(1−√22λ)2=λ2− √2λ+1 , | EF |2=( √22λ−1)2+(− √22λ)2=λ2− √2λ+1,∴| PA ⃗⃗⃗⃗⃗ |2=| EF ⃗⃗⃗⃗⃗ |2,故PA =EF ; (2)由(1)可得: PA ⃗⃗⃗⃗⃗ ⋅ EF ⃗⃗⃗⃗⃗⃗⃗ =(− √22λ)( √22λ−1)+(1− √22 λ)(− √22λ)=0, ∴ PA ⃗⃗⃗⃗⃗ ⊥EF⃗⃗⃗⃗⃗ ∴PA ⊥EF .解析:略19.答案:解:(1)A 2A 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,B 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,B 2B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,C 1C 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,C 2C 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;(2)A 1C 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,A 2B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,B 1C 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,B 2C 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,B 2A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,B 3A 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,C 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,C 3B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,C 3A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ; (3)A 3A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,B 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,C 3C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗解析:本题考查向量相等、平行、相反的概念,属于基础题, (1)根据向量相等的概念求解即可; (2)根据向量平行的概念求解即可; (3)根据向量相反的概念求解即可.20.答案:解:∵点D 、E 、F 分别是△ABC 的三边AB 、BC 、CA 的中点,∴AB//EF ,AC//DE ,BC//DF ,∴与AB⃗⃗⃗⃗⃗ 平行的向量有BA ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ ,DA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,DB ⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ,FE ⃗⃗⃗⃗⃗ 。
人教版A版(2019)高中数学必修第二册:第六章 平面向量及其应用 综合测试(附答案与解析)

第六章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在ABC △中,内角,A B C ,的对边分别为,,a b c ,若a =,2A B =,则cos B 等于( )D.62.已知两个单位向量a 和b 的夹角为60︒,则向量-a b 在向量a 上的投影向量为( )A.12a B.aC.12-aD.-a3.已知点(2,1),(4,2)A B -,点P 在x 轴上,当PA PB 取最小值时,P 点的坐标是( ) A.(2,0) B.(4,0)C.10,03⎛⎫ ⎪⎝⎭D.(3,0)4.已知,,A B C 为圆O 上的三点,若有OA OC OB +=,圆O 的半径为2,则OB CB =( ) A.1- B.2- C.1 D.25.已知点(4,3)A 和点(1,2)B ,点O 为坐标原点,则||()OA tOB t +∈R 的最小值为( )A. B.5 C.36.已知锐角三角形的三边长分别为1,3,a ,那么a 的取值范围为( ) A.(8,10)B.C.D.7.已知圆的半径为4,,,a b c 为该圆的内接三角形的三边,若abc =,则三角形的面积为( )A.B.8.已知向量,a b 满足(2)(54)0+⋅-=a b a b ,且1==a b ,则a 与b 的夹角θ为( )A.34π B.4π C.3π D.23π 9.已知sin 1sin cos 2ααα=+,且向量(tan ,1)AB α=,(tan ,2)BC α=,则AC 等于( )A.(2,3)-B.(1,2)C.(4,3)D.(2,3)10.在ABC △中,E F ,分别为,AB AC 的中点,P 为EF 上的任意一点,实数,x y 满足PA xPB yPC ++=0,设,,,ABC PBC PCA PAB △△△△的面积分别为123,,,S S S S ,记(1,2,3)ii S i Sλ==,则23λλ⋅取到最大值时, 2x y +的值为( )A.1-B.1C.32-D.32二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.已知ABC △中,角,,A B C 的对边分别为,,a b c ,且满足,3B a c π=+,则ac=( ) A.2 B.3C.12D.1312.点P 是ABC △所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC △的形状不可能是( ) A.钝角三角形 B.直角三角形 C.等腰三角形 D.等边三角形三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.已知,12e e 是平面内的单位向量,且12⋅=12e e .若向量b 满足1⋅=⋅=12b e b e ,则=b ________.14.已知向量,a b 满足5,1==a b ,且4-a b ⋅a b 的最小值为________.15.如图,在直角梯形ABCD 中,AB DC ∥,AD DC ⊥,2DC A A B D ==,E 为AD 的中点,若CA CE DB λμ=+,则λ=________,μ=________.(本题第一空2分,第二空3分)16.如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60︒的C 处,12时20分测得轮船在海岛北偏西60︒的B 处,12时40分轮船到达位于海岛正西方且距海岛5km 的E 港口,如果轮船始终匀速直线前进,则船速的大小为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示,以向量,OA OB ==a b 为邻边作OADB ,11,33BM BC CN CD ==,用,a b 表现,,OM ON MN .18.(本小题满分12分)已知ABC △的内角,,A B C 所对的边分别为,,a b c ,且2a =,3cos 5B =. (1)若4b =,求sin A 的值; (2)若4ABC S ∆=,求,b c 的值.19.(本小题满分12分)在ABC △中,角,,A B C 所对的边分别为,,a b c ,已知sin cos 1sin 2C C C +=-, (1)求sin C 的值;(2)若ABC △的外接圆面积为(4π+,试求AC BC 的取值范围.20.(本小题满分12分)某观测站在城A 南偏西20︒方向的C 处,由城A 出发的一条公路,走向是南偏东40︒,距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时,C D 间的距离为21千米,问这人还要走多少千米可到达城A ?21.