高考数学-三角函数半角公式
三角函数半角公式

三角函数半角公式复习重点:半角角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))复习难点:半角公式的应用复习内容:倍角和半角相对而言,两倍角余弦公式的变形可引出半角公式.推导过程中可得到一组降次公式,即,进一步得到半角公式:降次公式在三角变换中应用得十分广泛,“降次”可以作为三角变换中的一个原则.半角公式在运用时一定要注意正、负号的选取,而是正是负取决于所在的象限.而半角的正切可用α的正弦、余弦表示,即:.这个公式可由二倍角公式得出,这个公式不存在符号问题,因此经常采用.反之用tan也可表示sinα, cosα, tanα,即:,,这组公式叫做“万能”公式.教材中只要求记忆两倍角公式,其它公式并没有给出,需要时可根据二倍角公式及同角三角函数公式推出.例3.化简求值:(1) csc10°-sec10°(2) tan20°+cot20°-2sec50°解:(1) csc10°-sec10°(2) tan20°+cot20°-2sec50°例4.求:sin220°+cos250°+sin30°sin70°解:sin220°+cos250°+sin30°sin70°例5.已知:.求:cos4θ+sin4θ的值.解:∵,∴, 即,即,∴cos4θ+sin4θ例6.求cos36°·cos72°的值.解:cos36°·cos72°例7.求:的值.解:上述两题求解方法一致,都是连续应用二倍角的正弦公式.而能采用这种方法求值的题目要求也是严格的,要满足(1)余弦相乘,(2)后一个角是前一个角的两倍,(3)最大角的两倍与最小值的和(或差)是π.满足这三个条件即可采用这种方法.例8.已知:2cosθ=1+sinθ,求.方法一: ∵2cosθ=1+sinθ,∴∴或,∴,∴,∴或=2.方法二:∵2cosθ=1+sinθ,∴,∴,∴或,∴或=2.例9.已知:,求:tanα的值.解:∵,∴,∵0≤α≤π,∴,∴(1)当时,,则有,∴,∴,∴,∴.(2)当,则有,∴,∴,∴.注意:1与sinα在一起时,1往往被看作,而1与cosα在一起时,往往应用二倍角余弦公式把1去掉.例10.已知:sinθ, sinα, cosθ为等差数列;sinθ,sinβ, cosθ为等比数列.求证:2cos2α=cos2β.证明:∵,∴∴4sin2α=1+2sin2β∴2-4sin2α=2-1-2sin2β∴2cos2α=cos2β.课后练习:1.若,则().A、P QB、P QC、P=QD、P∩Q=2.若A为ΔABC的内角,,则cos2A=().A、B、C、D、3.若,则sin2θ=().A、B、C、D、4.若,则sinθ=().A、B、C、D、-5.若,则=().A、B、C、1D、-16.若,则cosα=________.7. 若θ为第二象限角,且,则=_____. 8.已知sinA+cosA=2sinB. 求证:cos2B=cos2.参考答案:1.C2.B3.C4.C5.B6.7. 6。
半角的正弦余弦正切公式

半角的正弦余弦正切公式正弦的半角公式是指,对于任意角x,有sin(x/2) = ±√((1 - cos x)/2)。
余弦的半角公式是指,对于任意角x,有cos(x/2) = ±√((1 + cos x)/2)。
正切的半角公式是指,对于任意角x,有tan(x/2) = ±√((1 - cos x)/(1 + cos x))。
这些半角公式在三角学中起到了重要的作用,可以将一个角的正弦、余弦或正切值表示为另一个角的正弦、余弦或正切值的函数。
这些公式可以用来简化计算,减少计算复杂度。
我们来证明正弦的半角公式:根据泰勒级数展开,我们知道sin x = x - x^3/3! + x^5/5! -x^7/7! + ...。
