回归分析的模型SPSS概要
Spss软件之logistic回归分析

…
n
0
1
Xn01
X n02
…
1
0
X n11
X n12
…
2
0
Xn21
X n22
…
Xk X 10k X 11 k X 12k
X iMk
X n0k X n1 k X n2k
M
0
XnM1
XnM2
…
X nMk
Conditional logistic regression
用Pi表示第i层在一组危险因素作用下发病的概率, 条 件 logistic 模型可表示为
n
L
1
i1 1
M
k exp
j (X itj X i0 j )
t 1
j1
可以看出,条件logistic 回归分析只估计了表示危 险因素作用的βj值,表示匹配组效应的常数项βi0 则被自动地消去了。
Conditional logistic regression
对上述条件似然函数L取自然对数后,用非线性 迭代法求出参数的估计值bi及其标准误Sbi。回归 系数的假设检验及分析方法与非条件logistic回归 完全相同。
c1 1, c0 0,
Xj
1, 暴露
0,非暴露
ORj exp( j )
Logistic regression analysis
0,
ORj
1
无作用
ORj exp( j ), j >0, ORj 1 危险因子
0, ORj 1 保护因子
二、模型的参数估计
在logistic回归模型中,回归系数的估计通常用最大 似然法(MLE)。其基本思想是先建立一个样本 的似然函数,求似然函数达到最大值时参数的取 值,即为参数的极大似然估计值。
回归分析的模型SPSS

.
10.1 线性回归(Liner)
一元线性回归方程: y=a+bx
a称为截距 b为回归直线的斜率 用R2判定系数判定一个线性回归直线的拟合程度:用来说明用自变
量解释因变量变异的程度(所占比例)
多元线性回归方程: y=b0+b1x1+b2x2+…+bnxn
.
10.3.3二项逻辑回归(Binary Logistic)实例
实例P255 Data11-02 :乳腺癌患者的数据进行分析, 变量为:年龄age,患病时间time,肿瘤扩散等级 pathscat(3种), 肿瘤大小pathsize, 肿瘤史histgrad (3种)和癌变部位的淋巴结是否含有癌细胞ln_yesno, 建立一个模型,对癌变部位的淋巴结是否含有癌细胞 ln_yesno的情况进行预测。
b0为常数项 b1、b2、…、bn称为y对应于x1、x2、…、xn的偏回归系数 用Adjusted R2调整判定系数判定一个多元线性回归方程的拟合程度:
用来说明用自变量解释因变量变异的程度(所占比例)
一元线性回归模型的确定:一般先做散点图(Graphs ->Scatter>Simple),以便进行简单地观测(如:Salary与Salbegin的关系) 若散点图的趋势大概呈线性关系,可以建立线性方程,若不呈线 性分布,可建立其它方程模型,并比较R2 (-->1)来确定一种最佳 方程式(曲线估计)
.
