角的概念的推广练习题
高一任意角与弧度制题型练习(全)

任意角知识梳理一、角的概念的推广1.角按其旋转方向可分为:正角,零角,负角.①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.例如,画出下列各角:,,.2.在直角坐标系中讨论角:①角的顶点在原点,始边在轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角.②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角.二、终边相同的角的集合设表示任意角,所有与终边相同的角,包括本身构成一个集合,这个集合可记为.集合的每一个元素都与的终边相同,当时,对应元素为.例如,如图,角、角和角都是以射线为终边的角,它们是终边相同的角.特别提醒:为任意角,“”这一条件不能漏;与中间用“”连接,可理解成;当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差的整数倍.终边不同则表示的角一定不同.三、区间角、区域角1.区间角、区域角的定义介于两个角之间的角的集合叫做区间角,如.终边介于某两角终边之间的角的几何叫做区域角,显然区域角包括无数个区间角.2.区域角的写法(1)若角的终边落在一个扇形区域内,写区域角时,先依逆时针方向由小到大写出一个区间角,然后在它的两端分别加上“”,右端末注明“”即可.(2)若角的终边落在两个对称的扇形区域内,写区域角时,可以先写出终边落在一个扇形区域内的一个区间角,在此区间角的两端分别加上“”,右端末注明“”即可.例如,求终边落在图中阴影内(包括边界)的角的集合,可先求落在第一象限内的区间角,故终边落在图中阴影内(包括边界)的角的集合为.3.各象限角的集合象限角象限角的集合表示第一象限角第二象限角第三象限角第四象限角四、倍角和分角问题已知角的终边所在的象限,求的终边所在象限.1.代数法由的范围求出的范围.通过分类讨论把写成的形式,然后判断的终边所在的象限.2.几何法画出区域:将坐标系每个象限等分,得个区域.标号:自轴正向起,沿逆时针方向把每个区域依次标上、、、,如图所示(此时).确定区域:找出与角的终边所在象限标号一致的区域,即为所求.题型训练题型一任意角的概念1.下列四个命题中,正确的是()A.第一象限的角必是锐角B.锐角必是第一象限的角C.终边相同的角必相等D.第二象限的角必大于第一象限的角2.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③锐角一定是第一象限的角;④小于的角一定是锐角;⑤终边相同的角一定相等.其中正确命题的个数是()A.1B.2C.3D.43.设集合,,则?题型二终边相同的角的集合1.下列各个角中与2020°终边相同的是()A.-150°B.680°C.220°D.320°2.写出终边在图中直线上的角的集合.3.写出终边落在图中阴影部分(包括边界)的角的集合.4.下列各组中,终边相同的角是()A.和()B.和C.和D.和5.若角与的终边关于轴对称,且,则所构成的集合为.6.与2021°终边相同的最小正角是.7.写出角的终边在阴影中的角的集合.题型三象限角的定义1.在,,,,这五个角中,属于第二象限角的个数是()A.2B.3C.4D.52.若是第四象限角,则一定是第几象限角?3.已知,则所在的象限是()A.第一象限B.第二象限C.第一或第二象限D.第三或第四象限题型四角所在象限的研究1.已知α为第二象限角,则所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限2.已知θ为第二象限角,那么是()A.第一或第二象限角B.第一或四象限角C.第二或四象限角D.第一、二或第四象限角3.若是第二象限角,则,是第几象限角?弧度制知识梳理一、弧度制和弧度制与角度制的换算1.角度制角可以用度为单位进行度量,度的角等于周角的,这种用度作为单位来度量角的单位制叫做角度制.2.弧度制①弧度的角:长度等于半径长的弧所对的圆心角.②弧度制定义:以弧度作为单位来度量角的单位制.记法:用符号表示,读作弧度.特别提醒:(1)用弧度为单位表示角的大小时,“弧度”或“”可以略去不写,只写这个角对应的弧度数即可,如角可写成.而用度为单位表示角的大小时,“度”或“°”不可以省略.(2)不管是以弧度还是以度为单位的角的大小都是一个与半径大小无关的定值.二、角度与弧度的换算1.弧度与角度的换算公式(1)关键:抓住互化公式rad=180°是关键;(2)方法:度数弧度数;弧度数度数2.一些特殊角的度数与弧度数的对应表:【注意】①在同一问题中,角度制与弧度制不能混用;②弧度制下角可以与实数可以建立一一对应的关系,所以弧度制表示的角的范围可以用区间表示,如,但角度制表示的角的范围一般不用区间表示,即不用表示,因为区间表示的是数集,但角度数不是实数.三、弧长公式、扇形面积公式如图,设扇形的半径为,弧长为,圆心角为.1.弧长公式:.注意:在应用弧长公式时,要注意的单位是“弧度”,而不是“度”,如果一直角是以“度”为单位的,则必须先把它化为以“弧度”为单位,再代入计算.2.扇形面积公式:.3.弧长公式及扇形面积公式的两种表示角度制弧度制弧长公式扇形面积公式注意事项是扇形的半径,是圆心角的角度数是扇形的半径,是圆心角的弧度数题型训练题型一弧度制与角度制互化1.与角终边相同的最小正角是?(用弧度制表示)2.若四边形的四个内角之比为,则四个内角的弧度数依次为.3.对应的弧度数为4.把化为弧度的结果是5.如图,用弧度制表示终边落在下列阴影部分的角.6.若θ=-3rad,则θ的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限题型二扇形的弧长、面积、与圆心角问题1.半径为,中心角为的角所对的弧长为()A.B.C.D.2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为()A.2B.4C.6D.83.已知扇形的周长为,圆心角为,则扇形的面积为?4.一个扇形的弧长与面积都是,则这个扇形圆心角的弧度数为()A.B.C.D.5.已知弧度的圆心角所对的弦长为,那么,这个圆心角所对的弧长是()A.B.C.D.6.半径为,圆心角为的扇形的弧长为()A.B.C.D.7.设扇形的弧长为,半径为,则该扇形的面积为?8.已知扇形的周长为,面积为,则扇形圆心角的弧度数为?。
(完整word版)角的概念的推广练习题

