最短路问题

合集下载

最短路问题

最短路问题

最短路问题基本内容:(1)问题的提法——寻求网络中两点间的最短路就是寻求连接这两个点的边的总权数最小的通路。

(注意:在有向图中,通路——开的初等链中所有的弧应是首尾相连的。

)(2)应用背景——管道铺设、线路安排、厂区布局、设备更新等。

D氏标号法(Dijkstra)(1)求解思路——从始点出发,逐步顺序地向外探寻,每向外延伸一步都要求是最短的。

(3)选用符号的意义:①P 标号(Permanent固定/永久性标号),从始点到该标号点的最短路权。

1、一辆送货车从配送中心所在地V1 给V6,V7 两地客户实现共同配送。

已知车辆自身成本消耗0.2 元/ 公里。

各站点间的距离(单位:公里)数如下图所示。

在V6,V7两地的线路间有一收费站,每次每台车辆通过均收费15 元。

问题:(1)用标号法求出送货车的最优送货路线(2)此次送货,车辆总的花费是多少解:把收费站的收费折算成路线后,如下图:用用标号法解出各站点距V1的最短路径用标号法解出最短路线:V1-V2-V4-V5-V6-V7按上述路线的走法花费最少,TC=95×0.2+15=34 元若避开收费站走:V1-V2-V4-V5-V6-V5-V7TC=(85+20+45)×0.2=30 元因此,最优送货路线:V1-V2-V4-V5-V6-V5-V7;此次送货,车辆总的花费是30 元。

2、下图为某地区的交通运输道路示意图。

其中V1为配送中心位置,V8为要货客户位置,现V8客户向配送中心提出了4吨订货要求,并且要越快越好。

配送中心物流计划人员已做出了用一台4吨东风卡车配送的计划安排。

但要以最快的速度将货物送达,就必须确定最短的配送路线,而该计划人员不知如何确定。

(1)请您帮该物流计划人员优化出最佳的送货路线?(2)已知车辆的平均行驶速度为50公里/小时,如早晨8:00发车,货物什么时间可以送达客户?解:用T 标号法求解得最短路线为:V1-V2-V3-V6-V7-V8。

3第三章最短路问题

3第三章最短路问题

现在我们就来构造一个图G,它的顶点就是这10 种情况,G中的边是按照下述原则来连的;如果情况 甲经过一次渡河可以变成情况乙,那么就在情况甲与 乙之间连一条边.
MWSV MWS MWV WSV MS
WV
W
S
V
Ø
例如,MWSV经过一次渡河可以变成WV(人带着羊 过河,左岸留下狼和白菜),又例如MWV经过一次渡河 可以变为W(人带着白菜过河,留下狼),或变为V.当 然反过来,W也可以变为MWV(人带着白菜从右岸返回 左岸).
§3.2 求最短有向路的标号法
这一节介绍一种求有向图上最短有向路的方法 ,叫做标号法。
所谓标号,我们是指与图的每一个顶点对应的一个 数(或几个数).例如设G=(V,A)的顶点集合是V={v1,v2, …,vn},如果我们能使v1对应一个数b(1),v2对应数 b(2),…,vn对应数b(n),那么,这些数b(i)就称为vi的 标号,当然,在不同的问题中,标号b(i)一般代表不同 的意义.
从上面的简单比较久可以看出,为什么说计算 次数是n的多项式的方法是有效的,而计算次数是 n的指数函数的方法是无效的.另外,也可以看出, 单靠提高计算机的速度还不够,还必须从数学上寻 求有效的计算方法.
现在再回过头来看看标号法好不好.回想一下标 号法的各轮计算,可以看出,它只包含两种运算: 加法与比较大小(比较大小也需要花费时间,所以 也要考虑).加法用于计算k(i,j),每计算一个k(i,j)进 行一次加法,而且每一条弧最多只计算一次.因此, 如果图中有m条弧,那么至多进行m次加法.对于一 个有n个顶点的简单有向图来说,最多有n(n-1)条 弧(假设从每一个顶点vi出发,都有n-1条弧指向其 他的n-1个顶点),因此,最多进行n(n-1)次加法, 放宽一点,也可以说,至多进行n2次加法.

