梁端弯矩调幅计算 1.2
框架梁梁端弯矩调幅计算方法研究

口:20f 1一止≠1% 、P。,
式中:P一受拉纵向配筋率; P 7一受压纵向钢筋配筋率; P6一平衡配筋率( 平衡梁开裂弯矩的配筋率) 。 用上式进行负弯矩调幅时,弯矩减小后截面的 P或 P—P’应 等于或 小于 0.5 p6。 当P或 P—P’大 于 O. 5p6,不能进行调幅。 ( 2) 欧洲规范 欧洲规范ENl 992—1—1:2004规定用6表示弯 矩调幅系数,为调幅后的弯矩与弹性弯矩的比值, 这与美 国规范不同 即:口=1— 6。其规定 ,对主要承 受弯矩的板,相邻板跨的跨长比应为0.5—2.0。当 满足下列条件时,不需检验板塑性铰的转动能力而 直接进行弯矩调幅:
( 2) 跨中正弯矩随着梁刚度系数的增大而增 大,即艿’随着梁刚度系数的增大而增大。当刚度系 数为0.5 时,梁端支座处6 7=0.932;当 刚度系数取 2.0时,梁端支座处6’=1.120 7。 3.1.2门式框架分段梁
图4 门式框架分段梁各段刚度系数图
表2 门式框架梁分七段弯矩变化表
随着梁两端支座处梁段刚度系数减小,梁端支座负弯
( 1) 由图5可见分段梁改变梁端支座处刚度系 数可以实现梁弯矩调幅,且跨中间段刚度系数分别为 1.0、0.8、0.6时,梁两端支座刚度系数为0.4时,可以 分别使得梁端支座弯矩调幅16.3%,14.5%,11.7%。
( 2) 对比图6和图7可见,传统的梁弯矩调幅 只对 梁进行 调幅 ,并未 调节柱 ,梁柱 节点 显然不 平 衡;而分段梁对端支座处梁进行刚度调节,既可以 实现梁弯矩调幅,又可以使得梁柱节点平衡。
1 引言
钢筋混凝土框架结构因其自身的材料性质,决 定了以目前的计算手段,在日常设计计算分析时只 能用 线弹性 方法 ,在结 构达到 承载能 力极 限状态 时 计算与实际会有较大差异,主要表现在构件刚度的 相对变化而引起内力重分布方面。因此在设计时 应尽量考虑这种差异,能更合理地估计结构的承载 能力 和使用 阶段 性能, 充分发 挥结构 潜力 ,收到 节 约材 性、简 化计 算、方 便施工 的效果 。目 前常用 的 办法是对梁的支座负 弯矩进行弯矩调幅。
第五章多层框架内力和侧移计算简介

120
100(80)50
2、结构的抗震等级 地震作用下,钢筋混凝土结构的地震反应有下列特点:
(1)、地震作用越大,房屋的抗震要求越高; (2)、结构的抗震能力主要取决于主要抗侧力构件的性 能,结构形式不同,抗震要求也不同。 (3)、房屋越高,地震反应越大,抗震要求越高。
抗震等级是确定结构构件抗震计算和抗震措施的标准。 根据设防烈度、房屋高度、建筑类别、结构类型及构件在 结构中的重要程度确定,共分四个等级,一级最高。
9
≤ 25
一 一
≤ 50
一 一
注:①.建筑场地为Ⅰ类时,除6度外可按表内降低一度所对应的 抗震等级采取抗震构造措施,但相应的计算要求不应降低;
②.接近或等于高度分界时,应允许结合房屋不规则程度及场 地、地基条件确定抗震等级。
3、防震缝与抗撞墙布置
➢高层建筑避免采用不规则的建筑结构方案,尽量 不设防震缝。
(c) min 见下表
抗震等级
类别
一
二
三
四
中柱和边柱
1.0
4)框架梁下部纵向钢筋在端节点的锚固要求与中间 节点相同。
3 框架柱纵向钢筋在顶层节点的锚固 (1)框架柱纵筋在中间节点的锚固
梁高足够时
梁高不够时
板厚>80mm时
(2)框架柱纵筋在顶层端节点的锚固
三、箍筋
1.在框架节点内应设置水平箍筋,箍筋应符合柱箍 筋的构造规定,但间距不宜大于250mm。
2.对四边均有梁与之相连的中间节点,节点内可只 设置沿周边的矩形箍筋,不必设置复合箍筋。
2)框架-抗震墙结构房屋的防震缝宽度可采用
框架规定数值的50%,且不宜小于70mm。
3)防震缝两侧结构类型不同时,按需要较 宽防震缝的结构类型考虑和按低的房屋高 度计算缝宽。
结构设计中PKPM软件的参数选择

