奥赛起跑线五年级分册-加法原理和乘法原理

合集下载

五年级下册数学奥数课件3加法原理和乘法原理人教版(27张PPT)

五年级下册数学奥数课件3加法原理和乘法原理人教版(27张PPT)
在加法原理中,把完成一件事的各种办法分成几类, 每一类中的任何一种方法都能完成这件事。凡是“分 类”完成的事情用加法原理。
北京
5种
天津
4种
5+4=9(种)
答:有9种不同的走法。
小结
加法原理:
一般地,如果完成一件事需要k类方法, 第一类方法中有m1种不同的方法,第二类方 法中有m2种不同的方法……第k类方法中有mk 种不同的做法,则完成这件事共有
N=m1+m2+…+mk种不同的方法。
即学即练
在一个纸箱内装有5个小球,另一个纸箱内装有9个小球,所 有小球颜色各不相同。从这两个纸箱里任取一个小球,有多少种 不同的取法?
答:有18种不同的选法。
例3:一个口袋内装有3个小球,另一个口袋内装有8个小球, 所有这些小球颜色各不相同。
问:(1)从两个口袋内任取一个小球,有多少种不同的取法?
小球装在两个口袋内相当于分成了两类!
例3:一个口袋内装有3个小球,另一个口袋内装有8个小球, 所有这些小球颜色各不相同。
问:(1)从两个口袋内任取一个小球,有多少种不同的取法?
即学即练
希望小学的歌唱小组由10名男生和8名女生组成。 (1)现在要从这些学生中挑选一名男生和一名女生配成一组去 参加演唱比赛,有多少种不同的搭配方法?
10×8=80(种)
答:有80种不同的搭配方法。
(2)如果要从男生或女生中任选一人去登台领奖,,有多少种 不同的选法?
10+8=18(种)
答:有18种不同的选法。
种不同的选法?
1.探索因数中间或末尾有0的乘法的计算方法及简便写法,进一步认识0在乘法运算中的特殊性,培养迁移类推及概括等能力。
2.妈妈比小明大24岁,而且妈妈今年的年龄是小明的3倍。小明和妈妈今年分别是多少岁?

五年级奥数专题 加法原理和乘法原理综合(学生版)

五年级奥数专题 加法原理和乘法原理综合(学生版)

学科培优数学“加法原理和乘法原理综合”学生姓名授课日期教师姓名授课时长知识定位本讲力求让学生懂得并运用加法乘法原理来解决问题,掌握常见的计数方法,会使用这些方法来解决问题知识梳理乘法原理我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法 ,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.加法原理无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法 ,…,第k类方法中有mk种不同的做法,则完成这件事共有N= m1 + m2 +…+mk 种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.例题精讲【试题来源】【题目】从五年级8个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?【试题来源】【题目】用5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?【试题来源】【题目】北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?【试题来源】【题目】7个相同的球放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?【试题来源】【题目】如图所示,沿线段从A 走最短路线到B 有多少种走法?【试题来源】【题目】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?GD F CE BA106343211111BA【试题来源】【题目】用1,2,3,4这4个数字,组成各位数字互不相同的四位数,例如1234,4321等,求全体这样的四位数之和.【试题来源】【题目】某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?【试题来源】【题目】用0~9这十个数字可组成多少个无重复数字的四位数.【试题来源】【题目】12个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?【试题来源】【题目】A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A手中,那么不同的传球方式共多少种.【试题来源】【题目】在2000到2999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?【试题来源】【题目】将一些数字分别填入下列各表中,要求每个小格中填入一个数字,表中的每横行中从左到右数字由小到大,每一竖列中从上到小数字也由小到大排列。

