BODE图 画图过程
第六章-2-Bode图

Wintersweet 浙江大学控制科学与工程学系
2
Bode plots (Logarithmic plots )
Bode图(对数坐标图)
对数坐标图的优点 1) 将乘积和除法的数学操作转化为加法和减法; 2) 传递函数的获取大多采用图表法,而不是分析法; 3) 半对数坐标扩展了低频段 首先运用直线近似的方法来获得系统的近似特性,然后修正直线, 提高精度. 对数坐标图 足够多的数据 极坐标图
dB
可以计算出 ω 对应的Lm,然后绘制出频率响应。但是绘制对数幅 频渐近特性曲线会更容易,也更常用. 当 ω很小时, 也就是说 ωT<<1
Lm1 jT 20 log1 0
1
dB
Lm(dB) 20 -20 1/T 10/T ω
对数幅频渐近特性曲线 Lm 在低 频段为 0 dB 线
1
浙江大学控制科学与工程学系
Bode plots (Logarithmic plots )
自动控制理论
第六章
频域特性分析法
周立芳
浙江大学控制科学与工程学系
浙江大学控制科学与工程学系
Bode plots (Logarithmic plots )
主要内容
简介 Bode 图 (对数频率特性曲线) 极坐标图 Nyquist’s yq 稳定判据 相角裕度和幅值裕度,以及与稳定性的关系 ………
dB
K m (1 jT1 )(1 jT2 ) r G ( j ) 2 ( j ) m (1 jTa )[1 (2 / n ) j (1 / n )( j ) 2 ]
对数幅值:
LmG ( j ) LmK m Lm(1 jT1 ) rLm(1 jT2 ) mLm( j ) 2 1 2 Lm L (1 jTa ) Lm L 1 j 2 ( j ) n n
bode图 nyquist图

系统开环Nyquist图的绘制
例1 已知系统的开环传递函数如下,试绘制系统的 开环Nyquist图。
举例说明
系统开环Nyquist图的绘制
举例说明
例2 已知系统的开环传递函数如下,试绘制系统的 开环Nyquist图,并求与实轴的交点。
Nyquist图与实轴相交时
系统开环Nyquist图的绘制
延迟环节 是不是 最小相位环节 ?
系统开环Bode图的绘制
Bode图的绘制举例
系统开环Bode图的绘制
单回路开环系统Bode图的绘制
系统开环Nyquist图的绘制
概述
K ( n s 1) ( k s 2 k k s 1)
2 2
G( s) s
v
n 1
k 1
举例说明
例3 已知系统的开环传递函数如下,试绘制系统的 开环Nyquist图。
系统开环Nyquist图的绘制
总结
0型系统(v = 0)
G ( j ) K (1 j 1 )(1 j 2 )...(1 j m ) ( j ) (1 jT1 )(1 jT2 )...(1 jTn )
n m
0
A(0) K
只包含惯性环节的0型系统Nyquist图
( 0) 0
A( ) 0
( ) ( n m ) 90
系统开环Nyquist图的绘制
总结
I型系统(v = 1)
G ( j ) K (1 j 1 )(1 j 2 )...(1 j m ) ( j ) (1 jT1 )(1 jT2 )...(1 jTn )
如何绘制伯德图PPT课件

G( j ) 00
(5-63) (5-64)
100 00
900 1800
10 100 1000
图5-11 放大环节的Bode图
如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G( j) 1 j 1 1 e j90 j
7
当有n个积分环节串联时,即
dB L()
G(
j
)
(
1
j
)n
其对数幅频特性为
20 lg
G(
j )
20 lg
1
பைடு நூலகம்n
40
( 5-70 )
0
(5-71)
0.01 0.1
40 dB / dec
1
10
n 20 lg
G( j ) n 900
(5-72) 度 ()
6
设 ' 10 ,则有
20lg ' 20lg 10 20 20lg
dB L()
可见,其对数幅频特性是一条在
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线 (ω 轴),且以每增加十倍频降 低20分贝的速度(-20dB/dec ) 变化的直线。
40
20dB / dec
1
L() dB
如何绘制伯德图PPT课件