(本小题满分12分)已知正方形ABCD ,E F 、分别是CD AD 、的中点,BE CF 、交于点P ,连接AP .用向量法证明: (1)BE CF ⊥; (2)AP AB =.22.(本小题满分12分)已知向量(sin ,cos )x x =a ,sin ,sin 6x x π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭b ,函数()2f x =⋅a b ,()4g x f x π⎛⎫= ⎪⎝⎭. (1)求()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最值,并求出相应的x 的值;(2)计算(1)(2)(3)(2014)g g g g ++++的值;(3)已知t ∈R ,讨论()g x 在[,2]t t +上零点的个数.第六章综合测试答案解析一、 1.【答案】B【解析】由正弦定理得sin sin a Ab B=,a ∴=可化为sin sin A B =.又sin 22sin cos 2,sin sin 2B B B A B B B =∴==,cos B ∴. 2.【答案】A【解析】由已知可得111122⋅=⨯⨯=a b ,211()122-⋅=-⋅=-=a b a a a b ,则向量-a b 在向量a 上的投影向量为()12-⋅⋅=a b a a a a . 3.【答案】D【解析】点P 在x 轴上,∴设P 上的坐标是(,0),(2,1),(4,2)x PA x PB x ∴=--=-,22(2)(4)266(3)3PA PB x x x x x ∴⋅=---=-+=--,∴当3x =时,PA PB ⋅取最小值.P ∴点的坐标是(3,0).4.【答案】D 【解析】OA OC OB +=,OA OC =,∴四边形OABC 是菱形,且120AOC ∠=︒,又圆O 的半径为2,22cos602OB CB ∴⋅=⨯⨯︒=. 5.【答案】D【解析】点(4,3),(1,2)A B ,O 为坐标原点,则(4,32)OA tOB t t +=++,22222()(4)(32)520255(2)55OA tOB t t t t t ∴+=+++=++=++≥,∴当2t =-时,等号成立,此时OA tOB +取得最小值6.【答案】B【解析】设1,3,a 所对的角分别为,,C B A ∠∠∠,由余弦定理的推论知2222222213cos 0,21313cos 0,2131cos 0,23a A a B a a C a ⎧+-=⎪⨯⨯⎪⎪+-=⎨⨯⨯⎪⎪+-=⎪⨯⨯⎩>>>即()()222100,280,680,a a a a a ⎧-⎪⎪-⎨⎪+⎪⎩>>>解得a ,故选B . 7.【答案】C【解析】设圆的半径为R ,内接三角形的三边,,a b c 所对的角分别为,,A B C .28sin sin sin a b cR A B C====,sin 8cC∴=,1sin 216ABC abc S ab C ∆∴===8.【答案】C 【解析】22(2)(54)5680+⋅-=+⋅=-a b a b a a b b ,又11,63,cos 2θ==∴⋅=∴=a b a b ,又[0,],3πθπθ∈∴=,故选C .9.【答案】D 【解析】sin 1sin cos 2ααα=+,cos sin αα∴=,tan 1α∴=,(2tan ,3)(2,3)AC AB BC α∴=+==.故选D .10.【答案】D【解析】由题意可得,EF 是ABC △的中位线,P ∴到BC 的距离等于ABC △的边BC 上的高的一半,可得12323121,2S S S S λλ++===.由此可得223231216λλλλ+⎛⎫⋅= ⎪⎝⎭≤,当且仅当23S S =,即P 为EF 的中点时,等号成立.0PE PF ∴+=.由向量加法的四边形法则可得,2PA PB PE +=,2PA PC PF +=,两式相加,得20PA PB PC ++=.0PA xPB yPC ++=,∴根据平面向量基本定理,得12x y ==,从而得到322x y +=. 二、11.【答案】AC【解析】3B π=,a c +=,2222()23a c a c ac b ∴+=++=,①由余弦定理可得,2222cos3a c acb π+-=,②联立①②,可得222520a ac c -+=,即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得2ac=或12a c =.故选AC .12.【答案】ACD 【解析】P 是ABC △所在平面内一点,且|||2|0PB PC PB PC PA --+-=,|||()()|0CB PB PA PC PA ∴--+-=,即||||CB AC AB =+,||||AB AC AC AB ∴-=+,两边平方并化简得0MC AB ⋅=,AC AB ∴⊥,90A ︒∴∠=,则ABC △一定是直角三角形.故选ACD .三、 13.【解析】解析令1e 与2e 的夹角为θ.1cos cos 2θθ∴⋅=⋅==1212e e e e ,又0θ︒︒≤≤180,60θ∴=︒.()0⋅-=12b e e ,∴b 与,12e e 的夹角均为30︒,从而1||cos30︒=b .14.【答案】52【解析】|4|-a b ,52⋅≥a b ,即⋅a b 的最小值为52.15.【答案】65 25【解析】以D 为原点,DC 边所在直线为x 轴,DA 边所在直线为y 轴建立平面直角坐标系.不妨设1AB =,则(0,0),(2,0),(0,2),(1,2),(0,1)D C A B E .(2,2),(2,1),(1,2)CA CE DB =-=-=,,(2,2)(2,1)(1,2)CA CE DB λμλμ=+∴-=-+,22,22,λμλμ-+=-⎧∴⎨+=⎩解得6,52.5λμ⎧=⎪⎪⎨⎪=⎪⎩16./h【解析】轮船从C 到B 用时80分钟,从B 到E 用时20分钟,而船始终匀速前进,由此可见,4BC EB =.设EB x =,则4BC x =,由已知得30BAE ∠=︒,150EAC ∠=︒. 在AEC △中,由正弦定理的sin sin EC AEEAC C=∠, sin 5sin1501sin 52AE EAC C EC x x︒∠∴===.在ABC △中,由正弦定理得sin120sin BC ABC=︒,14sin sin120x BC C AB ⋅∴===︒.在ABE △中,由余弦定理得22216312cos3025253323BE AB AE AB AE︒=+-=+-⨯⨯=,故BE ∴船速的大小为/h)3BEt==.四、17.【答案】解:BA OA OB =-=-a b ,11153666OM OB BM OB BC OB BA ∴=+=+=+=+a b .又OD =+a b ,222333ON OC CN OD ∴=+==+a b ,221511336626MN ON OM ∴=-=+--=-a b a b a b .18.【答案】解:3cos 05B =>,且0B π<<,4sin 5B ∴=.由正弦定理得sin sin a bA B=, 42sin 25sin 45a B A b⨯∴===. (2)1sin 42ABC S ac B ∆==,142425c ∴⨯⨯⨯=,5c ∴=. 由余弦定理得2222232cos 25225175b ac ac B =+-=+-⨯⨯⨯=,b ∴=19.【答案】(1)解:ABC △中,由sin cos 1sin2C C C +=-,得22sin cos 2sin sin 2222C C C C=-, sin02C >,1cos sin 222C C ∴-=-,两边平方得11sin 4C -=,解得3sin 4C =.(2)设ABC △的外接圆的半径为R ,由(1)知sincos 22C C >,24C π∴>, 2C π∴>,cos C ∴=. 易得2sin c R C =,22294sin (44c R C ∴==,由余弦定理得,222977(42214c a b abab ⎛⎫⎛⎫=+=+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,902ab ∴<≤,9cos AC BC ab C ⎡⎫∴=∈-⎪⎢⎪⎣⎭,即AC BC 的取值范围是⎡⎫⎪⎢⎪⎣⎭. 20.【答案】解:如图所示,设ACD α∠=,CDB β∠=.