将x替换为(2y),则有sin (2y) = (2y) - (2y)^3/3! + (2y)^5/5! - (2y)^7/7! + ...=2y-(8y^3/3!)+(32y^5/5!)-(128y^7/7!)+...再将y替换为(x/2),我们有sin x = sin (2(x/2))=2(x/2)-(8((x/2)^3)/3!)+(32((x/2)^5)/5!)-(128((x/2)^7)/7!)+...根据幂函数的乘法法则和阶乘的定义,我们可以简化上述等式:sin x = 2(x/2) - (8(x^3/2^3)/3!) + (32(x^5/2^5)/5!) -(128(x^7/2^7)/7!) + ...=x-(x^3/3!)+(x^5/5!)-(x^7/7!)+...然后我们考虑sin(x/2)的幂级数展开:sin (x/2) = (x/2) - ((x/2)^3/3!) + ((x/2)^5/5!) -((x/2)^7/7!) + ...我们可以将sin x的幂级数展开与sin (x/2)的幂级数展开进行比较:x-(x^3/3!)+(x^5/5!)-(x^7/7!)+...=(x/2)-((x/2)^3/3!)+((x/2)^5/5!)-((x/2)^7/7!)+...通过对比可以看到,两个展开式的各项对应系数相等。
高考数学中的三角函数半角公式与倍角公式

高考数学中的三角函数半角公式与倍角公式三角函数是高中数学中一个重要的概念,而其中就包括三角函数的半角和倍角公式。
这两个公式在高考数学中非常重要,在考试中经常会有相关的问题出现。
本文将详细介绍三角函数的半角公式与倍角公式。
一、三角函数的定义三角函数是以角度为自变量,以角的正弦、余弦、正切、余切、正割、余割为函数值的六种函数。
其中,正弦、余弦、正切、余切是最常用的四种三角函数,它们在数学、物理等各个领域都有着广泛的应用。
二、半角公式的定义三角函数的半角公式是指在一个角的基础上,通过一定的运算,得到一个新的角度进行求解。
具体的公式如下:sin(x/2)=[√(1+cosx)]/2cos(x/2)=[√(1+sinx)]/2tan(x/2)=[sinx]/[1+cosx]其中,x为角度值。
三、半角公式的应用半角公式常常用于解决三角函数运算中的复杂问题。
例如,在解决辨识正负号的问题时,可以使用半角公式将一个角分解成两个半角,进而得到正确的结果。
此外,半角公式还可以用于求解一些特殊角,例如,sin45°=sin(90°/2)=[√(1+cos90°)]/2=[√(1+0)]/2=1/√2。
四、倍角公式的定义三角函数的倍角公式是指将一个角度值翻倍,得到一个新的角度值进行求解。
具体的公式如下:sin 2x = 2sinxcosxcos 2x = cos²x - sin²xtan 2x = (2tanx) / (1 - tan²x)其中,x为角度值。
五、倍角公式的应用倍角公式常常用于解决一些常见的问题,例如,求两个角的正弦、余弦、正切、余切的和与差。
此外,倍角公式还可以用于化简三角函数的表达式,从而简化计算过程。
例如,为了解决sin 120°sin 240°sin 360°的问题,可以用cos²60°减去1/4的方式,化简成了(√3/2)²-1/4,从而可以快速求解出答案。
高中数学三角函数常用公式

高中数学三角函数常用公式三角函数是高中数学中非常重要的内容,掌握了三角函数的常用公式,能够对解题提供很大的帮助。
下面是一些常用的三角函数公式。
1.基本公式:正弦函数(sin):sin(A+B) = sinA * cosB + cosA * sinBsin(A-B) = sinA * cosB - cosA * sinBsin2A = 2 * sinA * cosA余弦函数(cos):cos(A+B) = cosA * cosB - sinA * sinBcos(A-B) = cosA * cosB + sinA * sinBcos2A = cos^2A - sin^2A = 2cos^2A-1 = 1-2sin^2A正切函数(tan):tan(A+B) = (tanA + tanB) / (1 - tanA * tanB)2.万能公式:sinA = 2tan(A/2) / (1 + tan^2(A/2))cosA = (1 - tan^2(A/2)) / (1 + tan^2(A/2))tanA = 2tan(A/2) / (1 - tan^2(A/2))3.诱导公式:s in(π/2 - A) = cosAcos(π/2 - A) = sinAtan(π/2 - A) = 1 / tanAcot(π/2 - A) = 1 / tanAsec(π/2 - A) = 1 / cosAcsc(π/2 - A) = 1 / sinA 4.任意角公式:sin(-A) = -sinAcos(-A) = cosAtan(-A) = -tanAtan(A + π) = tanAsin(π - A) = sinAcos(π - A) = -cosAsin(A + π) = -sinAcos(A + π) = -cosAsin(2π -A) = -sinAcos(2π - A) = cosAsin(A + 2π) = sinAcos(A + 2π) = cosA5.