最短路问题(整理版)

最短路问题(整理版)

最短路问题(short-path problem)若网络中的每条边都有一个权值值(长度、成本、时间等),则找出两节点(通常是源节点与结束点)之间总权和最小的路径就是最短路问题。

最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。

最短路问题,我们通常归属为三类:单源最短路径问题(确定起点或确定终点的最短路径问题)、确定起点终点的最短路径问题(两节点之间的最短路径)1、Dijkstra算法:用邻接矩阵a表示带权有向图,d为从v0出发到图上其余各顶点可能达到的最短路径长度值,以v0为起点做一次dijkstra,便可以求出从结点v0到其他结点的最短路径长度代码:procedure dijkstra(v0:longint);//v0为起点做一次dijkstrabegin//a数组是邻接矩阵,a[i,j]表示i到j的距离,无边就为maxlongintfor i:=1 to n do d[i]:=a[v0,i];//初始化d数组(用于记录从v0到结点i的最短路径), fillchar(visit,sizeof(visit),false);//每个结点都未被连接到路径里visit[v0]:=true;//已经连接v0结点for i:=1 to n-1 do//剩下n-1个节点未加入路径里;beginmin:=maxlongint;//初始化minfor j:=1 to n do//找从v0开始到目前为止,哪个结点作为下一个连接起点(*可优化) if (not visit[j]) and (min>d[j]) then//结点k要未被连接进去且最小begin min:=d[j];k:=j;end;visit[k]:=true;//连接进去for j:=1 to n do//刷新数组d,通过k来更新到达未连接进去的节点最小值,if (not visit[j]) and (d[j]>d[k]+a[k,j]) then d[j]:=a[k,j]+d[k];end;writeln(d[n]);//结点v0到结点n的最短路。