在CBD △中,由余弦定理的推论得2222222021311cos 2220217BD CD CB BD CD β+-+-===-⨯⨯,sin 7β∴=()411sin sin 60sin cos60sin 60cos 27αβββ︒︒︒⎛⎫∴=-=-=--= ⎪⎝⎭在CBD △中,由正弦定理得21sin 60sin ADα=︒, 21sin 15sin60AD α∴==︒(千米).∴这人还要再走15千米可到达城A .21.【答案】证明:如图,建立平面直角坐标系xOy ,其中A 为原点,不妨设2AB =,则(0,0),(2,0),(2,2),(1,2),(0,1)A B C E F . (1)(1,2)(2,0)(1,2)BE OE OB =-=-=-,(0,1)(2,2)(2,1)CF OF OC =-=-=--,(1)(2)2(1)0BE CF ∴⋅=-⨯-+⨯-=,BE CF ∴⊥,即BE CF ⊥.(2)设(,)P x y ,则(,1)FP x y =-,(2,)BP x y =-,由(1)知(2,1)CF =--,(1,2)BE =-,FP CF ∥,2(1)x y ∴-=--,即24y x =-+.同理,由BP BE ∥,即24y x =-+.22,24,x y y x =-⎧∴⎨=-+⎩解得6,58,5x y ⎧=⎪⎪⎨⎪=⎪⎩即68,55P ⎛⎫⎪⎝⎭.222268455AP AB ⎛⎫⎛⎫∴=+== ⎪ ⎪⎝⎭⎝⎭,||||AP AB ∴=,即AP AB =.22.【答案】(1)解:21()22sin sin(2sin cos sin 262f x x x x x x x π⎫=⋅=-+=+=⎪⎭a b1sin 22sin 223x x x π⎛⎫=- ⎪⎝⎭,2x ππ⎡⎤∈⎢⎥⎣⎦, 252333x πππ∴-≤≤,1sin 23x π⎛⎫∴-- ⎪⎝⎭≤,∴当3232x ππ-=,即1112xπ=时,()f x 1-,当2233x ππ-=,即2xπ=时,()f x(2)由(1)得()sin 23f x x π⎛⎫=-+⎪⎝⎭.()sin 423g x f x x πππ⎛⎫⎛⎫∴==-+ ⎪ ⎪⎝⎭⎝⎭,4T ∴=(1)(2)(3)(4)(5)(6)(7)(8)(2009)(2010)(2011)(2012)g g g g g g g g g g g g ∴+++=+++==+++.又(1)(2)(3)(4)g gg g +++=,(1)(2)(3)(2014)503(1)(2)g g g g g g ∴++++=⨯+=.(3)()g x 在[,2]t t +上零点的个数等价于sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =.在同一平面直角坐标系内作出这两个函数的图象(图略).当4443k t k +<<,k ∈Z 时,由图象可知,sin 23x y ππ⎛⎫- ⎝=⎪⎭与2y =-两图象无交点,即()g x 无零点;当44243k t k ++≤<或10444,3k t k k ++∈Z <≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =1个交点,即()g x 有1个零点;当10244,3k t k k ++∈Z ≤≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =2个交点,即()g x 有2个零点.。
人教A版高一数学必修第二册第六章《平面向量及其应用》单元练习题卷含答案解析 (2)

高一数学必修第二册第六章《平面向量及其应用》单元练习题卷5(共22题)一、选择题(共10题)1. 在 △ABC 中,E ,F 分别为 AB ,AC 的中点,P 为 EF 上的任一点,实数 x ,y 满足 PA ⃗⃗⃗⃗⃗ +xPB ⃗⃗⃗⃗⃗ +yPC ⃗⃗⃗⃗⃗ =0⃗ ,设 △ABC ,△PBC ,△PCA ,△PAB 的面积分别为 S ,S 1,S 2,S 3,记 S 1S=λi (i =1,2,3),则 λ2⋅λ3 取到最大值时,2x +y 的值为 ( ) A . −1 B . 1C . −32D . 322. 在 △ABC 中,已知 b =2√3,c =2,C =30∘,那么 a 等于 ( ) A . 2 B . 4 C . 2 或 4 D .无解3. 若 ∣∣AB ⃗⃗⃗⃗⃗ ∣∣=5,∣∣AC ⃗⃗⃗⃗⃗ ∣∣=4,则 ∣∣BC ⃗⃗⃗⃗⃗ ∣∣ 的取值范围是 ( ) A . [1,5] B . [1,9] C . [4,5] D . [0,9]4. 正方形 ABCD 的边长为 2,E 是线段 CD 的中点,F 是线段 BE 上的动点,则 BF ⃗⃗⃗⃗⃗ ⋅FC ⃗⃗⃗⃗⃗ 的取值范围是 ( ) A . [−1,0]B . [−1,45]C . [−45,1]D . [0,1]5. 若 P 1P ⃗⃗⃗⃗⃗⃗⃗ =4P 2P ⃗⃗⃗⃗⃗⃗⃗ ,则下列各式中不正确的是 ( )A . ∣P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣=2∣P 2P ⃗⃗⃗⃗⃗⃗⃗ ∣B . ∣P 1P ⃗⃗⃗⃗⃗⃗⃗ ∣=4∣P 2P ⃗⃗⃗⃗⃗⃗⃗ ∣C . ∣P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣=3∣P 2P ⃗⃗⃗⃗⃗⃗⃗ ∣D . 4∣P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣=3∣P 1P ⃗⃗⃗⃗⃗⃗⃗ ∣6. 已知点 C 为线段 AB 上一点,P 为直线 AB 外一点,PC 是 ∠APB 的角平分线,I 为 PC 上一点,满足 BI ⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +λ(AC ⃗⃗⃗⃗⃗ ∣∣AC ⃗⃗⃗⃗⃗ ∣∣+AP ⃗⃗⃗⃗⃗ ∣∣AP ⃗⃗⃗⃗⃗ ∣∣)(λ>0),∣∣PA ⃗⃗⃗⃗⃗ ∣∣−∣∣PB ⃗⃗⃗⃗⃗ ∣∣=4,∣∣PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ ∣∣=10,则 BI⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ ∣∣BA ⃗⃗⃗⃗⃗ ∣∣的值为 ( ) A .2 B .3 C .4 D .57. 已知非零向量 a ,b ⃗ 满足 ∣a ∣=6∣∣b ⃗ ∣∣,a ,b ⃗ 的夹角的余弦值为 13,且 a ⊥(a −kb ⃗ ),则实数 k 的值为 ( ) A . 18 B . 24 C . 32 D . 368. 在 △ABC 中,AC =3,BC =√7,AB =2,则 AB 边上的高等于 ( ) A . 2√3 B .3√32C .√262D . 329. 已知点 O 是 △ABC 内部一点,满足 OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ =mOC ⃗⃗⃗⃗⃗ ,S △AOB S △ABC=47,则实数 m 为 ( ) A . 2 B . −2 C . 4 D . −410. 已知 A ,B 都是数轴上的点,O 为原点,A (3),B (−2),则 3OA ⃗⃗⃗⃗⃗ +4OB ⃗⃗⃗⃗⃗ 的坐标为 ( ) A . 17B . 1C . −1D . −17二、填空题(共6题)11. 设 I 为 △ABC 的内心,三边长 AB =7,BC =6,AC =5,点 P 在边 AB 上,且 AP =2,若直线 IP 交直线 BC 于点 Q ,则线段 QC 的长为 .12. 如图,两块全等的等腰直角三角板拼在一起形成一个平面图形,若直角边长为 2,且 AD⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,则 λ+μ= .13. 设向量 a =(3,3),b ⃗ =(1,−1),若 (a +λb ⃗ )⊥(a −λb ⃗ ),则实数 λ= .14. 思考辨析,判断正误.在 △ABC 中,若 a 2+b 2−c 2=0,则角 C 为直角.( )15. 如图,在折线 ABCD 中,AB =BC =CD =4,∠ABC =∠BCD =120∘,E ,F 分别是 AB ,CD的中点,若折线上满足条件 PE⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =k 的点 P 至少有 4 个,则实数 k 的取值范围是 .16. 