等差关系:sin(A + nπ) = sinAcos(A + nπ) = cosAtan(A + nπ) = tanA6.倍角公式:sin(2A) = 2sinAcosAcos(2A) = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan(2A) = (2tanA) / (1 - tan^2A)7.半角公式:sin(A/2) = ±√((1 - cosA) / 2)cos(A/2) = ±√((1 + cosA) / 2)tan(A/2) = ±√((1 - cosA) / (1 + cosA))8.三角恒等式:sin^2A + cos^2A = 11 + tan^2A = sec^2A1 + cot^2A = csc^2A这些是高中数学中常用的三角函数公式,掌握了这些公式,能够在解题过程中准确、快速地计算三角函数的值,帮助解决许多复杂的问题。
高中生必备实用三角函数公式总表

高中生必备实用三角函数公式总表高中数学中,三角函数是一个非常重要的概念。
通过掌握三角函数的相关公式和性质,可以解决许多与角度和三角形相关的问题。
本文将为高中生提供一个实用的三角函数公式总表,以帮助他们更好地学习和理解这一领域。
一、基本三角函数公式:1. 正弦函数(Sine function):sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinB2. 余弦函数(Cosine function):cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinB3. 正切函数(Tangent function):tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)二、和差公式:1. 正弦函数公式:sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinBsin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinBcos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB) tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)三、倍角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan2A = (2 · tanA) / (1 - tan2A)四、半角公式:1. 正弦函数公式:sin(A/2) = ±√((1 - cosA) / 2)2. 余弦函数公式:cos(A/2) = ±√((1 + cosA) / 2)3. 正切函数公式:tan(A/2) = ±√((1 - cosA) / (1 + cosA))五、和角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosA2. 余弦函数公式:cos2A = cos2A - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)六、其他常见公式:1. 正切与余切的关系:tanA = 1 / cotAcotA = 1 / tanA2. 正弦与余弦的关系:sin2A + cos2A = 13. 正切与正弦、余弦的关系:tanA = sinA / cosA通过掌握这些三角函数的公式,高中生可以更好地解决与角度和三角形相关的问题。
高考数学三角函数公式

高考数学三角函数公式一、基本公式:1. 三角函数的定义:正弦函数:sinθ = 对边/斜边余弦函数:cosθ = 邻边/斜边正切函数:tanθ = 对边/邻边2. 三角函数的基本关系:sinθ/cosθ = tanθsin^2θ + cos^2θ = 11 + tan^2θ = sec^2θ1 + cot^2θ = csc^2θ3. 三角函数的正负关系:在单位圆上,角度θ对应的坐标(x, y),则:sinθ的正负由y的正负决定;cosθ的正负由x的正负决定;tanθ的正负由y的正负决定,x为0时,tanθ不存在。