1、下列说法正确的是( )A 第一象限的角一定是锐角B 锐角一定是第一象限角C 、小于90︒的角一定是锐角D 第一象限的角一定是正角2、-50︒角是( )角A 第一象限B 第二象限C 第三象限D 第四象限3、与330︒角终边相同的角是( )A-60︒ B390︒ C-390︒ D-45︒4、)(30360Z k k ∈-•︒︒所表示的角是( )角A 第一象限B 第二象限C 第三象限D 第四象限5、设∂是第二象限角,则2∂是( )角A 一或三象限角B 二或四象限角C 一或二象限角D 二或三象限角6.在0-360︒内,与角︒-1770终边相同的角是( )A210︒ B ︒150 C ︒60 D30︒7、已知下列各角:︒︒︒︒--495,180,240,120,其中第二象限角是( )A ︒︒--240,120B ︒︒-180,120C ︒︒-180,240D ︒︒-495,2408、下列各组角中,终边相同的是( )A ︒︒690,390B ︒︒-750,330C ︒︒-420,480D ︒︒-840,30009、终边在第二象限的角的集合可以表示为:( )A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}10、把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是()A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°11、与1991°终边相同的最小正角是_________,绝对值最小的角是_______________.12、终边落在x轴上的角的集合为13、终边落在y轴上的角的集合为14、终边落在坐标轴上的角的集合为15、终边落在一、三象限角的平分线上的角的集合为16终边落在象限的角平分线上的角的集合为。
角的概念的推广2

角的记法 “旋转”定义角之后,角的范围扩大了。 1、角有正负之分
如 : 300 , 190 , 660
2、角可以任意大
体操动作:转体2周(720°),转体3周(1080°) 3、零角 (一条射线没有旋转)
2、“象限角” 为了研究方便,我们往往在平面直角坐标系内 来讨论角: 使角的顶点与坐标原点重合,角的始边与x轴 的非负半轴重合,角的终边在第几象限,我们 就说这个角是第几象限的角。
例2、写出与下列各角终边相同的角的集合S, 并把S中在-360°~720°间的角写出来: ⑴120° ⑵-36° 解:⑴ S={a|a=120°+k· 360°,k∈Z} S中在-360°~720°间的角是 -1×360° +120°=-240° 0×360° +120°= 120° 1×360° +120°= 480° ⑵S={a|a=-36°+k· 360°,k∈Z} S中在-360°~720°间的角是-36°,324°,684°
y
O
注:角的终边落在坐标轴 上,则此角不属于任何一 x 个象限。
是第一象限角, 是第二象限角, 不是象限角.
3、终边相同的角
观察:图⑴中哪些角的终边相同? 图⑵中哪些角的终边相同?
思考:终边相同的角有什么关系?
图⑴中390°,-330°,30°的终边相同且有如 下关系:
390°=30°+360° -690°=30°-2×360°
-330°=30°-360° ……
结论:所有与a终边相同的角连同a在内可 以构成一个集合: | = +k 360 , k Z } S={ 注意:⑴k∈Z, ⑵a是任意角,
⑶ k· 360°与a之间是“+” ⑷终边相同的角不一定相等, 但相等的角终边相同, 终边相同的角有无数多个,它们的差是 360°的整数倍。
角的概念的推广

4.1 角的概念的推广高考试题1.(2005年全国卷三)已知α为第三象限角,则2α所在的象限是(D )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限提示:方法一,特殊值方法可以帮助确定,如令0240α=和0120α=-,可得01202α=或0602α=-,故选D ;方法二,由已知000(21)180(21)18090k k α+⋅<<+⋅+(k ∈Z ),则可得000(21)90(21)90452k k α+⋅<<+⋅+,对k 为奇、偶数讨论得D .训练试题1.在下列各组中,终边不相同的一组是(D )A .600和0300-B .2300和9500C .10500和030-D .10000和800提示:D 中两角的差为9200不是3600的整数倍.2.已知集合A={第一象限角},B={锐角},C={小于900的角},则下列关系中正确的是(D ) A .A=B=CB .A ⊂≠CC .A C=BD .B C=C提示:锐角是小于900的正角,∴B ⊂≠C ,∴B C=C .3.若α是第四象限的角,则0180α-一定是(C ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角提示:设0360k αβ=+⋅,其中00(90,0)β∈-,则000180180360k αβ-=-+⋅,它与0180β-有相同的终边,而0180180270β<-<,故选C.4.若角、αβ满足009090αβ-<<<,则(A ) A .01800αβ-<-< B .009090αβ-<-< C .0900αβ-<-< D .0180180αβ-<-<提示:由不等式的运算性质得.5.已知角α终边上的一点P (,0)(0)b b <,则α是(D ) A .第二象限角 B .第三象限角C .第二或第三象限角D .不属于任何象限的角提示:点P 在x 轴的负半轴上,终边落在坐标轴上的角不属于任何象限,故选D.6.若角、αβ满足009090αβ-<<<,则2βα-是(A )A .第一象限角B .第二象限角C .第三象限角D .第四象限角提示:由已知000902βα-<<,故选A .7.将0885-化为000360(0360,k k αα+⋅≤<∈Z )的形式是(A ) A 、1950+0(3)360-⋅ B 、1650+0(3)360-⋅C 、1950+0(2)360-⋅D 、-1650+0(2)360-⋅提示:可以逐一计算比较得,也可以用待定系数方法求.8.下列各角中与030-有相同终边的角是(D ) A .0330-B .0990C .0630-D .01830-提示:0001830(5)360(30)-=-⨯+-.9.和463-。
高中数学高考总复习角的概念的推广及任意角的三角函数习题及详解

高中数学高考总复习角的概念的推广及任意角的三角函数习题及详解一、选择题1.(2010·广州检测)若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] C[解析] ∵sin α<0,∴α为第三、四象限角或终边落在y 轴负半轴上, ∵tan α>0,∴α为第一、三象限角, ∴α为第三象限角.2.(2010·安徽省168中学联考)已知集合A ={(x ,y )|y =sin x },集合B ={(x ,y )|y =tan x },则A ∩B =( )A .{(0,0)}B .{(π,0),(0,0)}C .{(x ,y )|x =k π,y =0,k ∈Z }D .∅ [答案] C[解析] 函数y =sin x 与y =tan x 图象的交点坐标为(k π,0),k ∈Z .3.(2010·河北正定中学模拟)已知角α终边上一点P ⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.56π B.116π C.23πD.53π [答案] B[解析] 由条件知,cos α=sin 2π3=sin π3=32, sin α=cos 2π3=-cos π3=-12,∴角α为第四象限角,∴α=2π-π6=11π6,故选B.4.