山上有一塔,高 50 m ,自山下地面某点测得塔顶仰角为 75∘,测得塔底仰角为 45∘,则山高m .三、解答题(共6题)17. 已知 ∣a ∣=1,∣∣b ⃗ ∣∣=2,a与 b ⃗ 夹角 π3,m ⃗⃗ =3a −b ⃗ ,n ⃗ =ka +2b ⃗ . (1) 当 k 为何值时,m ⃗⃗ ∥n ⃗ ? (2) 当 k 为何值时,m ⃗⃗ ⊥n ⃗ ?18. 已知 △ABC 的三个内角 A ,B ,C 的对边分别是 a ,b ,c ,a >c ,且 2csinA =√3a .(1) 求角 C 的大小;(2) 若 c =4,△ABC 的面积为 √3,求 △ABC 的周长.19. 在 △ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c ,且 bsinA =√3acosB .(1) 求角 B 的大小;(2) 若 b =3,sinC =2sinA ,求 a ,c 的值.20. 已知锐角 △ABC ,同时满足下列四个条件中的三个 ①A =π3;②a =13;③c =15;④sinC =13.(1) 请指出这三个条件,并说明理由; (2) 求 △ABC 的面积21. 对于任意实数 a ,b ,c ,d ,表达式 ad −bc 称为二阶行列式(determinant ),记作 ∣∣∣ab cd ∣∣∣. (1) 求下列行列式的值:① ∣∣∣1001∣∣∣; ② ∣∣∣1326∣∣∣; ③ ∣∣∣−2510−25∣∣∣;(2) 求证:向量 p =(a,b ) 与向量 q =(c,d ) 共线的充要条件是 ∣∣∣a b cd ∣∣∣=0. (3) 讨论关于 x ,y 的二元一次方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2(a 1a 2b 1b 2≠0) 有唯一解的条件,并求出解.(结果用二阶行列式的记号表示)22. 已知 O 为坐标原点,对于函数 f (x )=asinx +bcosx ,称向量 OM⃗⃗⃗⃗⃗⃗ =(a,b ) 为函数 f (x ) 的伴随向量,同时称函数 f (x ) 为向量 OM⃗⃗⃗⃗⃗⃗ 的伴随函数.(1) 设函数 g (x )=√3sin (π+x )−sin (3π2−x),试求 g (x ) 的伴随向量 OM⃗⃗⃗⃗⃗⃗ ; (2) 记向量 ON ⃗⃗⃗⃗⃗⃗ =(1,√3) 的伴随函数为 f (x ),当 f (x )=85,且 x ∈(−π3,π6) 时,求 sinx 的值; (3) 将(1)中函数 g (x ) 的图象的横坐标伸长为原来的 2 倍(纵坐标不变),再把整个图象向右平移2π3个单位长度得到 ℎ(x ) 的图象,已知 A (−2,3),B (2,6),问在 y =ℎ(x ) 的图象上是否存在一点 P ,使得 AP⃗⃗⃗⃗⃗ ⊥BP ⃗⃗⃗⃗⃗ ?若存在,求出 P 点坐标;若不存在,说明理由.答案一、选择题(共10题) 1. 【答案】D【知识点】平面向量的数量积与垂直2. 【答案】C【解析】由 bsinB =csinC 得, sinB =bsinC c=2√3sin30∘2=√32, 所以 B =60∘ 或 B =120∘. 当 B =60∘ 时,A =90∘, a =√(2√3)2+22=4;当 B =120∘ 时,A =30∘,a =c =2, 故 a =4 或 a =2. 【知识点】正弦定理3. 【答案】B【知识点】平面向量的数量积与垂直4. 【答案】B【知识点】平面向量的数量积与垂直5. 【答案】A【知识点】平面向量的数乘及其几何意义6. 【答案】B【解析】因为 BI ⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AI ⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +λ(AC ⃗⃗⃗⃗⃗∣∣AC ⃗⃗⃗⃗⃗ ∣∣+AP ⃗⃗⃗⃗⃗∣∣AP ⃗⃗⃗⃗⃗ ∣∣)(λ>0),所以 I 在 ∠PAB 的角平分线上,又 I 在 ∠APB 的角平分线上,所以 I 为 △PAB 的内心.因为 ∣∣PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ ∣∣=10,所以 ∣AB ∣=10.BI⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ ∣∣BA ⃗⃗⃗⃗⃗ ∣∣ 表示 BI⃗⃗⃗⃗ 在 BA ⃗⃗⃗⃗⃗ 方向上的投影,过 I 作 IK 垂直 BA 于 K ,则由圆的切线性质和已知可得 ∣AK ∣+∣BK ∣=∣AB ∣=10,∣AK ∣−∣BK ∣=4,所以 ∣BK ∣=3,故BI⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ ∣∣BA ⃗⃗⃗⃗⃗ ∣∣ 的值为 3 .【知识点】平面向量的分解、平面向量的数量积与垂直、平面向量的加减法及其几何意义7. 【答案】A【解析】由 ∣a ∣=6∣∣b ⃗ ∣∣,可设 ∣∣b ⃗ ∣∣=t ,则 ∣a ∣=6t (t >0),因为 a ⋅(a −kb ⃗ )=∣a ∣2−ka ⋅b⃗ =36t 2−k ×6t ×t ×13=0, 所以 k =18.【知识点】平面向量的数量积与垂直8. 【答案】B【知识点】正弦定理、余弦定理9. 【答案】D【知识点】平面向量的分解10. 【答案】B【解析】 3OA⃗⃗⃗⃗⃗ +4OB ⃗⃗⃗⃗⃗ 的坐标为 3×3+4×(−2)=1. 【知识点】平面向量数乘的坐标运算二、填空题(共6题) 11. 【答案】138【解析】如图, 由题意易得 AP ⃗⃗⃗⃗⃗ =25PB ⃗⃗⃗⃗⃗ , 所以 IP ⃗⃗⃗⃗ −IA ⃗⃗⃗⃗ =25(IB ⃗⃗⃗⃗ −IP ⃗⃗⃗⃗ ), 所以 IP ⃗⃗⃗⃗ =57IA ⃗⃗⃗⃗ +27IB⃗⃗⃗⃗ . 设 CQ =x ,BQ =y ,则 x +y =6, 所以 CQ⃗⃗⃗⃗⃗ =−x yBQ ⃗⃗⃗⃗⃗ , 所以 IQ ⃗⃗⃗⃗ −IC ⃗⃗⃗⃗ =x y(IB ⃗⃗⃗⃗ −IQ⃗⃗⃗⃗ ), 所以 IQ ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6IC ⃗⃗⃗⃗ . 因为 7IC⃗⃗⃗⃗ +5IB ⃗⃗⃗⃗ +6IA ⃗⃗⃗⃗ =0, 点 I 是 △ABC 的内心,根据三角形内心的向量表示得向量等式. 所以 IC⃗⃗⃗⃗ =−57IB ⃗⃗⃗⃗ −67IA ⃗⃗⃗⃗ , 所以 IQ ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6IC ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6(−57IB ⃗⃗⃗⃗ −67IA ⃗⃗⃗⃗ )=−y 7IA ⃗⃗⃗⃗ +(x 6−5y 42)IB ⃗⃗⃗⃗ . 因为 IQ ⃗⃗⃗⃗ ∥IP⃗⃗⃗⃗ ,所以 (−y 7):(x 6−5y 42)=52,结合 x +y =6,解得 x =138.所以线段 QC 的长为138.【知识点】平面向量数乘的坐标运算12. 【答案】 1+√2【解析】因为 ∠DEB =∠ABC =45∘,所以 AB ∥DE ,过 D 作 AB ,AC 的垂线 DM ,DN , 则 AN =DM =BM =BD ⋅sin45∘=√2, 所以 DN =AM =AB +BM =2+√2, 所以 AD ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ =2+√22AB ⃗⃗⃗⃗⃗ +√22AC ⃗⃗⃗⃗⃗ , 所以 λ=2+√22,μ=√22,所以 λ+μ=1+√2.【知识点】平面向量的分解13. 【答案】 ±3【知识点】平面向量数量积的坐标运算14. 【答案】 √【知识点】余弦定理15. 【答案】 [−94,−2]【解析】以 BC 的垂直平分线为 y 轴,以 BC 为 x 轴,建立如图所示的平面直角坐标系. 因为 AB =BC =CD =4,∠ABC =∠BCD =120∘, 所以 B (−2,0),C (2,0),A(−4,2√3),D(4,2√3).因为 E ,F 分别是 AB ,CD 的中点,所以 E(−3,√3),F(3,√3).