是一条斜率为-n×20dB/dec,且在 00
ω =1(弧度/秒)处过零分贝线(ω
0.01 0.1
1
轴)的直线。相频特性是一条与ω 900
无关,值为-n×900且与ω 轴平行的 1800 直线。两个积分环节串联的Bode图
如图5-13所示。
图5-13 两个积分环节串联的Bode图
8
(三) 惯性环节
1
L() dB
40
20
0
0.01 0.1
1
-20
-40
( )
90o
45o
0
0.01 0.1
1
-45o
-90o
10
100
10
100
2
用伯德图分析系统有如下优点: (1) 将幅频特性和相频特性分别作图,使系统(或环
节) 的幅值和相角与频率之间的关系更加清晰;
(2) 幅值用分贝数表示,可将串联环节的幅值相乘变为相 加运算,可简化计算;
一阶微分环节的对数幅频特性如图5-16所示,渐近线的转折频
率 为1,转折频率处渐近特性与精确特性的误差为
,
其误20差lg 均2为正3d分B 贝数,误差范围与惯性环节类似。
相频特性是
当 时, G( j ); arctg
(5-78)
0 G( j0) 00
12
当 1 时,G( j 1) 450 ;
成的折线称为对数幅频特性的渐近线。如图5-14所示。
9
惯性环节的相频特性为
G( j ) arctgT (5-75)
当 0时,G( j0) 00;
当 1 时,G( j 1 ) 450;
如何绘制伯德图.ppt

j?
??
其幅频特性为
1
G ( j? ) ? ?
对数幅频特性是
(5-65) (5-66)
1
20 lg G ( j? ) ? 20 lg ? ? 20 lg ? ?
(5-67)
当 ? ? 0 . 1 时,20 lg G ( j 0 . 1 ) ? ? 20 lg 0 . 1 ? 20 ( dB ) ; 当 ? ? 1 时,20 lg G ( j1) ? ? 20 lg 1 ? 0 ( dB ) ;
当 ? ? 10 时,20 lg G ( j10 ) ? ? 20 lg 10 ? ? 20 ( dB ) 。
6
设 ? ' ? 10 ? ,则有
? 20 lg ? ' ? ? 20 lg 10 ? ? ? 20 ? 20 lg ?
可见,其对数幅频特性是一条 在
dB L(? )
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线
(5-73) (5-74)
? ? 20 lg 1 ? T 2? 2
当 ? ?? 1 时, 20 lg G ( j ? ) ? ? 20 lg 1 ? T 2 ? 2 ? 0 ( dB ) ,
T
当 ? ?? 1 时,20 lg G ( j ? ) ? ? 20 lg 1 ? T 2 ? 2 ? ? 20 lg T ? ( dB )
40
(ω 轴),且以每增加十倍频降
20
? 20 dB / dec
低20分贝的速度( -20dB/dec )
0
0.01
0.1
1
10
?
变化的直线。
? 20
积分环节的相频特性是
? G ( j ? ) ? ? 90 0
实验二:绘制控制系统的Bode图(学生用)

实验二:绘制控制系统的Bode图Bode Graphics of Controlling System一、实验目的1.利用计算机做出开环系统的伯德图;2.观察记录控制系统的开环频域性能;3.控制系统的开环频率特性分析。
二、实验步骤1.在Windows界面上双击matlab图标,即可打开MATLAB命令平台。
2.练习相关M函数(1)伯德图绘图函数:bode(sys)bode(sys,{wmin,wmax})bode(sys,w)[m,p,w]=bode(sys)函数功能:对数频率特性作图函数,即伯德图作图。
格式1:给定开环系统的数学模型对象sys作伯德图,频率向量w自动给出。
格式2:给定变量w的绘图区间为{wmin,wmax}。
格式3:频率向量w由人工给出。
w的单位为[弧度]/秒,可以由命令logspace得到对数等分的w值。
格式4:返回变量格式,不作图。
m为频率特性G(jω)的幅值向量,m=︱G(j)︳。
p为频率特性G(jω)的幅角向量,p=arg[G(jω)],单位为角度(°)。
w为频率向量,单位为[弧度]/秒。
更详细的命令说明,可键入“help bode”在线帮助查阅。
例如,系统开环传递函数为作图程序为num=[10];den=[1 2 10];sys=tf(num,den);bode(sys);grid on上面两句或者直接换为:bode(num,den);绘制伯德图如图1所示。
或者给定人工变量w=logspace(-1,1,32); % w范围和点数n ,下面对该函数做了详细的说明bode(num,den,w); %或者sys=tf(num,den); bode(sys,w);grid on绘制伯德图如图2所示。
图3 伯德图图4 伯德图(2)对数分度函数:logspace(d1,d2)logspace(d1,d2,n)函数功能:产生对数分度向量。
格式1:从10d1到10d2之间作对数等分分度,产生50个元素的对数等间隔向量。
如何绘制伯德图