结构设计中PKPM软件的参数选择PKPM 软件在工程设计中已被结构专业设计人员广泛应用,其方便快捷的建模方法和强大的计算能力使得设计人员在较短周期内完成较大工作量的结构设计任务成为可能。
值得注意的是,结构分析软件不论其处理功能如何完善,只能作为辅助设计工具,不能完全代替设计人员的作用。
PKPM只能作为辅助设计工具,对于建模过程中参数以及步骤的选取还需要设计人员进行操作,由此可知若设计人员对软件操作不当,将会导致软件的计算结果有误,另外,还要求设计人员能判别计算结果的合理性。
本文结合PKPM结构设计软件功能及相关规范,就使用PKPM软件进行建筑结构设计时容易出现的错误进行分析和讨论,并且在建筑结构设计中如何科学合理地应用PKPM软件提出了自己的看法,一、参数选取1.1地震信息。
在PKPM中水平地震力的输入,主要通过建模时输入地震信息来实现,由此可知道地震信息参数输入的正确与否将会直接影响结构受承受地震力大小的正确性。
而地震信息中某些参数的输入较难确定,对于没有理解各参数的设计者来说,容易造成参数的输入错误。
笔者认为,在地震信息对话框中容易出现输入错误的参数如下,并就这些错误的改正提出笔者的建议:(1)单、双向水平地震作用的选取。
对于该参数的勾选主要根据结构本身存在的质量和刚度是否对称来判断,若结构质量和刚度存在明显不对称则应勾选双向水平地震力,考虑双向水平地震作用下的扭转效应。
但经分析可发现,考虑双向水平地震作用必然会比单向水平地震作用的计算结果偏大,从而导致梁柱的配筋量偏大。
以一个不规则的三层普通框架结构为例,计算结果表明考虑双向水平地震作用比考虑单向水平地震作用的柱配筋明显增加,可见该参数对于结构用钢量也有明显影响,因此应慎重考虑结构的单双向水平地震作用。
(2)耦联选取。
目前绝大多数结构都存在不对称性,加上结构本身就存在相互耦联的关系,因此笔者建议耦联选项应选取,而无论结构质量、刚度的对称与否。
2010版混凝土规范关于弯矩调幅

下调后1跨跨中最大弯矩其值为(图中红线所示)
M 1 (0.409l ) 2 ( g q) (0.409l ) 2 0.5( g q) 0.0836( g q)l 2
M B max
曲线1
按弹性方法,边跨跨 内的最大正弯矩出现 于活荷载布置在一、 三、五跨(兰色曲线), 其值为:
M0为按简支梁确定的跨度中点弯矩。
跨中弯矩计算:法一
——附加三角形弯矩图
附加三角形弯矩图
M B 0.038Fl
这相当于在原来弹性弯矩图形上叠加上一 个高度为
M B 0.038Fl 的倒三角形
此时跨度中点的弯矩改变成
1 1 M 1` M 1 ΔM B 0.156 Fl 0.038Fl 0.175Fl 2 2
M
A
M B / 2 M1 ' M 0 M1 ' M 0
MA MB 2
MB A B
MB 最不利弯 矩
M u 0.15Fl
M0 M 1 0.5M
a
平衡关系求得 的弯矩
M 1
具体地
弯矩 弹性分析得出的最不利 M1 ' Max MA MB 1.02M 0 2
fl???????弯矩调幅法的基本规定弯矩调幅法的基本规定1连续梁任一跨调幅后的两端支座弯矩mamb绝对值的平均值加上跨度中点的弯矩m1?之和应不小于该跨按简支梁计算的跨中弯矩m0即??220101babammmmmmmm???????abmb?mb平衡关系求得的弯矩最不利弯矩??1m?flmu15
1.05h0 1.05h0 1.05h0
箍筋面积增大 的区域
箍筋面积增大的 区域
弯矩调幅