4. 三角函数的周期关系:sin(θ + 2πn) = sinθcos(θ + 2πn) = cosθtan(θ + πn) = tanθ(n为整数)5. 三角函数的特殊值:sin0° = 0, sin30° = 1/2, sin45° = √2/2, sin60° = √3/2, sin90° = 1 cos0° = 1, cos30° = √3/2, cos45° = √2/2, cos60° = 1/2, cos90° =tan0° = 0, tan30° = √3/3, tan45° = 1, tan60° = √3, tan90°不存在二、和差化积公式:1. sin(A ± B) = sinAcosB ± cosAsinB2. cos(A ± B) = cosAcosB ∓ sinAsinB3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)4. cot(A ± B) = (cotAcotB ∓ 1) / (cotB ± cotA)三、倍角公式:1. sin2θ = 2sinθcosθ2. cos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θ3. tan2θ = (2tanθ) / (1 - tan^2θ)四、半角公式:1. sin(θ/2) = ±√[(1 - cosθ) / 2]2. cos(θ/2) = ±√[(1 + cosθ) / 2]3. tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]五、和差化方公式:1. sinA + sinB = 2sin[(A + B)/2]cos[(A - B)/2]2. sinA - sinB = 2cos[(A + B)/2]sin[(A - B)/2]3. cosA + cosB = 2cos[(A + B)/2]cos[(A - B)/2]4. cosA - cosB = -2sin[(A + B)/2]sin[(A - B)/2]六、积化和差公式:1. sinAcosB = 1/2[sin(A + B) + sin(A - B)]2. cosAsinB = 1/2[sin(A + B) - sin(A - B)]3. cosAcosB = 1/2[cos(A + B) + cos(A - B)]4. sinAsinB = -1/2[cos(A + B) - cos(A - B)]以上即为高考数学中常用的三角函数公式,掌握这些公式可以帮助你更好地解答相关题目。
高考数学简单的三角恒等变换
◈ 对点演练 ◈
π
[解析] sin 15°-cos 15°=2×=2(sin 30°sin 15°-cos 30°cos 15°)=-2cos(30°+15°)=-2cos 45°=-.
[解析] f(x)=sin2x-=-,故f(x)的最小正周期T==π.
3. [教材改编] 化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)= .
课堂考点探究
(2)[2021·江西鹰潭一模] 已知tan α=,则= .
2
[解析] ====2.
角度2 给角求值例3 计算:= .
课堂考点探究
[思路点拨]先利用诱导公式,再利用两角和与差的余弦公式求解即可.[解析] ========2.
2
[总结反思]该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.
D
[总结反思]给值求值是指已知某个角的三角函数值(或三角函数式的值)求与该角相关的其他三角函数值(或三角函数式的值)的问题,解题关键在于“变角”,使角相同或具有某种关系.
课堂考点探究
课堂考点探究
变式题 (1)已知=,则tan α+的值为 .
-8
[解析] ∵==cos α-sin α=,∴1-2sin αcos α=, ∴sin αcos α=-,则tan α+=+===-8.
课堂考点探究
探究点一 三角函数式的化简
[思路点拨] 将1变换为sin22+cos22,将cos 4和sin 4利用二倍角公式拆开,使得根号下的式子变成完全平方的形式,再根据符号整理得结果;[解析] ∵===sin 2+ cos 2,====-2cos 2, ∴2+=2sin 2+2cos 2-2cos 2=2sin 2,故选B.