最短路问题数学模型

最短路问题数学模型

最短路问题数学模型
最短路问题是指在带权有向图中,求两个顶点之间的最短路径。

这个问题在现实生活中有很多应用,如在交通规划、电信网络设计、人工智能等领域。

为了解决这个问题,需要建立一个数学模型。

数学模型是指用数学方法对实际问题进行抽象和描述,从而进行定量分析和求解的方法。

对于最短路问题,可以使用图论和运筹学的方法建立数学模型。

在图论中,最短路问题可以使用迪杰斯特拉算法或弗洛伊德算法求解。

这些算法基于图的边权和,采用动态规划的思想,逐步计算每个节点到源节点的最短距离,最终得到整个图中每对节点之间的最短路径。

在运筹学中,最短路问题可以被看作是一种线性规划问题。

可以将每个节点看作是一个决策变量,节点之间的边权看作是线性约束条件,目标函数则是从源节点到目标节点的路径长度。

通过对目标函数进行最小化,可以得到最短路径的解。

总之,最短路问题数学模型可以通过图论和运筹学的方法进行建立和求解。

建立好的数学模型可以为实际问题提供科学解决方案,优化效率和效果。

- 1 -。

最短路问题的求解方法

最短路问题的求解方法

最短路问题的求解方法最短路问题是图论中一个经典的问题,它在实际生活中有着广泛的应用,比如在交通规划、网络通信、物流配送等领域都有着重要的作用。

在解决最短路问题时,我们通常会采用不同的算法来求解,本文将介绍几种常见的最短路求解方法。

首先,我们来介绍最简单的最短路求解方法——暴力法。

暴力法的思路是枚举所有可能的路径,并找出其中的最短路。

虽然暴力法在理论上是可行的,但在实际应用中,由于其时间复杂度较高,往往不适用于大规模的图。

因此,我们需要寻找更加高效的算法来解决最短路问题。

其次,我们可以考虑使用迪杰斯特拉算法(Dijkstra algorithm)来求解最短路问题。

迪杰斯特拉算法是一种贪心算法,它通过不断地选择距离起点最近的顶点,并更新其邻居顶点的距离,来逐步求解最短路。

迪杰斯特拉算法的时间复杂度为O(V^2),其中V表示顶点的个数。

这使得它在实际应用中具有较高的效率,尤其适用于稠密图的求解。

除了迪杰斯特拉算法外,我们还可以使用弗洛伊德算法(Floydalgorithm)来解决最短路问题。

弗洛伊德算法采用动态规划的思想,通过不断更新图中任意两点之间的最短路径长度,来逐步求解整个图的最短路。

弗洛伊德算法的时间复杂度为O(V^3),因此在大规模图的求解中也具有较高的效率。

除了上述算法外,我们还可以考虑使用A算法、贝尔曼-福特算法等其他算法来解决最短路问题。

这些算法各有特点,适用于不同类型的图和不同的应用场景。

总的来说,最短路问题是一个重要且经典的问题,在实际应用中有着广泛的应用。

在求解最短路问题时,我们可以根据具体的情况选择合适的算法来求解,以提高效率和准确性。

希望本文介绍的几种最短路求解方法能够对读者有所帮助,谢谢阅读!。

最短路问题实际案例

最短路问题实际案例

最短路问题实际案例最短路问题是指在图中找出两个顶点之间的最短路径的问题,其中图可以是有向图或无向图,并且每条边可以有权重。

这个问题是在许多实际案例中都会遇到的。

以下是几个实际案例,其中涉及到最短路问题:1. 导航系统:导航系统是最常见的利用最短路问题的实例。

当用户输入起点和终点时,导航系统会计算出最短路径,并显示给用户。

这个过程中,导航系统需要考虑路程的时间或距离,同时还需要考虑道路的限速和交通情况等因素。

2. 物流配送:物流配送涉及到从一个地点到另一个地点的最短路径。

物流公司需要计算出从货物的起始点到目标点的最短路径,以最快速度将货物送达目的地。

在这个问题中,可能还会有其他限制条件,如运输工具的载重量、路段的通行能力等。

3. 电信网络:电信网络是一个复杂的网络,其中存在着许多节点和边,每个节点代表一个通信设备,边代表设备之间的通信连接。

在设计电信网络时,需要考虑到从一个节点到另一个节点的最短路径,以最小化通信的时延。

这个问题中,还会有其他因素,如网络拓扑的复杂性、网络流量的负载均衡等。

4. 交通规划:交通规划涉及到城市道路网络的设计和优化。

在设计城市交通规划时,需要考虑到不同节点之间的最短路径,以便在城市中建设高效的道路系统。

这个问题中,需要考虑到人口分布、交通流量、环境因素等复杂变量。

5. 谷歌地图:谷歌地图是一种广泛使用最短路径算法的应用。

当用户在谷歌地图上搜索起点和终点时,谷歌地图会计算出最短路径,并给出导航指引。

这个过程中,谷歌地图需要考虑到道路的限速、交通情况和实时路况等因素。

综上所述,最短路问题在许多实际案例中都有应用。

无论是导航系统、物流配送、电信网络、交通规划还是谷歌地图等,都需要计算出最短路径以满足需求。

因此,研究和解决最短路问题在实际应用中具有重要意义。

最短路问题

最短路问题

最短路问题何谓最短路?最短路问题考虑的是有向网络N=(V,A,W),其中弧(i,j)∈A 对应的权又称为弧长或费用。

对于其中的两个顶点s,t∈V,以s 为起点,t 为终点的有向路称为s-t 有向路,其所经过的所有弧上的权(或弧长、费用)之和称为该有向路的权(或弧长、费用)。

所有s-t 有向路中权最小的一条称为s-t 最短路。

ij w 如何得到最短路?最短路问题的线性规划描述如下:(,)m i ni j i j i j A w x ∈∑ (1):(,):(,)1,,..1,,0,,ij ji j i j A j j i A i s s t x x s i s t ∈∈=⎧⎪t −=−=⎨⎪≠⎩∑∑ (2) 0ij x ≥ (3) 其中决策变量表示弧(i,j)是否位于s-t 路上:当=1时,表示弧(i,j)位于s-t 路上,当=0时,表示弧(i,j)不在s-t 路上。

本来,应当是0-1变量,但由于约束(2)的约束矩阵就是网络的关联矩阵,它是全幺模矩阵,因此0-1变量可以松弛为区间[0,1]中的实数(当用单纯形法求解时,将得到0-1整数解)。

ij x ij x ij x ij x 值得注意的是,我们这里将变量直接松弛为所有非负实数。

实际上,如果可以取0-1以外的整数,则约束条件并不能保证对应于非零的弧所构成的结构(记为P)一定是一条路,因为这一结构可能含有圈。

进一步分析,我们总是假设网络本身不含有负圈,而任何正圈不可能使目标函数最小,因此上面的约束条件(2),(3)可以保证当达到最优解时,P 如果包含圈,该圈一定是零圈,我们从P 中去掉所有的零圈,就可以得到最短路。

ij x ij x ij x 无圈网络与正费用网络一般采用标号设定算法。

Bellman 方程(最短路方程)将约束条件(2)两边同时乘以-1,得到其对偶问题为:m ax()t s u u − (4)..,(,)j i ij s t u u w i j A −≤∀∈ (5)根据互补松弛条件,当x 和u 分别为原问题和对偶问题的最优解时:()0,(,i j j i i j )x u u w i j −−=∀∈A (6) 因此,当某弧(i,j)位于最短路上时,即对应的变量>0时,一定有ij x j i i u u w −=j 。