(2010·山东师大附中模拟)cos ⎝⎛⎭⎫-523π=( ) A .-12B .-32C.12D.32[答案] A[解析] cos ⎝⎛⎭⎫-52π3=cos 52π3=cos ⎝⎛⎭⎫17π+π3 =-cos π3=-12.5.(2010·河南新乡市模拟)已知角α终边上一点P (-4a,3a )(a <0),则sin α的值为( ) A.35 B .-35C.45D .-45[答案] B[解析] ∵a <0,∴r =(-4a )2+(3a )2=-5a , ∴sin α=3a r =-35,故选B.6.(2010·广东佛山顺德区质检)函数f (x )=sin x 在区间[a ,b ]上是增函数,且f (a )=-1,f (b )=1,则cos a +b2=( )A .0 B.22C .-1D .1[答案] D[解析] 由条件知,a =-π2+2k π (k ∈Z ),b =π2+2k π,∴cos a +b 2=cos2k π=1.7.(2010·青岛市质检)已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32[答案] A[解析] 由条件知,π=a 1+a 5+a 9=3a 5,∴a 5=π3,∴cos(a 2+a 8)=cos2a 5=cos 2π3=-cos π3=-12,故选A.8.(2010·衡水市高考模拟)设a =log 12tan70°,b =log 12sin25°,c =log 12cos25°,则它们的大小关系为( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] ∵tan70°>cos25°>sin25°>0,log 12x 为减函数,∴a <c <b .9.(2010·北京西城区抽检)设0<|α|<π4,则下列不等式中一定成立的是( )A .sin2α>sin αB .cos2α<cos αC .tan2α>tan αD .cot2α<cot α[答案] B[解析] 当-π4<α<0时,A 、C 、D 不成立.如α=-π6,则2α=-π3,sin2α=-32,sin α=-12,-32<-12,tan2α=-3,tan α=-33,cot2α=-33,cot α=-3,而-3<-33,此时,cot2α>cot α.10.如图所示的程序框图,运行后输出结果为( )A .1B .2680C .2010D .1340[答案] C[解析] ∵f (n )=2sin ⎝⎛⎭⎫n π3+π2+1=2cos n π3+1.由S =S +f (n )及n =n +1知此程序框图是计算数列a n =2cos n π3+1的前2010项的和.即S =⎝⎛⎭⎫2cos π3+1+⎝⎛⎭⎫2cos 2π3+1+⎝⎛⎭⎫2cos 3π3+1+…+⎝⎛⎭⎫2cos 2010π3+1 =2⎝⎛⎭⎫cos π3+cos 2π3+cos 3π3+…+cos 2010π3+2010=2×335×cos π3+cos 2π3+cos 3π3+cos 4π3+cos 5π3+cos 6π3+2010=2010.二、填空题11.(2010·南京调研)已知角α的终边经过点P (x ,-6),且tan α=-35,则x 的值为________.[答案] 10[解析] 根据题意知tan α=-6x =-35,所以x =10.12.已知△ABC 是锐角三角形,则点P (cos B -sin A ,tan B -cot C ),在第________象限. [答案] 二[解析] ∵△ABC 为锐角三角形,∴0<A <π2,0<B <π2,0<C <π2,且A +B >π2,B +C >π2,∴π2>A >π2-B >0,π2>B >π2-C >0, ∵y =sin x 与y =tan x 在⎝⎛⎭⎫0,π2上都是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B ,tan B >tan ⎝⎛⎭⎫π2-C , ∴sin A >cos B ,tan B >cot C ,∴P 在第二象限.13.在(0,2π)内使sin x >cos x 成立的x 的取值范围是______. [答案] (π4,5π4)[解析] 由三角函数定义结合三角函数线知,在(0,2π)内,使sin x >cos x 成立的x 的取值范围为(π4,5π4).[点评] 要熟知单位圆中的三角函数线在三角函数值的大小中的应用.14.(文)(2010·上海嘉定区模拟)如图所示,角α的终边与单位圆(圆心在原点,半径为1的圆)交于第二象限的点A ⎝⎛⎭⎫cos α,35,则cos α-sin α=________. [答案] -75[解析] 由条件知,sin α=35,∴cos α=-45,∴cos α-sin α=-75.(理)(2010·北京延庆县模拟)直线y =2x +1和圆x 2+y 2=1交于A ,B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则sin(α+β)=________.[答案] -45[解析] 将y =2x +1代入x 2+y 2=1中得,5x 2+4x =0,∴x =0或-45,∴A (0,1),B ⎝⎛⎫-45,-35,故sin α=1,cos α=0,sin β=-35,cos β=-45, ∴sin(α+β)=sin αcos β+cos αsin β=-45.[点评] 也可以由A (0,1)知α=π2,∴sin(α+β)=sin ⎝⎛⎭⎫π2+β=cos β=-45. 三、解答题15.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. [解析] ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2), 由三角函数的定义,有sin α=-66,1tan α=-5, ∴sin α+1tan α=-66-5=-65+66;当x =-10时,同理可求得sin α+1tan α=65-66.16.(文)已知sin θ、cos θ是方程x 2-(3-1)x +m =0的两根. (1)求m 的值; (2)求sin θ1-cot θ+cos θ1-tan θ的值.[解析] (1)由韦达定理可得⎩⎨⎧sin θ+cos θ=3-1 ①sin θ·cos θ=m ② 由①得1+2sin θ·cos θ=4-2 3.将②代入得m =32-3,满足Δ=(3-1)2-4m ≥0,故所求m 的值为32- 3.(2)先化简:sin θ1-cot θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=cos 2θ-sin 2θcos θ-sin θ=cos θ+sin θ =3-1.