回归分析的模型
按是否线性分:线性回归模型和非线性回归模型 按自变量个数分:简单的一元回归,多元回归 基本的步骤:利用SPSS得到模型关系式,是否 是我们所要的,要看回归方程的显著性检验(F 检验)和回归系数b的显著性检验(T检验),还要 看拟合程度R2 (相关系数的平方,一元回归用R Square,多元回归用Adjusted R Square)
《SPSS统计分析》第11章 回归分析

返回目录
多元逻辑斯谛回归
返回目录
多元逻辑斯谛回归的概念
回归模型
log( P(event) ) 1 P(event)
b0
b1 x1
b2 x2
bp xp
返回目录
多元逻辑斯谛回归过程
主对话框
返回目录
多元逻辑斯谛回归过程
参考类别对话框
保存对话框
返回目录
多元逻辑斯谛回归过程
收敛条件选择对话框
创建和选择模型对话框
返回目录
曲线估计
返回目录
曲线回归概述
1. 一般概念 线性回归不能解决所有的问题。尽管有可能通过一些函数
的转换,在一定范围内将因、自变量之间的关系转换为线性关 系,但这种转换有可能导致更为复杂的计算或失真。 SPSS提供了11种不同的曲线回归模型中。如果线性模型不能确 定哪一种为最佳模型,可以试试选择曲线拟合的方法建立一个 简单而又比较合适的模型。 2. 数据要求
线性回归分析实例1输出结果2
方差分析
返回目录
线性回归分析实例1输出结果3
逐步回归过程中不在方程中的变量
返回目录
线性回归分析实例1输出结果4
各步回归过程中的统计量
返回目录
线性回归分析实例1输出结果5
当前工资变量的异常值表
返回目录
线性回归分析实例1输出结果6
残差统计量
返回目录
线性回归分析实例1输出结果7
返回目录
习题2答案
使用线性回归中的逐步法,可得下面的预测商品流通费用率的回归系数表:
将1999年该商场商品零售额为36.33亿元代入回归方程可得1999年该商场 商品流通费用为:1574.117-7.89*1999+0.2*36.33=4.17亿元。
SPSS数据分析教程线性回归分析总结

1.29
21.00
47.00
50.00
57.00
49.00
50.00
48.00
2.08
1.14
20.00
53.00
66.00
53.00
59.00
55.00
45.00
1.00
1.00
25.00 64
z1 61.00 59.00 55.00 56.00 59.00 60.00 52.00 56.00 68.00 60.00 64.00 67.00 56.00 53.00 53.00 60.00 54.00
52
53
54
55
56
57
58
59
对多元线性回归,也需要测定方程的拟合 程度、检验回归方程和回归系数的显著性。
(1)拟合优度检验 测定多元线性回归的拟合程度,与一元线 性回归中的判定系数类似,使用多重判定系数, 其定义为
60
(2)回归方程的显著性检验(F检验) 多元线性回归方程的显著性检验一般采用 F检验,利用方差分析的方法进行。
1.00
z8
满意度
1.14
23.00
1.00
26.00
1.00
26.00
1.71
30.00
1.00
25.00
1.14
27.00
1.14
20.00
1.14
26.00
1.00
30.00
1.00
27.00
1.14
18.00
1.00
24.00
1.00
24.00
1.14
19.00
1.43
17.00
1.00
第7讲.SPSS的回归分析

^
^
^
随机误差项,残差项。需要满足以下几 个假设条件: 正态性假设 无偏性假设(期望等于零) 同方差假设:自变量所对应的残差方差 都相同,也就是说,残差与因变量、自 变量之间相互独立。 独立性假设:残差项之间互相独立。
一元线性回归分析
整体分析与设计的内容
Hale Waihona Puke 一、方法原理3.一元线性回归方程的统计检验 求出回归模型的参数之后,一般不能立即将结果付诸于实际问题的分析 和预测,通常要进行各种统计检验,如拟合优度检验(常用R2)、回归 方程和回归系数的显著性检验以及残差分析等。
可见:0 =-15.420;1 =14.424,则可得回归方程为: 箱销售量=-15.420+14.424 广告支出
检验回归系数是否显著为 0. 此时,显然是拒绝零假设的, 即系数显著不为0。