设 P (x,y ),−4≤x ≤4,0≤y ≤2√3,因为 PE⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =k , 所以 (−3−x,√3−y)(3−x,√3−y)=x 2+(y −√3)+9=k , 即 x 2+(y −√3)=k +9.当 k +9>0 时,点 P 的轨迹为以 (0,√3) 为圆心,以 √k +9 为半径的圆. 当圆与直线 DC 相切时,此时圆的半径 r =3√32,此时点有 2 个;当圆经过点 C 时,此时圆的半径为 r =√22+3=√7,此时点 P 有 4 个.因为满足条件 PE ⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗⃗ =k 的点 P 至少有 4 个,结合图象可得, 所以274≤k +9≤7,解得 −94≤k ≤−2,故实数 k 的取值范围为 [−94,−2].【知识点】平面向量数量积的坐标运算16. 【答案】 25(√3−1)【知识点】解三角形的实际应用问题三、解答题(共6题) 17. 【答案】(1) −6. (2) 1.【知识点】平面向量的数乘及其几何意义、平面向量的数量积与垂直18. 【答案】(1) 由题意知 2csinA =√3a ,由正弦定理得 2sinCsinA =√3sinA , 又由 A ∈(0,π),则 sinA >0,所以 sinC =√32, 又因为 a >c ,则 ∠A >∠C , 所以 ∠C =60∘.(2) 由三角形的面积公式,可得 S △ABC =12absinC =12ab ×√32=√3,解得 ab =4, 又因为 cosC =a 2+b 2−c 22ab=a 2+b 2−422ab=12,解得 a 2+b 2=20, 即 (a +b )2=28,所以 a +b =2√7,所以 △ABC 的周长为 a +b +c =2√7+4. 【知识点】余弦定理、正弦定理19. 【答案】(1) 由 bsinA =√3acosB 及正弦定理 a sinA=b sinB,得 sinB =√3cosB , 故有 tanB =sinBcosB =√3. 即 B =π3.(2) 由 sinC =2sinA 及正弦定理 a sinA=c sinC,得 c =2a, ⋯⋯①由 b =3 及余弦定理 b 2=a 2+c 2−2accosB , 得 9=a 2+c 2−ac, ⋯⋯② 联立①②,解得 a =√3,c =2√3. 【知识点】正弦定理、余弦定理20. 【答案】(1) △ABC 同时满足 ①,②,③. 理由如下:若 △ABC 同时满足 ①,④,则在锐角 △ABC 中, sinC =13<12, 所以 0<C <π6. 又因为 A =π3, 所以 π3<A +C <π2.所以 B >π2,这与 △ABC 是锐角三角形矛盾, 所以 △ABC 不能同时满足 ①,④, 所以 △ABC 同时满足 ②,③. 因为 c >a ,所以 C >A 若满足 ④, 则 A <C <π6,则 B >π2, 这与 △ABC 是锐角三角形矛盾,故 △ABC 不满足 ④,故 △ABC 同时满足 ①,②,③.(2) 因为 a 2=b 2+c 2−2bccosA , 所以 132=b 2+152−2×b ×15×12,解得 b =8 或 b =7. 当 b =7 时 cosC =72+132−1522×7×13<0,所以 C 为钝角,与题意不符合, 所以 b =8.所以 △ABC 的面积 S =12bcsinA =30√3. 【知识点】余弦定理、判断三角形的形状21. 【答案】(1) ① ∣∣∣1001∣∣∣=1;② ∣∣∣1326∣∣∣=1×6−2×3=0;③ ∣∣∣−2510−25∣∣∣=(−2)×(−25)−5×10=0. (2) 若向量 p =(a,b ) 与向量 q =(c,d ) 共线,则 当 q ≠0⃗ 时,有 ad −bc =0,即 ∣∣∣a b c d ∣∣∣=0, 当 q =0⃗ 时,有 c =d =0,即 ∣∣∣a b c d ∣∣∣=ad −bc =0, 所以必要性得证. 反之,若 ∣∣∣a b cd ∣∣∣=0,即 ad −bc =0, 当 c ,d 不全为 0 时,即 q ≠0⃗ 时, 不妨设 c ≠0,则 b =ad c,所以 p =(a,ad c),因为 q =(c,d ),所以 p =a cq ,所以 p ∥q , 所以向量 p =(a,b ) 与向量 q =(c,d ) 共线, 当 c =0 且 d =0 时,q =0⃗ , 所以向量 p =(a,b ) 与向量 q =0⃗ 共线, 充分性得证.综上,向量 p =(a,b ) 与向量 q =(c,d ) 共线的充要条件是 ∣∣∣ab cd ∣∣∣=0.(3) 用 b 2 和 b 1 分别乘上面两个方程的两端,然后两个方程相减, 消去 y 得 (a 1b 2−a 2b 1)x =c 1b 2−c 2b 1, ⋯⋯① 同理,消去 x 得 (a 1b 2−a 2b 1)y =a 1c 2−a 2c 1, ⋯⋯② 所以,当 a 1b 2−a 2b 1≠0 时,即 ∣∣∣a 1b 1a 2b 2∣∣∣≠0 时, 由①②可得 x =c 1b 2−c 2b 1a 1b 2−a 2b 1=∣∣∣c 1b 1c 2b 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣,y =a 1c 2−a 2c 1a1b 2−a 2b 1=∣∣∣a 1c 1a 2c 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣, 所以,当 ∣∣∣a 1b 1a 2b 2∣∣∣≠0 时,方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2 有唯一解且 x =∣∣∣c 1b 1c 2b 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣,y =∣∣∣a 1c 1a 2c 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣. 【知识点】平面向量数乘的坐标运算、二阶行列式22. 【答案】(1) g (x )=√3sin (π+x )−sin (3π2−x)=−√3sinx +cosx,所以 g (x ) 的伴随向量 OM⃗⃗⃗⃗⃗⃗ =(−√3,1). (2) 向量 ON ⃗⃗⃗⃗⃗⃗ =(1,√3) 的伴随函数为 f (x )=sinx +√3cosx , 因为f (x )=sinx +√3cosx =2sin (x +π3)=85,所以 sin (x +π3)=45, 因为 x ∈(−π3,π6), 所以 x +π3∈(0,π2), 所以 cos (x +π3)=35, 所以sinx =sin [(x +π3)−π3]=12sin (x +π3)−√32cos (x +π3)=4−3√310. (3) 由(1)知 g (x )=−√3sinx +cosx =−2sin (x −π6),将函数 g (x ) 的图象的横坐标伸长为原来的 2 倍(纵坐标不变),得到函数 y =−2sin (12x −π6)的图象,再把整个图象向右平移 2π3个单位长度得到 ℎ(x ) 的图象,则ℎ(x )=−2sin [12(x −2π3)−π6]=−2sin (12x −π2)=2cos 12x.设 P (x,2cos 12x),因为 A (−2,3),B (2,6),所以 AP ⃗⃗⃗⃗⃗ =(x +2,2cos 12x −3),BP ⃗⃗⃗⃗⃗ =(x −2,2cos 12x −6), 又因为 AP⃗⃗⃗⃗⃗ ⊥BP ⃗⃗⃗⃗⃗ , 所以 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0, 所以 (x +2)(x −2)+(2cos 12x −3)(2cos 12x −6)=0, 即 x 2−4+4cos 212x −18cos 12x +18=0, 所以 (2cos 12x −92)2=254−x 2(*),因为 −2≤2cos 12x ≤2, 所以 −132≤2cos 12x −92≤−52,所以254≤(2cos 12x −92)2≤1694.又因为254−x 2≤254,所以当且仅当 x =0,即 (2cos 12x −92)2和254−x 2 同时等于254时,(*)式成立.所以在 y =ℎ(x ) 的图象上存在点 P (0,2),使得 AP⃗⃗⃗⃗⃗ ⊥BP ⃗⃗⃗⃗⃗ . 【知识点】Asin(ωx+ψ)形式函数的性质、三角函数的图象变换、平面向量数量积的坐标运算。