小学奥数乘法原理与加法原理

小学奥数乘法原理与加法原理

乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要n个步骤,其中,做第一步有n1种不同的方法,做第二步有n2种不同的方法,…,做第n步有n n种不同的方法,那么,完成这件事一共有n=n1×n2×……×n n种不同的方法.这就是乘法原理.例1. 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2. 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法例3. 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法例4. 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形例5. 由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数②可组成多少个没有重复数字的三位数分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6. 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.例8. 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”.生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有n类方法,第一类方法中有n1种不同做法,第二类方法中有n2种不同做法,…,第n类方法中有n n种不同的做法,则完成这件事共有n=n1+n2+⋯…+n n 种不同的方法.这就是加法原理.例1. 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法例2. 一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法②从两个口袋内各取一个小球,有多少种不同的取法补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3. 如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法分析从甲地到丙地共有两大类不同的走法.第一类,由甲地途经乙地到丙地.第二类,由甲地直接到丙地.例4. 如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.例5. 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形分析要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.例6. 从1到500的所有自然数中,不含有数字4的自然数有多少个分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个.这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7. 如图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法分析观察下页左图,注意到,从A到B要一直向右、向上,那么,经过下页右图中C、D、E、F四点中的某一点的路线一定不再经过其他的点.也就是说从A到B点的路线共分为四类,它们是分别经过C、D、E、F的路线.自我检测1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数②三位偶数③没有重复数字的三位偶数④百位为8的没有重复数字的三位数⑤百位为8的没有重复数字的三位偶数6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法3.如下图中,沿线段从点A走最短的路线到B,各有多少种走法4.在1~1000的自然数中,一共有多少个数字05.在1~500的自然数中,不含数字0和1的数有多少个6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来。

(完整)五年级奥林匹克起跑线电子教材

(完整)五年级奥林匹克起跑线电子教材

目录◆第一讲消去问题(一) (2)◆第二讲消去问题(二) (7)◆第三讲一般应用题 (12)◆第四讲盈亏问题(一) (16)◆第五讲盈亏问题(二) (17)◆第六讲流水问题 (19)◆第七讲等差数列 (23)◆第八讲找规律 (26)◆能力测试(一) (26)◆第九讲加法原理 (28)◆第十讲乘法法原理 (31)◆第十一讲周期问题(一) (35)◆第十二讲周期问题(二) (37)◆第十三讲巧算(一) (39)◆第十四讲巧算(二) (40)◆第十五讲数阵问题(一) (45)◆第十五讲数阵问题(二) (45)◆能力测试(二) (63)◆第16讲平面图形的计算(一)……………◆第17讲平面图形的计算(二)……………◆第18讲列方程解应用题(一)………………◆第19讲列方程解应用题(二)………………◆第20讲行程问题(一)…………………………◆第21讲行程问题(二)…………………………◆第22讲行程问题(三)…………………◆第23讲行程问题(四)……………………◆阶段测试(一)……………………◆第24讲平均数问题(一)………………………◆第25讲平均数问题(二)………………◆第26讲长方体和正方体(一)………………◆第27讲长方体和正方体(二)……………………◆第28讲数的整除特征……………………………◆第29讲奇偶性问题……………………◆第30讲最大公约数和最小公倍数…………………◆第30讲分解质因数(一)……………………◆第31讲分解质因数(二)……………………◆第32讲牛顿问题……………………◆综合测试………………………………………第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。

我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。

这样的解题方法,我们通常把它叫做“消去法”。

小学奥数--加法原理乘法原理

小学奥数--加法原理乘法原理

加法原理与乘法原理加法原理:完成一件工作共有N类方法。

在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。

运用加法原理计数,关键在于合理分类,不重不漏。

要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。

乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m1×m2×…×mn种方法。

运用乘法原理计数,关键在于合理分步。

完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。

这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。

运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。

计数时要注意区分是分类问题还是分步问题,正确运用两个原理。

灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。

小学阶段只学习两个原理的简单应用。

【题目1】:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法【解析】:运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。

②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。

小学奥数——乘法原理与加法原理

小学奥数——乘法原理与加法原理

乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要个步骤,其中,做第一步有种不同的方法,做第二步有种不同的方法,…,做第步有种不同的方法,那么,完成这件事一共有种不同的方法.这就是乘法原理.例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6.由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7.右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.例8.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”。

乘法原理和加法原理(小学奥数5年级)

乘法原理和加法原理(小学奥数5年级)

加法原理和乘法原理知识方法一、分类计数原理(加法原理)1、完成一件事情,有n类方法,在第1类方法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……在第n类方法中有mn种不同的方法,则完成这件事有N=m1+m2+……+m n 种不同的方法2、分类计数原理的特点:针对的是“分类”问题,各类方法是相互独立的。