一元线性回归分析
整体分析与设计的内容
三、输出分析
3、几个图形
多元线性回归分析
整体分析与设计的内容
多元线性回归分析
整体分析与设计的内容
三、案例分析
某公司老板希望了解公司投放的电视广告费用和报纸广告费用对公司 收入的影响,因此收集了以往8周的数据进行分析。 其二元回归分析模型如下:
每周营业总收入 f (电视广告费用,报纸广告费用)
通过比较电视广告和报 纸广告变量的系数大小 来研究这两种广告形式 对收入的影响程度高低。 但是,收入和广告费用 是否呈线性关系,需要 提前做个判断。(可采 用散点图的方式)
大略呈线性关系
一元线性回归分析
整体分析与设计的内容
三、输出分析
2、输出结果 1)自变量进入方式
强迫引入法
2)模型汇总
SPSS(第7章回归分析)

表7—23 回归模型的一般性统计量表 Model 1 2 R .831a .985b R square .690 .970 Adjusted Square .662 .965 Std.Error of the Estimate 8.671 2.808
a.Predictors(Constant),x4 b.Predictors(Constant),x4,x1 c.Dependent Variable:Y
表中第一列:列出了回归方程模型的编号;第二列表示回归方程的 复相关系数;第三列为回归方程的复相关系数的平方;第四列表示调 整了的复相关系数的平方。第五列为预测值的标准差。 从表中可看出,随着自变量个数的增加,复相关系数及其平方相 应增加,这表明回归效果是越来越好。还可看出,预测值的标准差越 来越来小,这也正表明回归方程越来越符合观测情况。
Total 2670.523 a.Predictors(Constant),x4 b.Predictors(Constant),x4,x1 c.Dependent Variable:Y
表中第一列为回归方程模型的编号;第二列列出了回归的平方和; 第三列为回归的自由度;第四列为均值平方;第五列为F值;第六列为 统计量大于F值的概率。 从表中可看出,当只有变量x4进入回归方程时,自变量与因变量 之间完全无线性关系的概率为0.001 ;当x1也进入方程之后,自变量 与因变量之间完全无线性关系的概率为0.000,这表明拒绝假设;所有 的回归因子的系数为0。
输出相关残差的durbinwatson统计量残差和预测值的统计量输出满足选择条件的观测量诊断表设置奇异值的判断条件输出所有有关测量的残差值选择回归系输出有关回归系数及其相关测量输出回归系数的95的置信区间输出协方差和相关矩图73statistics对话框201566图74plots对话框x轴和y轴中有一个是源变量标准化的预测值标准化的残差删除的残差修正后的预测值
spss二元logistic回归分析结果解读

spss二元logistic回归分析结果解读二元logistic回归分析是一种被广泛应用于多元研究中的统计分析方法,它可以帮助研究者了解因变量与自变量之间的关系,探索如何调节自变量,以达到改变因变量的目的。
本文主要就二元logistic回归分析结果如何解释进行讨论,旨在帮助读者更好地理解并解读此类分析结果。
一、二元logistic回归分析概述二元logistic回归分析是一种常见的回归分析模型,它可以用来预测一个特定的结果,或者说一个事件的发生可能性,以及它的发生概率有多大。
它比较适合于研究两个变量之间的关系,一个变量是被解释变量,另一个变量是解释变量,被解释变量只有两种可能的结果,比如两个不同的类别。
二元logistic回归分析的基本思想是利用自变量来预测因变量,它通过计算自变量之间的相关性,来预测因变量的发生可能性,比如我们可以利用自变量,如性别、年龄等,来预测一个人是否会患上某种疾病。
二元logistic回归分析结果分析二元logistic回归分析的结果可以分为三类,分别是系数、截距和拟合指数。
1、系数系数指的是每个自变量变化时,因变量变化的程度,系数的正负可以表示因变量变化的方向,正数表示因变量随自变量变化而增大,负数表示因变量随自变量变化而减小。
系数的大小可以表示因变量变化的幅度,数值越大,表明因变量变化的越明显。