(完整版)平面向量测试题(含答案)一

必修 4 第二章平面向量教学质量检测一.选择题( 5 分× 12=60 分) :1.以下说法错误的是()A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是()A .(AB+CD)+BC;B .(AD+MB)+(BC+CM);C.MB+AD-BM; D .OC-OA+CD;3.已知a =( 3, 4),b =( 5, 12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知 a、 b 均为单位向量 ,它们的夹角为60°,那么 |a+ 3b| =()A .7B.10C.13D. 45.已知 ABCDEF 是正六边形,且AB = a , AE = b ,则BC=()( A )12( a b) (B)12(b a ) (C) a +12b(D)12(a b)6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5 a- 3 b , 则下列关系式中正确的是()(A)AD=BC(B)AD=2BC(C)AD=-BC(D)AD=-2BC7.设e1与e2是不共线的非零向量,且k e1+e2与e1+ k e2共线,则 k 的值是()( A) 1(B)-1(C)1(D)任意不为零的实数8.在四边形ABCD中,AB=DC,且AC·BD= 0,则四边形ABCD是()( A)矩形(B)菱形(C)直角梯形(D)等腰梯形9.已知 M (- 2, 7)、 N( 10,- 2),点 P 是线段 MN 上的点,且PN =-2PM,则P点的坐标为()( A )(-14,16)(B)(22,-11)(C)(6,1)(D)(2,4)10.已知a=( 1,2),b=(- 2,3),且 k a + b与a- k b垂直,则k=()(A)12(B) 21(C) 2 3(D) 32r r(2 x 3, x) 互相平行,其中r r)11、若平面向量a(1, x) 和 b x R .则a b (A.2或0;B.25;C.2或2 5;D. 2或10.12、下面给出的关系式中正确的个数是()① 0 a0 ② a b b a ③a2 a 2④(a b )c a (b c)⑤a b a b(A) 0(B) 1(C) 2(D) 3二. 填空题 (5 分× 5=25 分 ):13.若AB(3,4), A点的坐标为(-2,-1),则B点的坐标为.14.已知a(3, 4), b (2,3) ,则 2 | a | 3a b.15、已知向量 a 3, b (1,2) ,且a b ,则a的坐标是_________________。
平面向量的夹角、模(人教A版)(含答案)

平面向量的夹角、模(人教A版)一、单选题(共15道,每道6分)1.已知正方形的边长为1,,,,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:向量的模2.已知向量,,若,则等于( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平行向量与共线向量3.在△ABC中,如果且,则下列结论一定正确的是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:向量的模4.已知向量满足,且在方向上的投影与在方向上的投影相等,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:向量的模5.若向量满足,则的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:向量的模6.已知,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:向量的模7.已知均为单位向量,它们的夹角为60°,那么( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平面向量数量积的运算8.已知,是两夹角为120°的单位向量,,则( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平面向量数量积的运算9.已知向量的夹角为,且,则( )A.4B.3C.2D.1答案:D解题思路:试题难度:三颗星知识点:平面向量数量积的运算10.若,则的夹角是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平面向量数量积的运算11.若两个非零向量满足,则向量与的夹角是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平面向量数量积的运算12.已知是非零向量,且满足,,则向量与的夹角是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算13.若,且,则向量与的夹角是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平面向量数量积的运算14.若向量满足,且,则向量与的夹角是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平面向量数量积的运算15.已知向量与的夹角为120°,,且,则( )A.6B.7C.8D.9答案:C解题思路:试题难度:三颗星知识点:平面向量数量积的运算。
高中数学人教A版(2019)必修二 第六章 平面向量及其应用 单元试卷

高中数学人教A 版(2019)必修二 第六章 平面向量及其应用 单元试卷一、单选题(共14题;共55分)1.(3分)已知Rt △ABC ,AB=3,BC=4,CA=5,P 为△ABC 外接圆上的一动点,且 AP ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗⃗ +yAC⃗⃗⃗⃗⃗ ,则x +y 的最大值是( ) A .54B .43C .√176D .532.(4分)已知向量 a ⇀ , b ⇀ 的夹角为 60° , |a ⇀|=1 且 c ⇀=−2a ⇀+tb ⇀(t ∈R) ,则 |c ⇀|+|c ⇀−a ⇀|的最小值为( ) A .√13B .√19C .5D .9√1343.(4分)下列说法中:⑴若向量a →∥b →,则存在实数λ,使得a →=λb →;⑵非零向量a →,b →,c →,d →,若满足d →=(a →·c →)b →−(a →·b →)c →,则a →⊥d →⑶与向量a →=(1,2),b →=(2,1)夹角相等的单位向量c →=(√22,√22)⑷已知△ABC ,若对任意t ∈R ,|BA →−tBC →|≥|AC →|,则△ABC 一定为锐角三角形。
其中正确说法的序号是( ) A .(1)(2)B .(1)(3)C .(2)(4)D .(2)4.(4分)如图,在 ΔABC 中,点 M , N 分别为 CA , CB 的中点,若 AB =√5 , CB =1 ,且满足 3AG⇀⋅MB ⇀=CA ⇀2+CB ⇀2 ,则 AG ⇀⋅AC ⇀ 等于( )A .2B .√5C .23D .835.(4分)定义域为[a ,b ]的函数y =f (x )图像的两个端点为A 、B ,M(x ,y)是函数y =f (x )图象上任意一点,其中x =λa +(1−λ)b ,λ∈(0,1).已知向量ON →=λOA →+(1−λ)OB →,若不等式|MN |→≤k 恒成立,则称函数y =f (x )在[a ,b ]上“k 阶线性近似”.若函数y =x −1x 在[1,2]上“k 阶线性近似”,则实数k 的取值范围为( ) A .[0,+∞)B .[112,+∞)C .[32+√2,+∞)D .[32−√2,+∞)6.(4分)已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N . 若点A (1,f (1)),B (2,f (2)),C (3,f (3)),△ABC 的外接圆圆心为D ,且DA →+DC →=λDB →(λ∈R ) ,则满足条件的函数f (x )有( ) A .6个B .10个C .12个D .16个7.(4分)点P 是△ABC 内一点且满足4PA →+3PB →+2PC →=0→,则△PBC,△PAC,△PAB 的面积比为( ) A .4:3:2B .2:3:4C .1:1:1D .3:4:68.