二、分步计数原理(乘法原理)1、完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有有m2种不同的方法,……做第n步有mn种不同的方法,则完成这件事有N=m1×m2×……×m n 种不同的方法2、分不计数原理的特点:针对的是“分步”问题,各类方法是相互依存的。

例1:从资阳到成都可乘火车,也可乘汽车,一天中,火车有3列,汽车有12辆,一天中乘坐这些交通工具从资阳到成都有多少种不同的方法?例2:陈老师从资阳到美国,第1天,乘高铁到成都有3辆,次日,从成都乘飞机到美国有5班,陈老师从资阳到美国有多少种不同的乘车方法?变式:一个盒子里装有5个小球。

另一个盒子里装有9个小球。

所有这些小球的颜色各不相同。

(1)从两个盒子中任取一个小球,有多少种不同的取法?(2)从两个盒子中各取一个球,有多少种不同的取法?例3:4个数字3、5、6、8可以组成多少个没有重复数字的四位数?变式:有7、3、6三个数字卡片,能组成几个不同的三位数?(每个数字只能用1次)例4、用4种不同颜色给下面的图形涂色。

使相邻两个长方形颜色不相同,有多少种不同的涂法?变式:在A 、B 、C 、D 四个长方形区域中涂上红黄蓝黑这4种不同颜色,使相邻两个长方形颜色不相同,有多少种不同的涂法?例5、南京与上海的动车组特快列车,中途只停靠常州,无锡,苏州三个火车站。

共要准备多少种不同的车票?(考虑往返)变式:北京到广州的火车中间要停靠8个大站。

火车站要准备多少种不同的车票?有多少种不同的票价?(考虑往返)练习题1、小军小蓝和小红三个朋友排成一排照相,有多少种不同的排法?2、书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书,如果从中各取一本科技书,一本故事书和一本英语书,那么总共有多少种取法?3、有8、0、2、4、6五个数字,可以组成几个不同的五位数?4、五一前夕,学校举行亲子活动。

小学奥数乘法原理与加法原理完整版

小学奥数乘法原理与加法原理完整版

小学奥数乘法原理与加法原理HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要n个步骤,其中,做第一步有n1种不同的方法,做第二步有n2种不同的方法,…,做第n步有n n种不同的方法,那么,完成这件事一共有n=n1×n2×……×n n种不同的方法.这就是乘法原理.例1. 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2. 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3. 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4. 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5. 由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6. 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.例8. 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”.生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有n类方法,第一类方法中有n1种不同做法,第二类方法中有n2种不同做法,…,第n类方法中有n n种不同的做法,则完成这件事共有n=n1+n2+⋯…+n n种不同的方法.这就是加法原理.例1. 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?例2. 一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3. 如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析从甲地到丙地共有两大类不同的走法.第一类,由甲地途经乙地到丙地.第二类,由甲地直接到丙地.例4. 如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.例5. 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.例6. 从1到500的所有自然数中,不含有数字4的自然数有多少个?分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个.这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7. 如图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析观察下页左图,注意到,从A到B要一直向右、向上,那么,经过下页右图中C、D、E、F四点中的某一点的路线一定不再经过其他的点.也就是说从A到B点的路线共分为四类,它们是分别经过C、D、E、F的路线.自我检测1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?4.在1~1000的自然数中,一共有多少个数字0?5.在1~500的自然数中,不含数字0和1的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学奥赛起跑线五年级分册例题及答案
第16讲[加法原理思考与练习]
加法原理:在做一件事时,如果有几类不同的方法,而且每一类方法中,又有几种可能的做法,那么,要求完成这件事有多少种
做法,应当将各类方法中可能的种数加起来.
强调:加法原理与乘法原理都是用来计算完成某一件事共有多少种不同的做法的.如果完成一件事有几类方法,无论哪类方法都可以完成这件事,就用加法原理计算;如果完成一件事需分几个步骤,要依次完成每个步骤后才能完成这件工作,就要用乘
法原理计算.
1.从甲城到乙城,可乘汽车、火车或飞机.已知一天中汽车有2班,火车有4班,飞机有3班,从甲城到乙城共有多少种不同的走法?
解:4+3+2=9(种)
答:从甲城到乙城共有9种不同的走法.
2.书架上层放有7本不同的故事书,中层有6本不同的科技书,下层有4本不同的历史书.如果从书架上任取一本书,有多少种不同的取法?
解:7+6+4=17(种)
答:有17种不同的取法.
3.一列火车从上海开往杭州,中途要经过4个站,应为这列火车准备多少种不同的车票?
解:5+4+3+2+1=15(种) E
答:应为这列火车准备15种不同的车票. D
4.右图1中共有多少个角? C
解:4+3+2+1=10(个) B
答:下左图中共有10个角. O A 图2
图1
5.右图2中共有多少个正方形?
解:32+22+12=9+4+1=14(个)
答:上右图中共有14个正方形.
6.用1分、2分、5分硬币各一枚,一共可以组成多少种不同的币值?
解:3+3+1=7(种)
答:一共可以组成7种不同的币值.
7.平面上有8个点(其中没有任何三个点在一条直线上),经过每两点画一条直线,共可以画多少条直线?
解:7+6+5+4+3+2+1=28(条)
答:共可以画28条直线.
8.从2、3、5、7、11、13这六个数中,每次取出2个数,分别作为一个分数的分子和分母,一共可以组成多少个真分数?
解:5+4+3+2+1=15(个)
答:一共可以组成15个真分数.
9.两次投掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?
解:36÷2=18(种)
答:这种情况有18种.
10.某铁路局从A站到F站共有6个火车站(包括A站和F站),铁路局要为在A站到F站之间运行的火车准备多少种不同的车票?
解:2×(5+4+3+2+1)=30(种)
答:铁路局要为在A站到F站之间运行的火车准备30种不同的车票.
第17讲[乘法原理思考与练习]
乘法原理:做一件事,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事有多少种方法,应当将
各个步骤中可能的方法种数乘起来,
1.某人到食堂去买饭,主食有3种,副食有5种,他主食和副食各买一种,共有多少种不同的买法?
解:3×5=15(种).
答:共有15种不同的买法.
2.衣架上有2顶帽子、4件上衣、3条裤子。