2、截距截距表示自变量为0时因变量的值,即任何自变量都不存在的情况下,因变量的值。
它的大小可以反映因变量变化的数量级,它的正负可以表示因变量变化的方向,正数表示因变量变化而增大,负数表示因变量变化而减小。
3、拟合指数拟合指数是一种衡量模型准确度的指标,其数值越大,表明模型越准确。
一般来说,当拟合指数大于0.6时,可以认为模型较准确。
三、典型二元logistic回归分析结果解读1、系数如果某个自变量的系数为正,表示随着自变量增加,因变量也随之增加;如果系数为负,表示随着自变量增加,因变量会减小。
回归分析的模型SPSS概要

回归分析的模型SPSS概要回归分析是一种统计学方法,用于研究自变量(或预测变量)对因变量(或响应变量)的影响关系。
它可以帮助我们了解变量之间的相关性,并通过建立数学模型对未来的变量进行预测。
SPSS是一款常用于数据分析和统计建模的软件,在回归分析中有广泛的应用。
简单线性回归是最基本也是最常用的回归分析方法之一、它适用于只有一个自变量和一个因变量的情况下,通过建立一条直线来描述变量之间的关系。
SPSS可以计算出斜率和截距,从而得出预测方程。
通过预测方程,我们可以根据已知的自变量的值来预测因变量的值。
在多元线性回归中,可以考虑多个自变量对因变量的影响。
SPSS可以用最小二乘法估计参数值,并提供一些统计指标来评估模型的拟合程度。
这些指标包括R方、调整后的R方、标准误差、F统计量等。
R方是衡量模型拟合度的指标,其值越接近1表示模型的拟合度越好。
逻辑回归是用于处理二分类问题的回归方法。
它通过建立一种数学模型来预测一个事件的概率。
SPSS可以通过最大似然法估计参数值,并提供一些统计指标来评估模型的拟合程度。
这些指标包括似然比、卡方值、准确率等。
除了上述的回归方法,SPSS还提供了其他一些回归分析方法,如多元逻辑回归、多项式回归、非线性回归等。
这些方法可以根据具体的研究问题和数据类型进行选择。
在进行回归分析之前,需要进行数据的准备工作。
首先,要收集相关的自变量和因变量数据,并进行数据清理、缺失值处理等。
接下来,根据研究目的和数据类型选择合适的回归分析方法,并进行模型的建立和参数的估计。
最后,对模型进行检验和评估,并分析结果的可靠性和实际意义。
总之,回归分析是一种重要的统计方法,在研究和预测变量之间的关系、制定决策等方面具有广泛的应用。
SPSS作为一款功能强大的统计分析软件,可以帮助用户进行回归分析,并提供一系列的统计指标和图表来解释结果。
通过合理使用回归分析和SPSS,可以更好地理解变量之间的关系,并做出准确的预测和决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.1.6 线性回归分析实例p240
实例:P240Data07-03 建立一个以初始工资Salbegin 、工作 经验prevexp 、工作时间jobtime 、工作种类jobcat 、受教育 年限edcu等为自变量,当前工资Salary为因变量的回归模型。 1. 先做数据散点图,观测因变量Salary与自变量Salbegin之间 关系是否有线性特点
第10章 回归分析
介绍: 1、回归分析的概念和模型 2、回归分析的过程
回归分析的概念
寻求有关联(相关)的变量之间的关系 主要内容:
从一组样本数据出发,确定这些变量间的定 量关系式 对这些关系式的可信度进行各种统计检验 从影响某一变量的诸多变量中,判断哪些变 量的影响显著,哪些不显著 利用求得的关系式进行预测和控制
我们只讲前面3个简单的(一般教科书的讲法)
10.1 线性回归(Liner)
一元线性回归方程: y=a+bx
a称为截距 b为回归直线的斜率 用R2判定系数判定一个线性回归直线的拟合程度:用来说明用自变 量解释因变量变异的程度(所占比例)
b0为常数项 b1、b2、…、bn称为y对应于x1、x2、…、xn的偏回归 用来说明用自变量解释因变量变异的程度(所占比例)
不同模型的表示 模型名称
Linear(线性) Quadratic(二次) Compound(复合) Growth(生长) Logarithmic(对数) Cubic(三次) S Exponential(指数)
回归方程