。
6
设 ' 10 ,则有
20 lg 20 lg 10 20 20 lg
'
(5-68)
dB L( )
可见,其对数幅频特性是一条在 ω =1(弧度/秒)处穿过零分贝线 ( ω 轴),且以每增加十倍频降 低 20 分贝的速度( -20dB/dec ) 变化的直线。 积分环节的相频特性是
对数幅频特性为
20 lg G( j ) 20 lg K
(5-61)
当K>1时,20lgK>0,位于横轴上方;
当K=1时,20lgK=0,与横轴重合;
当K<1时,20lgK<0,位于横轴下方。
4
放大环节的对数幅频特性如图5-11所示,它是一条与角频 率ω 无关且平行于横轴的直线,其纵坐 标为20lgK。
0
100
1000
(5-63)
180
0
放大环节的相频特性是
G( j ) 0
0
图5-11 放大环节的Bode图
(5-64) 如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G ( j ) 1 j j 1
1
e
j 90
2 2 2
(5-85)
相频特性是
G ( j ) arctg 2 1
2 2
dB
40
(5-86)20
0
1 1 10
0
精确特性
40dB / dec
二阶微分环节与振荡节的Bode
1
图关于ω 轴对称,如图5-21 。
典型环节的Bode图

控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
Tf函数用来建立实部或复数传递函数模型或将状态方程、或零级增益模型转化成传递函数形式。
sys = tf(num,den)命令可以建立一个传递函数,其中分子和分母分别为num和den。
输出sys 是储存传递函数数据的传递函数目标。
单输入单输出情况下,num和den是s的递减幂级数构成的实数或复数行向量。
这两个向量并不要求维数相同。
如h = tf([1 0],1)就明确定义了纯导数形式h(s)=s。
若要构建多输入多输出传递函数,要分别定义每一个单输入单输出系统的端口的分子与分母。
2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电机定位系统校正(BODE图)
MATLAB软件具有强大的计算能力和绘图功能,能够快速、准确地做出频域特性曲线。
利用MATLAB绘制系统的Bode图,为控制系统设计和分析提供了极大的方便。
1. 创建M-file文挡,并输入如下程序,运行后生成LTI对象my_sys:
J=3.2284e-6;
b=3.5077e-6;
K=0.0274;
R=4;
L=2.75e-6;
num=[0 0 0 K];
den=[(J*K) (J*R+(L*b)) ((b*R)+K^2) 0];
my_sys=tf(num,den);
打开Matlab7.0软件,并新建一个空文档,将程序复制到文档内,如图1所示:
图1
2.运行程序并保存运行结果。
如图2所示:
图2
3.打开Start-Toolboxes—Control System—SISO Design Tool。
启动SISO Design,如图3所示
图3
4.将my_sys程序导入到SISO Design Tool中,如图4所示
图4
5.在View菜单中,关闭根轨迹显示,只显示开环的Bode图。
如图5所示
图5
6. 加积分环节;加零点(60角频率)将各个参数进行积分:空白处右键—Add Pole/Zero—Integrator。
如图6所示:
图6
7.在magnitude曲线加零点,然后Analysis菜单下Response to Step Command 指令。
如图7所示:
图7
8.在管理反馈界面中,只显示闭环的r与y的关系—LT1 Viewer For SISO Design Tool界面空白处右键—Systems—Closed Loop :r to u (green),如图8所示:
图8
9.添加零点和极点,如图8所示,并移动极点、零点和线的位置,调整LT1 Viewer For SISO Design Tool窗口中函数图像的变化直到符合Bode图,如图9所示:
图9
10.用鼠标上下移动观察阶越响应的超调量变化,满足校正要求。
如图10 所示:
图10
11.从analysis→closed loopbode调用LTI viewer分析闭环BODE图。
如图11所示:
图11
通过Bode图,可以直观的看出系统的幅值/增益随频率变化的特性及相位随频特变化的特性。
幅频特性和相频特性是频率域分析最重要的两个参数,系统的表现如何、是否稳定,几乎完全依赖于这两个特性,因此,分析系统内部的各部分的Bode图,就是进行稳定性分析,并根据规则和准则,改变系统参数,设计出符合要求的稳定的系统。
一个元件、一个网络、一个子系统,只要有输入和输出,就有对应的幅频和相频特性,就可以做出Bode图。