(4分)已知向量 OA ⃗⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗⃗ 满足 |OA|⃗⃗⃗⃗⃗⃗⃗⃗⃗ =|OB|⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1,OA ⃗⃗⃗⃗⃗⃗ ⊥OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =λOA⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ (λ,μ∈R) ,若M 为AB 的中点,并且 |MC ⃗⃗⃗⃗⃗⃗ |=1 ,则λ+μ的最大值是( ) A .1−√3B .1+√2C .√5D .1+√39.(4分)在 ΔABC 中, ∠C =900,|AB|=6 ,点 P 满足 |CP|=2 ,则 PA⇀⋅PB ⇀ 的最大值为( ) A .9B .16C .18D .2510.(4分)点M 是 △ABC 的边BC 上任意一点,N 在线段AM 上,且 AN ⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,若 x +y =13 ,则 △NBC 的面积与 △ABC 的面积的比值是 ( )A .B .C .D .11.(4分)如图,在半径为2的扇形 AOB 中, ∠AOB =3π4, P 是弧 AB 上的一个三等分点, M,N 分别是线段 OA , OB 上的动点,则 PM ⃗⃗⃗⃗⃗⃗ ⋅PN⃗⃗⃗⃗⃗⃗ 的最大值为( )A .√2B .2C .4D .4√212.(4分)在 ΔABC 中, E , F 分别为 AB , AC 的中点, P 为 EF 上的任一点,实数x , y 满足 PA ⇀+xPB ⇀+yPC ⇀=0⃗ ,设 ΔABC 、 ΔPBC 、 ΔPCA 、 ΔPAB 的面积分别为 S 、 S 1 、 S 2 、 S 3 ,记 Si S=λi ( i =1,2,3 ),则 λ2⋅λ3 取到最大值时, 2x +y 的值为( )A .-1B .1C .−32D .3213.(4分)定义域为[a ,b ]的函数y =f (x )图象上两点A (a ,f (a )),B (b ,f (b )),M(x ,y)是y =f (x )图象上任意一点,其中x =λa +(1−λ)b ,λ∈[0,1].已知向量ON →=λOA →+(1−λ)OB →,若不等式|MN →|≤k 对任意λ∈[0,1]恒成立,则称函数f (x )在[a ,b ]上“k 阶线性近似”.若函数y =x −1x 在[1,3]上“k 阶线性近似”,则实数的k 取值范围为( )A .[0,+∞)B .[112,+∞)C .[43−23√3,+∞)D .[43+23√3,+∞)14.(4分)在中,已知,则为( ) A .等边三角形 B .等腰直角三角形 C .锐角非等边三角形D .钝角三角形二、填空题(共11题;共43分)15.(4分)已知非零平面向量 a ⃗ ,b ⃗ 不共线,且满足 a ⃗ ⋅b ⃗ =a ⃗ 2=4 ,记 c ⃗ =34a ⃗ +14b ⃗ ,当 b ⃗ ,c ⃗ 的夹角取得最大值时, |a −b⃗ | 的值为 . 16.(4分)已知O 是锐角△MBC 的外接圆圆心,A 是最大角,若cosB sinC AB ⃗⃗⃗⃗⃗⃗ +cosC sinB AC ⃗⃗⃗⃗⃗ =mAO⃗⃗⃗⃗⃗⃗ ,则m 的取值范围为 。
2020-2021学年人教A版必修4第二章平面向量综合测试卷(A)含答案(共3套)

必修4 第二章 向量(一)一、选择题:1.下列各量中不是向量的是 ( )A .浮力B .风速C .位移D .密度2.下列命题正确的是( )A .向量AB 与BA 是两平行向量B .若a 、b 都是单位向量,则a =bC .若AB =DC ,则A 、B 、C 、D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 44.已知向量b a 与反向,下列等式中成立的是 ( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,则( )A .AB 与AC 共线 B .DE 与CB 共线 C .与相等D .与相等6.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A .3 B .-3 C .0 D .2 7. 设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为 ( ) A .-9 B .-6 C .9 D .6 8. 已知a 3=,b 23=,a ⋅b =-3,则a 与b 的夹角是( )A .150︒B .120︒C .60︒D .30︒9.下列命题中,不正确的是( )A .a =2aB .λ(a ⋅b )=a ⋅(λb )C .(a -b )c =a ⋅c -b ⋅cD .a 与b 共线⇔a ⋅b =a b10.下列命题正确的个数是( ) ①=+0 ②0=⋅0③=-④(a ⋅b )c =a (b ⋅c )A .1B .2C .3D .411.已知P 1(2,3),P 2(-1,4),且12P P 2PP =,点P 在线段P 1P 2的延长线上,则P 点的坐标为( )A .(34,-35) B .(-34,35) C .(4,-5)D .(-4,5) 12.已知a 3=,b 4=,且(a +k b )⊥(a -k b ),则k 等于( )A .34±B .43±C .53±D .54±二、填空题13.已知点A(-1,5)和向量a ={2,3},若AB =3a ,则点B 的坐标为 . 14.若3=OA 1e ,3=OB 2e ,且P 、Q 是AB 的两个三等分点,则=OP ,=OQ . 15.若向量a =(2,-x )与b =(x, -8)共线且方向相反,则x= . 16.已知e 为一单位向量,a 与e 之间的夹角是120O ,而a 在e 方向上的投影为-2,则a = .三、解答题17.已知菱形ABCD 的边长为2,求向量AB -CB +CD 的模的长.18.设OA 、OB 不共线,P 点在AB 上.求证: OP =λOA +μOB 且λ+μ=1,λ、μ∈R .19.已知向量,,32,32212121e e e e e e 与其中+=-=不共线向量,9221e e -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线20.i、j是两个不共线的向量,已知AB=3i+2j,CB=i+λj, CD=-2i+j,若A、B、D三点共线,试求实数λ的值.必修4 第二章 向量(一)必修4第三章向量(一)参考答案 一、选择题1.D 2.A 3.C 4.C 5.B 6. A 7. D 8.C 9.B 10.A 11.D 12.C 二、填空题 13.3 14.12e 2e +122e e + 15.4- 16.4三、解答题17.解析: ∵AB -CB +CD =AB +(CD -CB )=AB +BD =AD又|AD |=2 ∴|AB -CB +CD |=|AD |=218.证明: ∵P 点在AB 上,∴AP 与AB 共线.∴AP =t AB (t ∈R )∴OP =OA +AP =OA +t AB =OA +t (OB -OA )=OA (1-t )+ OB令λ=1-t ,μ=t ∴λ+μ=1∴OP =λOA +μOB 且λ+μ=1,λ、μ∈R19.解析:222,2,,.2339,k R k λμλμλμλμλμ+=⎧=-∈=-⎨-+=-⎩解之故存在只要即可.20.解析: ∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j∵A 、B 、D 三点共线,∴向量AB 与BD 共线,因此存在实数μ,使得AB =μBD , 即3i +2j =μ[-3i +(1-λ)j ]=-3μi +μ(1-λ)j ∵i 与j 是两不共线向量,由基本定理得:⎩⎨⎧=-=∴⎩⎨⎧=-=-312)1(33λμλμμ 故当A 、B 、D 三点共线时,λ=3.第二章平面向量(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .2.