半角公式和倍角公式
半角公式和倍角公式一、引言半角公式和倍角公式是在数学中常用的一类公式,主要应用于角和三角函数的计算中。
这两类公式在数学的各个分支中都有着广泛的应用,特别是在解决关于三角函数的问题时,半角公式和倍角公式是非常有用的工具。
二、半角公式半角公式是指通过已知的角度来计算其一半角度的公式。
在三角函数中,我们经常用到的三角函数有正弦函数、余弦函数和正切函数。
下面分别介绍半角公式在这三个函数中的应用:1. 正弦函数的半角公式:正弦函数的半角公式可以表示为:sin(x/2) = ±√[(1 - cosx) / 2]。
这个公式表示了一个角的一半角度的正弦值与其余弦值的关系。
2. 余弦函数的半角公式:余弦函数的半角公式可以表示为:cos(x/2) = ±√[(1 + cosx) / 2]。
这个公式表示了一个角的一半角度的余弦值与其余弦值的关系。
3. 正切函数的半角公式:正切函数的半角公式可以表示为:tan(x/2) = ±√[(1 - cosx) / (1 + cosx)]。
这个公式表示了一个角的一半角度的正切值与其余弦值的关系。
半角公式在解决一些特定三角函数问题时非常有用,可以帮助我们减小计算量,简化推导过程。
三、倍角公式倍角公式是指通过已知的角度来计算其两倍角度的公式。
在三角函数中,三角函数的倍角公式对应于正弦函数、余弦函数和正切函数。
下面分别介绍倍角公式在这三个函数中的应用:1. 正弦函数的倍角公式:正弦函数的倍角公式可以表示为:sin2x = 2sinxcosx。
这个公式表示了一个角的两倍角度的正弦值与其本身正弦值的关系。
2. 余弦函数的倍角公式:余弦函数的倍角公式可以表示为:cos2x = cos^2x - sin^2x。
这个公式表示了一个角的两倍角度的余弦值与其本身正弦和余弦值之间的关系。
3. 正切函数的倍角公式:正切函数的倍角公式可以表示为:tan2x = (2tanx) / (1 -tan^2x)。
三角函数半角公式大全及推导过程
三角函数半角公式大全及推导过程
三角函数的半角公式包括半角正弦公式、半角余弦公式、半角正切公式等等,接下来分享具体的三角函数半角公式大全及推导过程。
三角函数的半角公式
sin(α/2)=±√((1-cБайду номын сангаасsα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/((1+cosα))
三角函数半角公式推导过程
已知公式
sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα
cos2α=cos(α+α)=cosαcosα-sinαsinα=cos²α-sin²α=2cos²α-1=1-2sin²α①
半角正弦公式
由等式①,整理得:sin²α=1-cosα/2
将α/2带入α,整理得:sin²α/2=1-cosα/2
开方,得sinα/2=±√((1-cosα)/2)
半角余弦公式
由等式①,整理得:cos2α+1=2cos²α
将α/2带入,整理得:cos²α/2=cosα+1/2
开方,得cos(α/2)=±√((1+cosα)/2)
半角正切公式
tan(α/2)=[sin(α/2)]/[cos(α/2)]=±√((1-cosα)/((1+cosα))
三角函数的万能公式
sin(α)=[2tαn(α/2)]/[1+tαn2(α/2)]
cos(α)=[1-tαn2(α/2)]/[1+tαn2(α/2)]
半角公式及万能公式
半角公式及万能公式在我们学习三角函数的奇妙世界里,半角公式和万能公式就像是两把神奇的钥匙,能帮助我们打开许多难题的大门。
先来说说半角公式吧。
这半角公式啊,就像是个小巧玲珑的魔法工具。
比如说,sin(α/2) = ±√((1 - cosα) / 2) ,cos(α/2) = ±√((1 + cosα) / 2) ,tan(α/2) = ±√((1 - cosα) / (1 + cosα)) 。
你看这些公式,是不是感觉有点复杂?其实啊,只要多做几道题,多练练手,就会发现它们其实也没那么难。
我记得有一次,我在给学生们讲解半角公式的时候,有个学生一脸迷茫地看着我,说:“老师,这公式怎么这么绕啊,我都晕了。
”我笑着对他说:“别着急,咱们一起来慢慢琢磨。
”于是,我给他举了个例子。