(理)已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,且θ∈(0,2π), (1)求sin θ1-cot θ+cos θ1-tan θ的值;(2)求m 的值;(3)求方程的两根及此时θ的值. [解析] (1)由韦达定理可知⎩⎨⎧sin θ+cos θ=3+12①sin θ·cos θ=m 2②而sin θ1-cot θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin θ+cos θ=3+12; (2)由①两边平方得1+2sin θcos θ=2+32,将②代入得m =32; (3)当m =32时,原方程变为 2x 2-(1+3)x +32=0,解得x 1=32,x 2=12, ∴⎩⎨⎧sin θ=32cos θ=12或⎩⎨⎧sin θ=12cos θ=32又∵θ∈(0,2π),∴θ=π6或π3.17.周长为20cm 的扇形面积最大时,用该扇形卷成圆锥的侧面,求此圆锥的体积. [解析] 设扇形半径为r ,弧长为l ,则l +2r =20, ∴l =20-2r ,S =12rl =12(20-2r )·r =(10-r )·r , ∴当r =5时,S 取最大值.此时l =10,设卷成圆锥的底半径为R ,则2πR =10, ∴R =5π,∴圆锥的高h =52-⎝⎛⎭⎫5π2=5π2-1π,V =13πR 2h =π3×⎝⎛⎭⎫5π2·5π2-1π=125π2-13π2.。
角的概念的推广(1)

衡山县始边
A
锐角
直角
钝角
╭╮
平角
周角
B 终边 O 终边 C
正角:按逆时针方向旋转而成的角;
α 始边 β A
负角:按顺时针方向旋转而成的角; 零角:射线没有旋转时的角。 ∠AOB=1350 ∠AOC=
- 1350
B β γ α O C δ D
A P
αA β O
O B A
O
[练习2]试在图上画出下列大小的角α的终边
(1)3900 (2)7500 (3)-3300
B
O
B
O
B
O
A
A
A
[练习2]试在图上画出下列大小的角α的终边
(1)3900 (2)7500 (3)-3300
BB
O O
A
[练习2]试在图上画出下列大小的角α的终边
(1)3900 (2)7500 (3)-3300
α2 = (-2) × 360 0 + 300 =- 690 0
α1 =1 ×3600 + 600 =4200
α2 = (-2) × 360 0 + 300 =- 690 0
从终边位置来看,任何一个角α 的终边总能与
00 ~ 3600 范围内的一个正角γ的终边重合,而且任 何角α总能表示为: α=k × 3600 + γ,k ∈Z, 00≤γ<3600
α=450
β=α+2 × 3600=450+7200=7650
B
O
P A
O βα
α= -450
P
A
β=α-2 × 3600= -450-7200= -7650
[练习1]说出下图中角α的大小
角的概念的推广与任意角的三角函数随堂练习(含答案)

角的概念的推广与任意角的三角函数基础巩固强化1.(文)(2011·绵阳二诊)已知角A 同时满足sin A >0且tan A <0,则角A 的终边一定落在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] B[解析] 由sin A >0且tan A <0可知,cos A <0,所以角A 的终边一定落在第二象限.选B.(理)(2012·广西田阳高中月考)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三角限角D .第四象限角 [答案] C[解析] 根据各象限内三角函数值的符号进行判断即可. 由sin αtan α<0可知sin α,tan α异号,从而α为第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号,从而α为第三或第四象限角. 综上可知,α为第三象限角.2.(文)(2011·杭州模拟)已知角α终边上一点P ⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.56π B.116π C.23πD.53π[答案] B[解析] 由条件知,cos α=sin 2π3=sin π3=32, sin α=cos 2π3=-cos π3=-12, ∴角α为第四象限角, ∴α=2π-π6=11π6,故选B.(理)已知锐角α终边上一点P 的坐标是(4sin3,-4cos3),则α等于( )A .3B .-3C .3-π2 D.π2-3[答案] C[解析] ∵π2<3<π,∴cos3<0,∴点P 位于第一象限, ∴tan α=-cos3sin3=sin (3-π2)cos (3-π2)=tan ⎝⎛⎭⎪⎫3-π2, ∵3-π2∈⎝ ⎛⎭⎪⎫0,π2,∴α=3-π2. 3.若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于( )A .5B .2C .3D .4 [答案] B[解析] 设扇形的半径为R ,圆心角为α,则有2R +Rα=12R 2α,即2+α=12Rα整理得R =2+4α,由于4α≠0,∴R ≠2.4.已知点P (-3,4)在角α的终边上,则sin α+cos α3sin α+2cos α的值为( )A .-16 B.16 C.718 D .-1[答案] B[解析] 由条件知tan α=-43, ∴sin α+cos α3sin α+2cos α=tan α+13tan α+2=16. 5.(文)设0≤θ<2π,如果sin θ>0且cos2θ>0,则θ的取值范围是( )A .0<θ<3π4 B .0<θ<π4或3π4<θ<π C.3π4<θ<π D.3π4<θ<5π4 [答案] B[解析] ∵0≤θ<2π,且sin θ>0,∴0<θ<π. 又由cos2θ>0得,2k π-π2<2θ<2k π+π2, 即k π-π4<θ<k π+π4(k ∈Z ).∵0<θ<π, ∴θ的取值范围是0<θ<π4或3π4<θ<π.(理)(2011·海口模拟)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( )A .(π4,π2)B .(π,5π4)C .(3π4,5π4)D .(π4,π2)∪(π,5π4)[答案] D[解析] ∵P 点在第一象限,∴⎩⎪⎨⎪⎧sin α-cos α>0,tan α>0,如图,使sin α>cos α的角α终边在直线y =x 上方,使tan α>0的角α终边位于第一、三象限,又0≤α≤2π,∴π4<α<π2或π<α<5π4.6.(文)(2011·新课标全国理)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35 D.45[答案] B[解析] 依题意:tan θ=±2,∴cos θ=±15,∴cos2θ=2cos 2θ-1=25-1=-35或cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,故选B.