【2017届北京房山高三上期末】已知向量31,2BA ⎛⎫= ⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A.π6 B. π4 C. π3 D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2 【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C. 4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或【答案】C 【解析】∵向量,且∴, ∴.选C.5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e 【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( ) A. 4 B. 4- C. 2 D. 2- 【答案】A 【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABACλ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 23C. 7D. 4 【答案】C8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3- 【答案】D 【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D.10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A.322 B. 2 C. 322- D. 3152- 【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CD AB AB CD AB AB CD⋅=⋅== 故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =, 3BC =,2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( ) A. 3- B. 6- C. 2- D. 83- 【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-()222366x y ⎡⎤=+--≥-⎢⎥⎣⎦, ∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________. 【答案】12-【解析】由题意得()11:2:12λλ=-∴=-. 14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a a b -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点 O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______【答案】2133a b +【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF =AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥;【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以2,64,22cos ,240204020a b a b -⋅-+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解λ=-.得:119.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.【答案】(1) ;(2) 与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。
2.4.2 平面向量数量积的坐标表示、模、夹角-新人教(A版)

故两个向量的数量积等于它们对应 坐标的乘积的和。即 y A(x ,y )
1 1
a b x1 x2 y1 y2 .
B(x2,y2)
b
j
a
i
o
x
根据平面向量数量积的坐标表示,向 量的数量积的运算可转化为向量的坐标运 算。
2016/10/11
2、向量的模和两点间的距离公式ຫໍສະໝຸດ y A(x ,y ) 1 1
j
B(x2,y2)
b
a
o i
x
设两个非零向量 a =(x1,y1), b =(x2,y2),则
a x1 i y1 j b x2 i y2 j , a b ( x1 i y1 j ) ( x2 i y2 j ) 2 2 x1 x2 i x1 y2 i j x2 y1 i j y1 y2 j x1 x2 y1 y2
29 C ( 3, ) 3
2、已知A(1,2)、B(4、0)、C(8,6)、D(5,8), 则四边形ABCD的形状是 矩形 .
3、已知 a = (1,2), b = (-3,2),
若k a +2 b 与 2 a - 4
2016/10/11
b 平行,则k = - 1 .
小结
1、理解各公式的正向及逆向运用; 2、数量积的运算转化为向量的坐标运算;
x( x 5) y( y 2) 0 得 2 2 2 2 x y ( x 5 ) ( y 2 )
O
B
X
例5 在△ABC中,AB =(2, 3),AC =(1, k),
且△ABC的一个内角为直角,求k值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的模、夹角(人教A版)
一、单选题(共15道,每道6分)
1.已知正方形的边长为1,,,,则( )
A.0
B.
C. D.3
答案:B
解题思路:
试题难度:三颗星知识点:向量的模
2.已知向量,,若,则( )
A.1
B.
C.4
D.2
答案:D
解题思路:
试题难度:三颗星知识点:平行向量与共线向量
3.在△ABC中,如果且,则下列结论一定正确的是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:向量的模
4.已知向量满足,且在方向上的投影与在方向上的投影相等,则( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:向量的模
5.若向量满足,则的值为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:向量的模
6.已知,则( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:向量的模
7.已知均为单位向量,它们的夹角为60°,那么( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:平面向量数量积的运算
8.已知,是两夹角为120°的单位向量,,则( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:平面向量数量积的运算
9.已知向量的夹角为,且,则( )
A.4
B.3
C.2
D.1
答案:D
解题思路:
试题难度:三颗星知识点:平面向量数量积的运算
10.若,则的夹角是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:平面向量数量积的运算
11.若两个非零向量满足,则向量与的夹角是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:平面向量数量积的运算
12.已知是非零向量,且满足,,则向量与的夹角是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:平面向量数量积的运算
13.若,且,则向量与的夹角是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:平面向量数量积的运算
14.若向量满足,且,则向量与的夹角是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:平面向量数量积的运算
15.已知向量与的夹角为120°,,且,则( )
A.6
B.7
C.8
D.9
答案:C
解题思路:
试题难度:三颗星知识点:平面向量数量积的运算。