假设我们有一个角α,它的余弦值cosα = 3/5 ,那么我们来求sin(α/2) 。
首先,我们要判断α/2 所在的象限。
因为cosα 是正的,所以α在第一或第四象限。
那么α/2 就在第一或第三象限。
接下来,我们根据半角公式sin(α/2) = ±√((1 - cosα) / 2) ,把cosα = 3/5 代入进去,得到sin(α/2) = ±√((1 - 3/5) / 2) = ±√(1/5) 。
因为α/2 在第一或第三象限,所以sin(α/2) 是正的,最终结果就是√(1/5) 。
通过这个例子,那个学生恍然大悟,脸上露出了开心的笑容。
这让我深深体会到,只要把抽象的公式通过具体的例子展现出来,再难的知识也能变得容易理解。
说完半角公式,咱们再聊聊万能公式。
万能公式那可真是万能啊!它能把三角函数的各种形式都统一起来。
万能公式包括:sinα =2tan(α/2) / (1 + tan²(α/2)) ,co sα = (1 - tan²(α/2)) / (1 + tan²(α/2)) ,tanα =2tan(α/2) / (1 - tan²(α/2)) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学-三角函数半角公式
复习重点:半角角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
复习难点:半角公式的应用
复习内容:
倍角和半角相对而言,两倍角余弦公式的变形可引出半角公式.推导过程中可得到一组降次公式,即,进一步得到半角公式:
降次公式在三角变换中应用得十分广泛,“降次”可以作为三角变换中的一个原则.半角公式在运用时一定要注意正、负号的选取,而是正是负取决于所在的象限.而半角的正切可用α的正弦、余弦表示,即:.这个公式可由二倍角公式得出,这个公式不存在符号问题,因此经常采用.反之用tan也可表示sinα, cosα, tanα,即:
,,这组公式叫做“万能”公式.
教材中只要求记忆两倍角公式,其它公式并没有给出,需要时可根据二倍角公式及同角三角函数公式推出.
例3.化简求值:(1) csc10°-sec10°(2) tan20°+cot20°-2sec50°
解:(1) csc10°-sec10°
(2) tan20°+cot20°-2sec50°
例4.求:sin220°+cos250°+sin30°sin70°
解:sin220°+cos250°+sin30°sin70°
例5.已知:.求:cos4θ+sin4θ的值.
解:∵,
∴, 即,
即,∴cos4θ+sin4θ
例6.求cos36°·cos72°的值.
解:cos36°·cos72°
例7.求:的值.
解:
上述两题求解方法一致,都是连续应用二倍角的正弦公式.而能采用这种方法求值的题目要求也是严格的,要满足(1)余弦相乘,(2)后一个角是前一个角的两倍,(3)最大角的两倍与最小值的和(或差)是π.满足这三个条件即可采用这种方法.
例8.已知:2cosθ=1+sinθ,求.
方法一: ∵2cosθ=1+sinθ,∴
∴或,∴,
∴,∴或=2.
方法二:∵2cosθ=1+sinθ,∴,
∴,
∴或,∴或
=2.
例9.已知:,求:tanα的值.
解:∵,∴,∵0≤α≤π,∴,∴
(1)当时,,
则有,∴,∴,∴,
∴.
(2)当,则有,
∴,∴,∴.
注意:1与sinα在一起时,1往往被看作,而1与cosα在一起时,往往应用二倍角余弦公式把1去掉.
例10.已知:sinθ, sinα, cosθ为等差数列;sinθ,sinβ, cosθ为等比数列.求证:2cos2α=cos2β.
证明:∵,∴
∴4sin2α=1+2sin2β∴2-4sin2α=2-1-2sin2β∴2cos2α=cos2β.
课后练习:
1.若,则().
A、P Q
B、P Q
C、P=Q
D、P∩Q=
2.若A为ΔABC的内角,,则cos2A=().
A、B、C、D、
3.若,则sin2θ=().
A、B、C、D、
4.若,则sinθ=().
A、B、C、D、-
5.若,则=().
A、B、C、1D、-1
6.若,则cosα=________.
7. 若θ为第二象限角,且,则=_____. 8.已知sinA+cosA=2sinB. 求证:cos2B=cos2.
参考答案:
1.C
2.B
3.C
4.C
5.B
6.
7. 6。