第三节 最短路问题

第三节 最短路问题

作业
195页
习题8
8.4题
( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ) ,(V5 ,V9 )} 1、 2、K14 K 24 8 K54 5 3 8 K59 1 3 4
3、 (V5 ,V9 ) V9 ( 4 ,
5)
第五轮: V1 (0,0) V2 (2,1) V5 (3,2) V9 (4,5) V7 (7,9) 1、 ( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ),(V9 ,V6 ),(V9 ,V7 ),(V9 ,V8 )} 2、 K14 K24 K54 8 3、 (V9 ,V7 ) V7 ( 7 ,
V1
(i , i )
V2
5
7
1
V4
6
2 2
V3
1
V5
第三步: 找出第二步中 K ij 最小的那条弧,给它的终 点以标号
(V1 ,V3 ) V3 (2,1)
8
如果有几个 K ij 都取最小值,就同时标号
以后每一轮都重复第二轮的三个步骤, 从而使某个顶点获得标号; 当终点获得标号后,计算结束; 然后逆向追踪获得最短路.
( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ) ,(V5 ,V9 )} 1、 2、K14 K 24 8 K54 3 5 8 K59 3 1 4
3、 (V5 ,V9 ) V9 ( 4 ,
5)
第三轮: V1 (0,0) V2 (2,1) V5 (3,2)
9)
1)
V4 (8,1) V1 V2 (2,1) V5 (3,2) V9 (4,5) V7 (7,9) V6 (10,9)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ 3最短路问题
在实践中常遇到的一类网络问题是最短路问题。

给定一个有向赋权图D=(V,A),对每一个弧a =( ,),相应有权≥0,指定D中的为发点,为终点。

最短路问题就是要在所有到的路中,求出一条总权数最小的路。

这里权数可以是距离,也可以是时间,或者是费用等等。

最短路问题是最重要的优化问题之一,它不仅可以直接应用于解决生产实际的许多问题,如管道铺设、线路安排、厂区布局、设备更新等等,而且经常被作为一个基本工具,用于解决其它优化问题。

3.1 狄克斯拉(Dijkstra)算法
最短路问题可以化为线性规划问题求解,也可以用动态规划方法求解,这里介绍一种有效算法—狄克斯拉(Dijkstra)算法,这一算法是1959年首次被提出来的。

该算法适用于每条弧的权数≥0情形。

算法的基本思路:从发点出发,有一个假想的流沿网络一切可能的方向等速前进,遇到新节点后,再继续沿一切可能的方向继续前进,则最先到达终点的流所走过的路径一定是最短的。

为了实现这一想法,对假想流依次到达的点,依次给予p标号,表示到这些点的最短距离。

对于假想流尚未到达的点给予T标号,表示到这些点的最短距离的估计值。

具体作法如下:
1°标p()=0,其余点标T()=+∞;
2°由刚刚获得p标号的点出发,改善它的相邻点的T标号,即
新的T()=min{老的T(),p()+ }
若T()= p()+ ωij ,则记k()=(前点标记);
3°找出具有最小T标号的点,将其标号改为p标号。

若已获得p标号,则已找到最短路,由k ()反向追踪,就可找出到的最短路径,p()就是到的最短距离。

否则,转2°。

例2 求图下中v1 到v8 的最短路。

解:标p()=0,其余点标
将具有最小T标号的点的标号改为p标号:p()=3;
目前,点具有最小T标号,将其标号改为p标号: p()=4;
目前,点具有最小T标号,将其标号改为p标号: p()=5;
目前,点具有最小T标号,将其标号改为p标号: p()=6;
目前,点具有最小T标号,将其标号改为p标号:
最短路径为:
因p()=12,所以→的最短距离为12。

最短路问题不仅可以求解交通图中两点之间的最短距离,实际中很多问题也可变为最短路问题加以求解。

例如设备更新问题,厂区合理布局问题等。

兹举一例:
例3(设备更新问题)某企业使用一台设备,在每年年底,企业都要决策下年度是购买一台新设备呢?还是继续使用这台设备。

若购买新的,就要支付一笔购置费;如果使用旧设备,只要支付维修费,而维修费随着设备的使用年限延长而增加。

现根据以往统计资料已经估算出设备在各年初的价格和不同使用年限的修理费用,分别如表7-1、表7-2所示。

试确定一个五年内的设备更新计划,使五年内总支出最小。

3.2 图上标示法
下面我们结合例3介绍求解最短路问题的图上标示法,它比狄克斯拉算法更简洁。

解:先根据表7-1、表7-2的数据画出设备更新费用网络图,如图7-14所示。

图中点表示第i 年开始,弧( ,)表示设备第i 年初使用到第j 年初,弧( ,)上的权数表示该期间设备所需的费用。

这样,求五年内设备最优更新方案便转化为求→的最短路。

设d()表示点到终点的最短距离,根据动态规划最优性原理,最短路径中任何子路径也必然是最短的。

因此有
注意,上式要对以为起点的所有弧( ,)进行计算。

然后将计
算结果直接标在图中点的旁边,同时标出与点最近的邻接点。

先从点算起,逆向进行。

相关文档
最新文档