(理)函数f (x )=sin x 在区间[a ,b ]上是增函数,且f (a )=-1,f (b )=1,则cos a +b2=( )A .0 B.22 C .-1 D .1[答案] D[解析] 由条件知,a =-π2+2k π (k ∈Z ),b =π2+2k π,∴cos a +b 2=cos2k π=1.7.(2011·太原调研)已知角α的顶点在原点,始边与x 轴正半轴重合,点P (-4m,3m )(m >0)是角α终边上一点,则2sin α+cos α=________.[答案] 25[解析] 由条件知x =-4m ,y =3m ,r =x 2+y 2=5|m |=5m ,∴sin α=y r =35,cos α=x r =-45,∴2sin α+cos α=25.8.(2011·江西文)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上的一点,且sin θ=-255,则y =________.[答案] -8[解析] |OP |=42+y 2,根据任意角三角函数的定义得,y42+y2=-255,解得y =±8,又∵sin θ=-255<0及P (4,y )是角θ终边上一点, 可知θ为第四象限角,∴y =-8.9.(文)(2012·南昌调研)已知sin(α+π12)=13,则cos(α+7π12)的值为________.[答案] -13[解析] cos(α+7π12)=cos[(α+π12)+π2]=-sin(α+π12)=-13. (理)如图所示,角α的终边与单位圆(圆心在原点,半径为1的圆)交于第二象限的点A cos α,35,则cos α-sin α=________.[答案] -75[解析] 由条件知,sin α=35, ∴cos α=-45,∴cos α-sin α=-75. 10.(2011·广州模拟)A 、B 是单位圆O 上的动点,且A 、B 分别在第一、二象限.C 是圆O 与x 轴正半轴的交点,△AOB 为正三角形.记∠AOC =α.(1)若A 点的坐标为⎝ ⎛⎭⎪⎫35,45,求sin 2α+sin2αcos 2α+cos2α的值;(2)求|BC |2的取值范围.[解析] (1)∵A 点的坐标为⎝ ⎛⎭⎪⎫35,45,∴tan α=43,∴sin 2α+sin2αcos 2α+cos2α=sin 2α+2sin αcos α2cos 2α-sin 2α=sin 2αcos 2α+2×sin αcos α2-sin 2αcos 2α=tan 2α+2tan α2-tan 2α=169+832-169=20. (2)设A 点的坐标为(cos α,sin α), ∵△AOB 为正三角形,∴B 点的坐标为(cos(α+π3),sin(α+π3)),且C (1,0), ∴|BC |2=[cos(α+π3)-1]2+sin 2(α+π3)=2-2cos(α+π3).而A 、B 分别在第一、二象限, ∴α∈(π6,π2). ∴α+π3∈(π2,5π6), ∴cos(α+π3)∈(-32,0). ∴|BC |2的取值范围是(2,2+3).能力拓展提升11.(文)设α是第二象限角,且|sin α2|=-sin α2,则α2是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] C[解析] ∵α是第二象限角,∴α2是第一、三象限角, 又∵sin α2≤0,∴α2是第三象限角,故选C.(理)若α是第三象限角,则y =|sin α2|sin α2+|cos α2|cos α2的值为( )A .0B .2C .-2D .2或-2 [答案] A[解析] ∵α为第三象限角,∴α2为第二、四象限角 当α2为第二象限角时,y =1-1=0,当α2为第四象限角时,y =-1+1=0.12.(文)若θ∈⎝ ⎛⎭⎪⎫3π4,5π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] B [解析]解法1:如图,由单位圆中三角函数线可知,当θ∈⎝⎛⎭⎪⎫3π4,5π4时,sin θ+cos θ<0,sin θ-cos θ>0.∴复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应点在第二象限.解法2:∵cos θ+sin θ =2sin ⎝ ⎛⎭⎪⎫θ+π4,sin θ-cos θ=2sin ⎝ ⎛⎭⎪⎫θ-π4,又∵θ∈⎝ ⎛⎭⎪⎫3π4,5π4.∴π<θ+π4<3π2,∴sin ⎝ ⎛⎭⎪⎫θ+π4<0. ∵π2<θ-π4<π,∴sin ⎝ ⎛⎭⎪⎫θ-π4>0, ∴当θ∈⎝ ⎛⎭⎪⎫3π4,5π4时,cos θ+sin θ<0,sin θ-cos θ>0.故选B.(理)(2011·绵阳二诊)记a =sin(cos2010°),b =sin(sin2010°),c =cos(sin2010°),d =cos(cos2010°),则a 、b 、c 、d 中最大的是( )A .aB .bC .cD .d [答案] C[解析] 注意到2010°=360°×5+180°+30°,因此sin2010°=-sin30°=-12,cos2010°=-cos30°=-32,-π2<-32<0,-π2<-12<0,0<12<32<π2,cos 12>cos 32>0,a =sin(-32)=-sin 32<0,b =sin(-12)=-sin 12<0,c =cos(-12)=cos 12>0,d =cos(-32)=cos 32>0,∴c >d ,因此选C.[点评] 本题“麻雀虽小,五脏俱全”考查了终边相同的角、诱导公式、正余弦函数的单调性等,应加强这种难度不大,对基础知识要求掌握熟练的小综合训练.13.已知角θ的终边上有一点M (3,m ),且sin θ+cos θ=-15,则m 的值为________.[答案] -4[解析] r =32+m 2=m 2+9, 依题意sin θ=m m 2+9,cos θ=3m 2+9,∴m m 2+9+3m 2+9=-15.即m +3m 2+9=-15,解得m =-4或m =-94,经检验知m =-94不合题意,舍去. 故m =-4.14.(文)已知下列四个命题(1)若点P (a,2a )(a ≠0)为角α终边上一点,则sin α=255; (2)若α>β且α、β都是第一象限角,则tan α>tan β; (3)若θ是第二象限角,则sin θ2cos θ2>0; (4)若sin x +cos x =-75,则tan x <0. 其中正确命题的序号为________. [答案] (3)[解析] (1)取a =1,则r =5,sin α=25=255; 再取a =-1,r =5,sin α=-25=-255,故(1)错误.(2)取α=2π+π6,β=π3,可知tan α=tan π6=33,tan β=3,故tan α>tan β不成立,(2)错误.(3)∵θ是第二象限角,∴sin θ2cos θ2=12sin θ>0,∴(3)正确. (4)由sin x +cos x =-75<-1可知x 为第三象限角,故tan x >0,(4)不正确.