箍筋面积增大 的区域
箍筋面积增大的 区域
考虑内力重分布后,结构构件必须有足够 的抗剪能力。 并且应注意,经过弯矩调幅以后,结构在 正常使用极限状态下不应出现塑性铰。
连续梁各控制截面的剪力设计值
可按荷载最不利布置,根据调整后的支 座弯矩用静力平衡条件计算;也可近似 取用考虑荷载最不利布置按弹性方法算 得的剪力值。
求:采用弯矩调幅法确定该梁的内力。
q1 24 KN / m
q2 q3 18KN / m
g 8KN / m
4.5m
4.5m
4.5m
梁的计算简图
弹性弯矩值
可以看出,和梁上各控制截面最大弹性弯矩 相对应的荷载组合是各不相同的,因此调整 弯矩时,一方面要尽量使各控制截面的配筋 能同时被充分利用。另一方面则要调整两个 内支座截面和两个边跨的跨内截面的弯矩, 使两支座或两边跨内的配筋相同或相近,这 样可方便施工。
MB A 平衡关系求得 的弯矩 B MB
最不利弯矩
弯矩调幅法的基本规定2、3、4
(1)钢筋宜采用Ⅱ、Ⅲ热轧钢筋。 (2)调幅系数≤25%。 (3) 0.1≤ ξ=x/h0 ≤0.35 (4)调幅后必须有足够抗剪能力。 (5)按静力平衡计算跨中弯矩,支座调幅 后跨中弯矩不小于弹性计算值。
使用弯矩调幅法时,为什么要限制 ?
g
A
RA
q
x
M B 0.0909( g q )l 2
边跨内最大弯矩 ——按平衡方法
M B 0.0909( g q )l 2
M B 0.0909( g q)l 2
gq
x
M B 0.0909( g q)l 2
房屋建筑混凝土结构设计第3章课后自测答案

房屋建筑混凝⼟结构设计第3章课后⾃测答案第3章多层建筑框架结构3.1 框架结构设计的基本要求题⽬1()是为了避免⼚房因基础不均匀沉降⽽引起的开裂和损坏⽽设置的。
选择⼀项:A. 隔离带B. 伸缩缝C. 防震缝D. 沉降缝正确答案是:沉降缝题⽬2伸缩缝从()开始,将两个温度区段的上部结构完全分开,留出⼀定宽度的缝隙,当温度变化时,结构可⾃由地变形,防⽌房屋开裂。
选择⼀项:A. 地基底⾯B. 基础底⾯C. 基础顶⾯D. 地基顶⾯正确答案是:基础顶⾯3.2 框架结构布置及柱梁截⾯尺⼨题⽬1采⽤(),有利于提⾼框架结构建筑的横向侧移刚度,并且由于横向跨度⼩于纵向跨度,故⽽楼板的跨度较为经济合理。
选择⼀项:A. 纵向框架承重体系B. 斜向框架承重体系C. 混合承重体系D. 横向框架承重体系正确答案是:横向框架承重体系题⽬2采⽤(),其优点在于开间布置⽐较灵活,但房屋的横向刚度较差,楼板的跨度也较⼤,因此在实际⼯程中采⽤较少。
选择⼀项:A. 混合承重体系B. 斜向框架承重体系C. 横向框架承重体系D. 纵向框架承重体系正确答案是:纵向框架承重体系题⽬3采⽤(),其优点是有利于抵抗来⾃纵横两个⽅向的风荷载和地震作⽤,框架结构具有较好的整体⼯作性能。
选择⼀项:A. 混合承重体系B. 横向框架承重体系C. 纵向框架承重体系D. 斜向框架承重体系正确答案是:混合承重体系3.3 框架结构计算简图题⽬1在框架结构内⼒和位移计算中,考虑到(),计算框架梁截⾯惯性矩I时应考虑其影响。
选择⼀项:A. 框架柱的稳定性影响B. 框架节点的塑性铰影响C. 现浇楼板可以作为框架梁的有效翼缘的作⽤D. 框架梁的抗扭刚度影响正确答案是:现浇楼板可以作为框架梁的有效翼缘的作⽤题⽬2计算框架梁截⾯惯性矩I时应考虑现浇楼板对它的影响,为⽅便设计,对现浇楼盖,中框架梁的截⾯惯性矩取为()。
(I0为矩形截⾯梁的截⾯惯性矩)选择⼀项:A. 1.2 I0B. 1.5I0C. 2 I0D. I0正确答案是:2 I03.4 框架结构的内⼒计算之分层法题⽬1采⽤分层法进⾏框架结构竖向荷载作⽤下的内⼒计算时,可近似地按⽆侧移框架进⾏分析。
框架结构计算