Y=b0+b1t Y=b0+b1t+b2t2 Y=b0(b1t) Y=eb0+b1t Y=b0+b1ln(t) Y=b0+b1t+b2t2+b3t3 Y=eb0+b1/t Y=b0 * eb1*t
若散点图的趋势大概呈线性关系,可以建立线性回归模型
比较有用的结果:
拟合程度Adjusted R2: 越接近1拟合程度越好 回归方程的显著性检验Sig 回归系数表Coefficients的Model最后一个中的回归系数B和显著性检验Sig 得模型: Salary=-15038.6+1.37Salbegin+5859.59jobcat-
回归分析的模型
按是否线性分:线性回归模型和非线性回归模型 按自变量个数分:简单的一元回归,多元回归 基本的步骤:利用SPSS得到模型关系式,是否 是我们所要的,要看回归方程的显著性检验(F 检验)和回归系数b的显著性检验(T检验),还要 看拟合程度R2 (相关系数的平方,一元回归用R Square,多元回归用Adjusted R Square)
相应的线性回归方程
Ln(Y)=ln(b0)+ln(b1)t Ln(Y)=b0+b1t
Ln(Y)=b0+b1 / t Ln(Y)=ln(b0)+b1t
Inverse(逆)
Power(幂) Logistic(逻辑)
Y=b0+b1/t
Y=b0(tb1 ) Y=1/(1/u+b0b1t) Ln(Y)=ln(b0)+b1ln(t) Ln(1/Y-1/u)=ln(b0+ln(b1)t)
10.2.3 曲线估计(Curve Estimation)分析实例
逐步回归方法的基本思想
对全部的自变量x1,x2,...,xp,按它们对Y贡献的大小进 行比较,并通过F检验法,选择偏回归平方和显著的变 量进入回归方程,每一步只引入一个变量,同时建立 一个偏回归方程。当一个变量被引入后,对原已引入 回归方程的变量,逐个检验他们的偏回归平方和。如 果由于引入新的变量而使得已进入方程的变量变为不 显著时,则及时从偏回归方程中剔除。在引入了两个 自变量以后,便开始考虑是否有需要剔除的变量。只 有当回归方程中的所有自变量对Y都有显著影响而不需 要剔除时,在考虑从未选入方程的自变量中,挑选对Y 有显著影响的新的变量进入方程。不论引入还是剔除 一个变量都称为一步。不断重复这一过程,直至无法 剔除已引入的变量,也无法再引入新的自变量时,逐 步回归过程结束。
2.
Graphs ->Scatter->Simple X Axis: Salbegin Y Axis: Salary Analyze->Regression->Linear Dependent: Salary Independents: Salbegin,prevexp,jobtime,jobcat,edcu等变量 Method: Stepwise
回归分析的过程
在回归过程中包括:
Liner:线性回归 Curve Estimation:曲线估计 Binary Logistic: 二分变量逻辑回归 Multinomial Logistic:多分变量逻辑回归 Ordinal 序回归 Probit:概率单位回归 Nonlinear:非线性回归 Weight Estimation:加权估计 2-Stage Least squares:二段最小平方法 Optimal Scaling 最优编码回归
19.55prevexp+154.698jobtime+539.64edcu
10.2 曲线估计(Curve Estimation)
对于一元回归, 若散点图的趋 势不呈线性分 布,可以利用 曲线估计方便 地进行线性拟 合(liner)、二 次拟合 (Quadratic)、 三次拟合 (Cubic)等。 采用哪种拟合 方式主要取决 于各种拟合模 型对数据的充 分描述(看修 正Adjusted R2 -->1)
多元线性回归方程: y=b0+b1x1+b2x2+…+bnxn
一元线性回归模型的确定:一般先做散点图(Graphs ->Scatter>Simple),以便进行简单地观测(如:Salary与Salbegin的关系) 若散点图的趋势大概呈线性关系,可以建立线性方程,若不呈线 性分布,可建立其它方程模型,并比较R2 (-->1)来确定一种最佳 方程式(曲线估计) 多元线性回归一般采用逐步回归方法-Stepwise