(理)直线y =2x +1和圆x 2+y 2=1交于A ,B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则sin(α+β)=________.[答案] -45[解析] 将y =2x +1代入x 2+y 2=1中得,5x 2+4x =0,∴x =0或-45,∴A (0,1),B ⎝ ⎛⎭⎪⎫-45,-35,故sin α=1,cos α=0,sin β=-35,cos β=-45,∴sin(α+β)=sin αcos β+cos αsin β=-45. [点评] 也可以由A (0,1)知α=π2,∴sin(α+β)=sin ⎝ ⎛⎭⎪⎫π2+β=cos β=-45. 15.在平面直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫12,cos 2θ在角α的终边上,点Q (sin 2θ,-1)在角β的终边上,且OP →·OQ →=-12.(1)求cos2θ的值; (2)求sin(α+β)的值.[解析] (1)因为OP →·OQ →=-12, 所以12sin 2θ-cos 2θ=-12,即12(1-cos 2θ)-cos 2θ=-12,所以cos 2θ=23, 所以cos2θ=2cos 2θ-1=13.(2)因为cos 2θ=23,所以sin 2θ=13,所以点P ⎝ ⎛⎭⎪⎫12,23,点Q ⎝ ⎛⎭⎪⎫13,-1,又点P ⎝⎛⎭⎪⎫12,23在角α的终边上,所以sin α=45,cos α=35.同理sin β=-31010,cos β=1010, 所以sin(α+β)=sin αcos β+cos αsin β =45×1010+35×⎝ ⎛⎭⎪⎫-31010=-1010. 16.周长为20cm 的扇形面积最大时,用该扇形卷成圆锥的侧面,求此圆锥的体积.[解析] 设扇形半径为r ,弧长为l ,则l +2r =20, ∴l =20-2r ,S =12rl =12(20-2r )·r =(10-r )·r , ∴当r =5时,S 取最大值.此时l =10,设卷成圆锥的底半径为R ,则2πR =10, ∴R =5π, ∴圆锥的高h =52-⎝ ⎛⎭⎪⎫5π2=5π2-1π, V =13πR 2h =π3×⎝ ⎛⎭⎪⎫5π2·5π2-1π=125π2-12.1.(2011·深圳一调、山东济宁一模)已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4[答案] D[解析] 由sin 3π4>0,cos 3π4<0知角θ是第四象限的角,∵tan θ=cos 3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4. 2.一段圆弧的长度等于其圆内接正三角形的边长,则其所对圆心角的弧度数为( )A.π3B.2π3C. 3D. 2 [答案] C[解析] 设圆的半径为R ,由题意可知:圆内接正三角形的边长为3R ,∴圆弧长为3R .∴该圆弧所对圆心角的弧度数为3RR = 3.3.设a =log 12tan70°,b =log 12sin25°,c =log 12cos25°,则它们的大小关系为( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] ∵tan70°>tan45°=1>cos25°=sin65°>sin25°>0,y =log 12x 为减函数,∴a <c <b .4.如图所示的程序框图,运行后输出结果为( )A .1B .2680C .2010D .1340 [答案] C[解析] ∵f (n )=2sin ⎝ ⎛⎭⎪⎫n π3+π2+1=2cos n π3+1.由S =S +f (n )及n =n +1知此程序框图是计算数列a n =2cos n π3+1的前2010项的和.即S =⎝ ⎛⎭⎪⎫2cos π3+1+⎝ ⎛⎭⎪⎫2cos 2π3+1+⎝ ⎛⎭⎪⎫2cos 3π3+1+…+⎝ ⎛⎭⎪⎫2cos 2010π3+1 =2⎝ ⎛⎭⎪⎫cos π3+cos 2π3+cos 3π3+…+cos 2010π3+2010=2×335×cos π3+cos 2π3+cos 3π3+cos 4π3+cos 5π3+cos 6π3+2010=2010.5.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.[解析] ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x .∵x ≠0,∴x =±10,∴r =2 3. 当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5, ∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同理可求得sin α+1tan α=65-66.。
1.2角的概念推广基础练习题

1.2角的概念推广基础练习题一、单选题1.1000︒是以下哪个象限的角( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列各角中,与27︒角终边相同的是( ) A .63︒B .153︒C .207︒D .387︒3.若角α为第二象限角,则角2α为( )象限角A .第一B .第一或第二C .第二D .第一或第三 4.下列说法正确的是( ) A .第一象限角一定小于90︒ B .终边在x 轴正半轴的角是零角C .若360k αβ+=⋅︒(k Z ∈),则α与β终边相同D .钝角一定是第二象限角5.若角α与角β的终边关于y 轴对称,则必有( ) A .90αβ︒+=B .36090()k k Z αβ︒︒+=⋅+∈C .360()k k Z αβ︒+=⋅∈D .(21)180()k k Z αβ︒+=+⋅∈6.下列各角中,与角330°的终边相同的是( ) A .150°B .-390°C .510°D .-150°7.已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( ) A .{α|α为锐角} B .{α|α小于90°} C .{α|α为第一象限角}D .以上都不对8.与角2021︒终边相同的角是( ) A .221°B .2021-︒C .221-︒D .139︒9.若α是第四象限角,则180°+α一定是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角二、填空题 10.若角2θ的终边与4π的终边重合,且3θ∈[0,2)π,则4θ=_______________.11.2020是第______象限角.12.已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.13.终边在x 轴上的角α的集合是______.14.已知:①1240︒,②300-︒,③420︒,④1420-︒,其中是第一象限角的为_________(填序号).15.