1.恒荷载作用下内力计算1.1梯形(三角形)、均布恒荷载作用下简支梁支座剪力和跨中弯矩(kN)(kN-m)式中g 1—梁上均布荷载值(kN/m);g 2—梁上梯形(三角形)分布荷载值(kN/m)。
各梁内力计算结果如表1.1表1.1 恒荷载作用下框架梁按简支计算的梁端剪力和跨中弯矩g 1g 2V A0V B0l M AB0g 1g 2V B0r M BC06 3.4015.5241.6341.6375.30 2.709.959.597.291~517.5512.6478.2578.25127.842.708.108.446.33AB 梁 l =6m a =0.325层次BC 梁 l =2.5m a =0.51.2恒荷载作用下框架弯矩计算梯形(三角形)恒荷载化作等效均布荷载g =g 1+(1-2a 2+a 3)g 2 (kN/m ) 梁端固端弯矩(kN-m )梁固端弯矩计算结果如表1.2表1.2 框架梁恒荷载作用下固端弯矩计算表g 1g 2gM g 1g 2g M M m 6 3.4015.5216.1748.52 2.709.958.92 4.65-2.641~517.5512.6427.9583.86 2.708.107.764.04-2.29AB 梁 l =6m a =0.325BC 梁 l =2.5m a =0.5层次框架结构利用弯矩二次分配法的计算过程和结果见图1.1。
1.3恒荷载作用下框架剪力计算 梁: (AB 梁);柱:式中:V —计算截面剪力(kN ); V 0—梁计算截面在简支条件下剪力(kN ); M l 、M r —分别为AB 梁左右两端弯矩值(kN-m )。
M t 、M b —分别为计算截面所在柱的上下两端弯矩值(kN-m )。
图 1.1 恒荷载作用下弯矩二次分配法计算过程框架各杆件剪力计算结果见表1.3。
表1.3 框架梁柱在恒荷载作用下的杆端剪力值1.4 恒荷载作用下柱轴力值计算柱轴力根据上层柱传来轴力、节点两(一)侧梁端剪力、节点集中荷载的和求得。
关于PKPM中的调整信息

关于PKPM中的调整信息梁端负弯矩调幅系数:此项调整只针对竖向荷载,对地震力和风荷载不起作用。
梁端负弯矩调幅系数对于:装配整体式框架取0.7~0.8;现浇框架取0.8~0.9;对悬臂梁的负弯矩不应调幅。
一般取默认值0.85。
转角凸窗处的转角梁的负弯矩调幅及扭矩折减系数均应取1.0。
梁活荷载载内力放大系数:一般工程取1.1~1.2;如果已经考虑了【梁活荷载不利布置】后,则应取1.0。
梁扭矩折减系数:对于现浇楼板结构,当采用刚性楼板假定时,可以考虑楼板对梁的抗扭作用而对梁扭矩进行折减。
折减系数可在0.4~1.0 范围内取值,一般取默认值0.4,但对结构转换层的边框架梁扭矩折减系数不宜小于0.6。
SATWE程序中考虑了梁与楼板间的连接关系,对于不与楼板相连的梁该扭矩折减系数不起作用;目前SATWE程序“梁扭矩折减系数”对弧形梁、不与楼板相连的独立梁均不起作用。
SATWE 前处理“特殊构件补充定义”中的右侧菜单“特殊梁”下,用户可以交互指定楼层中各梁的扭矩折减系数。
在此处程序默认显示的折减系数,是没有搜索独立梁的结果,即所有梁的扭矩折减系数均按同一折减系数显示。
但在后面计算时,SATWE软件自动判断梁与楼板的连接关系,对于楼板相连(单侧或两侧)的梁,直接取交互指定的值来计算;对于两侧都未与楼板相连的独立梁,梁扭矩折减系数不做折减,不管交互指定的值为多少,均按1.0 计算。
注:1. 若考虑楼板的弹性变形,梁的扭矩应不折减或少折减。
2. 梁两侧有弹性板时,【梁刚度放大系数】及【扭矩折减系数】仍然有效。
剪力墙加强区起算层:SATWE程序总是默认地下室作为剪力墙底部加强区(即起算层号为1),因此可通过人工指定该参数而使部分地下室为非加强部位。
例如说结构有两层地下室,该参数取2时,表示仅地下一层按照底部加强区进行设计。
多层带剪力墙的结构或底框剪力墙结构,根据《建筑抗震设计规范》6.4.6条1款,当剪力墙的轴压比小于表6.4.6中限值时,可只设构造边缘构件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。