从中任取1顶帽子、1件上衣、1条裤子可以组成一套装束,最多可配成多少种不同的装束?
解:2×4×3=24(种).
答:最多可配成24种不同的装束.
3.甲、乙两个班级进行乒乓球比赛,每班选3人,每人都要和对方的每个选手赛一场,一共要赛多少场?
解:3×3=9(场).
答:一共要赛9场.
4.从5、7、11、13这四个数中每次取2个数组成分数,一共可以组成多少个分数?
解:(3+2+1)×2=12(个).
答:一共可以组成12个分数.
5.右图1中一共有多少个不同的长方形? A B 解:9+6+4+2+2+1+6+2+4=36(个) B C
答:一共有36个不同的长方形. C D A
图1 图2 图3
6.一个口袋里装有5个小球,另一个口袋里装有4个小球,这些小球的颜色互不相同,问:(1)从两个口袋里任意取1个小球,有多少种不同的取法?(2)从两个口袋内各取1个小球,有多少种不同的取法?
解:(1)5+4=9(种),(2)5×4=20(种).
答:从两个口袋里任意取1个小球,有9种不同的取法;从两个口袋内各取1个小球,有20种不同的取法. 7.某信号兵用红、黄、蓝3面旗从上到下挂在旗杆上的三个位置表示不同的信号.每次可挂1面、2面或3面,并且不同的顺序,不同的位置表示不同的信号.3面旗一共可以表示出多少种不同的信号?
解:3×11=33(种).
答:3面旗一共可以表示出33种不同的信号.
8.有0到9这10个数字可以组成多少个没有重复数字的三位数?
解:中间没0的三位数,8×8=64(个),64×9=576(个);中间有0的三位数,8×9=72(个);合计:576+72=648(个). 答:有0到9这10个数字可以组成648个没有重复数字的三位数.
9.如右上图2,分别用4种颜色中的一种对图中A、B、C、D,4个区域染色,要求相邻的区域染不同的颜色,那么共有多少种不同的染色方法?
解:4×3×2×2=48(种).
答:那么共有48种不同的染色方法.
10.如右上图3的街道示意图中,C处应施工不能通行,从A到B的最短路线有几条?
解:2×3=6(条).
答:从A到B的最短路线有6条.。

相关文档
最新文档