在0°到360°范围内与角380°终边相同的角α为________.三、解答题16.若角α是第二象限角,试确定2,2αα的终边所在位置.17.写出与α=-1910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.18.如图,分别写出适合下列条件的角的集合.(1)终边落在射线OB 上; (2)终边落在直线OA 上;(3)终边落在阴影区域内(含边界).参考答案1.D 【分析】首先写出终边相同的角的集合,再判断 【详解】10002360280=⨯+,280角的终边在第四象限,所以1000角的终边也是第四象限.故选:D 2.D 【分析】写出与27︒终边相同角的集合,取k 值得答案. 【详解】与27︒角终边相同的角的集合为{}27360,k k Z αα=︒+⋅︒∈, 取1k =,可得387α=︒. ∴与27︒角终边相同的是387︒. 故选:D 【点睛】本小题主要考查终边相同的角,属于基础题. 3.D 【分析】根据α的范围,求出2α的范围即可. 【详解】因为角α为第二象限角, 所以()22,2k x k k Z ππππ+<<+∈, 所以(),422x k k k Z ππππ+<<+∈,当2k n =()n Z ∈时,()22,422x n n n Z ππππ+<<+∈,此时2α是第一象限角;当21k n =+()n Z ∈时,()5322,422x n n n Z ππππ+<<+∈,此时2α是第三象限角; 所以2α是第一或第三象限角,【点睛】本题主要考查了象限角的范围,属于基础题. 4.D 【分析】分别由钝角、终边相同的角及象限角的概念逐一判断四个命题得答案. 【详解】A.第一象限角范围是2k πx 2k π,2k z π<<+,所以不一定小于90°.所以A 错误.B. 终边在x 轴正半轴的角α2k π,k z =.不一定是零角 . .所以B 错误C.若360,k αβ+=⋅︒则360,?k k z αβ=⋅︒-. 则α应与β-终边相同. .所以C 错误D.因为钝角的取值范围为,2ππ⎛⎫⎪⎝⎭,所以钝角一定是第二象限角. .所以D 正确. 故答案为D. 【点睛】本题考查了任意角的概念,象限角,是基础的概念题. 5.D 【分析】根据角α与角β的终边关于y 轴对称,有12129036090360,,k k k k Z αβ,即可得解.【详解】角α与角β的终边关于y 轴对称, 所以12129036090360,,k k k k Z αβ,21129036090360360180k k k k αβ,12,k k Z ∈即360180(21)180,kkkZ αβ,故选:D 【点睛】此题考查根据两个角的终边的对称关系求解角的关系,关键在于准确将对称关系转化成代数6.B 【解析】分析:由终边相同的角的公式,表示出与角330的终边相同的角,再进行验证即可. 详解:与角330的终边相同的角为()360330k k Z α=⋅+∈, 令2k =-,可得390α=-,故选B.点睛:本题主要考查终边相同的角,考查了终边相同的角的表示方法,意在考查对基础知识掌握的熟练程度,属于简单题. 7.D 【分析】先根据题意得出A ∩B ,再比较A ∩B 与小于90°的角、锐角和第一象限角的关系,这种问题可以通过列举出特殊角来得到结论. 【详解】解:∵A ={α|α小于90°},B ={α|α为第一象限角}, ∴A ∩B ={小于90°且在第一象限的角},对于A :小于90°的角不一定是第一象限的,不正确,比如﹣30°;对于B :小于90°的角且在第一象限的角不一定是0°~90°的角,不正确,例如﹣300°; 对于C :第一象限的角不一定是小于90°的角且在第一象限的角,不正确,例如380°, 故选D . 【点睛】此题考查了象限角、任意角的概念,交集及其运算,熟练掌握基本概念是解本题的关键. 8.A 【分析】根据终边相同的角相差360的整数倍,逐个判断即可. 【详解】2021360=5︒÷余221,故A 正确,B 、 C 、 D 中的角均不与角2021︒终边相同.故选:A . 【点睛】本题考查了终边相同角的概念,考查了简单的计算,属于概念题,本题属于基础题. 9.B 【分析】通过α是第四象限角,写出其对应角的集合,然后求出180°+α对应角的集合即可得到答案. 【详解】∵α是第四象限角,∴k ·360°-90°<α<k ·360°.∴k ·360°+90°<180°+α<k ·360°+180°. ∴180°+α在第二象限, 故选B. 【点睛】本题考查了象限角和轴线角,基本知识的考查,深刻理解基本概念是解题的关键. 10.24π或38π 【分析】由终边相同角的关系得出4,363k k Z θππ=+∈,再由3θ的范围确定θ,进而得出4θ.【详解】 由题意可知,2,24k k Z θππ=+∈,则4,363k k Z θππ=+∈ 3θ∈[0,2)π,6πθ=或32πθ=则348θπ=或424θπ= 故答案为:24π或38π【点睛】本题主要考查了终边相同的角性质的应用,属于基础题. 11.三 【分析】把2020︒写成360k α+︒,)0,360,k Z α⎡∈∈⎣,然后判断α所在的象限,则答案可求. 【详解】20205360220︒=⨯︒+︒,2020∴︒与220︒角的终边相同,为第三象限角.故答案为三. 【点睛】本题考查了象限角,考查了终边相同的角,是基础题. 12.{}|180********,n n n αα⋅︒+︒<<⋅︒+︒∈Z . 【分析】 首先确定0360范围内角α的范围,根据终边相同角的定义可求得满足题意的角α的范围. 【详解】 在0360范围内,终边落在阴影内的角α满足:30150α<<或210330α<<∴满足题意的角α为:{}{}30360150360210360330360k k k k αααα+⋅<<+⋅⋃+⋅<<+⋅{}{}302180150218021021803302180k k k k αααα=+⋅<<+⋅⋃+⋅<<+⋅ {}()(){}3021801502180302118015021180k k k k αααα=+⋅<<+⋅⋃++⋅<<++⋅{}30180150180n n αα=+⋅<<+⋅,k Z ∈,n Z ∈本题正确结果:{}30180150180,n n n Z αα+⋅<<+⋅∈ 【点睛】本题考查根据终边位置确定角所处的范围,重点考查了终边相同的角的定义,属于基础题. 13.{}|,k k Z ααπ=∈ 【分析】直接利用终边相同角的概念得到答案. 【详解】解:终边在x 轴上的角α的集合是{}|,k k Z ααπ=∈,故答案为:{}|,k k Z ααπ=∈ 【点睛】本题考查了角的终边,属于简单题. 14.②③④ 【分析】利用终边相同的角转化到0360︒︒判断.【详解】因为12401080160︒=︒+︒,30036060-︒=-︒+︒,42036060︒=︒+︒,1420436020-=-⨯+︒︒︒.所以②300-︒,③420︒,④1420-︒是第一象限角, 故答案为:②③④ 【点睛】本题主要考查象限角以及终边相同的角的应用,属于基础题 15.20° 【详解】与角380°终边相同的角α为380360,()k k Z α=+⋅∈, 又α在0°到360°,所以1,20.k α=-= 【点睛】1.若要确定一个绝对值较大的角所在的象限,一般是先将角化为)22()(0k k Z πααπ+≤<∈的形式,然后再根据α所在的象限予以判断.2.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 16.角2α的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限. 【分析】写出第二象限角的集合,然后利用不等式的基本性质得到2α,2α.【详解】 ∵角是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角2α的终边在第三象限或第四象限或y 轴的负半轴上. (2),422k k k Z παπππ+<<+∈,当2,k n n Z =∈时, ∴ 22,422n n n Z παπππ+<<+∈,∴2α的终边在第一象限. 当21,k n n Z =+∈时, ∴5322,422n n n Z παπππ+<<+∈, ∴2α的终边在第三象限. 综上所述,2α的终边在第一象限或第三象限.【点睛】本题考查了象限角和轴线角,关键是写出第二象限角的集合,是基础题 17.{β|β=k ·360°-1 910°,k ∈Z };元素β见解析 【分析】把α=-1 910°加上360k ⋅︒可得与α=-1 910°终边相同的角的集合,分别取k =4,5,6,求得适合不等式-720°≤β<360°的元素β. 【详解】与α=-1 910°终边相同的角的集合为{β|β=k ·360°-1910°,k ∈Z }. ∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴1111363636k ≤< (k ∈Z ),故取k =4,5,6.k =4时,β=4×360°-1910°=-470°; k =5时,β=5×360°-1910°=-110°; k =6时,β=6×360°-1910°=250°. 【点睛】该题考查的是有关角的概念的问题,涉及到的知识点有终边相同的角的集合,终边确定,落在某个范围内的角的大小的确定,属于简单题目.18.(1){}160360,S k k Z αα==+⋅∈;(2){}230180,S k k Z αα==+⋅∈;(3){}33018060180,S k k k Z αα=+⋅≤≤+⋅∈【分析】(1)可得出终边落在射线OB 上的一个角为60,利用终边相同的角的集合可得出终边落在射线OB 上的角的集合;(2)可得出终边落在射线OB 上的一个角为30,利用终边相同的角的集合可得出终边落在射线OB 上的角的集合;(3)分别写出第一象限和第三象限中阴影部分区域所表示的角的集合,然后将两个集合取并集可得出结果. 【详解】(1)终边落在射线OB 上的角的集合为{}160360,S k k Z αα==+⋅∈; (2)终边落在直线OA 上的角的集合为{}230180,S k k Z αα==+⋅∈; (3)终边落在第一象限中的阴影部分区域的角的集合为{}3036060360,k k k Z αα+⋅≤≤+⋅∈,终边落在第三象限中的阴影部分区域的角的集合为{}210360240360,k k k Z αα+⋅≤≤+⋅∈{}3018036060180360,k k k Z αα=++⋅≤≤++⋅∈()(){}30211806021180,k k k Z αα=++⋅≤≤++⋅∈,因此,终边落在阴影区域内的角的集合为{}33036060360,S k k k Z αα=+⋅≤≤+⋅∈⋃()(){}30211806021180,k k k Z αα++⋅≤≤++⋅∈ {}3018060180,k k k Z αα=+⋅≤≤+⋅∈.【点睛】本题考查角的集合的表示,解题的关键就是要找出阴影部分区域边界线对应的角的集合,考查分析问题和解决问题的能力,属于基础题.答案第9页,总9页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的概念的推广练习题
班级________ 姓名________
一、选择题:
1、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360° 2.若是第四象限角,则
2
α
是( ). A .第二象限角 B .第三象限角 C .第一或第三象限角 D .第二或第四限角 3、终边在第二象限的角的集合可以表示为: ( ) A .{α∣90°<α<180°}
B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }
C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }
D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z }
4、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )
A .B=A ∩C
B .B ∪C=
C C .A ⊂C
D .A=B=C
5.下列各角中,与-1050°的角终边相同的角是 ( )
︒︒︒︒30-D C30 60-B. 60.A
6.若α是锐角,则180°-α是( )
A.第一象限角
B.第二角限角
C.第三象限角
D.第四象限角 7、如果x 是第一象内的角,那么( )
(A )x 一定是正(B )x 一定是锐角(C )-3600x-2700或00x900 (D )xxk3600xk3600+900 kZ
8、设A=为正锐角,B=为小于900的角}, C={为第一象限的角},D={为小于900的正角}。
则下列等式中成立的是( )
(A )A=B (B )B=C (C )A=C (D )A=D
二、填空题:
1.一昼夜时针转过多少度
2.跳水运动员后滚翻两周半跳水,转过多少度
3、-1120°角所在象限是______________________
4、与角-1560°终边相同角的集合中最小的正角是 .
5.将-885°化为α + k ·360°(0°<α<360°,k ∈Z )的形式是______________________
6、终边在x 轴上的角的集合是____________________;终边在y 轴上的角的集合是_________________。
三、解答题:
1、写出与-2250角终边相同角的集合,并在这个集合中求出-7200~10800内的所有角。
2、求θ,使θ与
900-角的终边相同,且[
]
1260180,
-∈θ.
3、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)
210-; (2)731484'-
.
4、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤α<720°的元素α写出来.
(1)-15° (2) 124°30′。