几何概型习题

几何概型习题
几何概型习题

E

D O B

A

C 3.3 几何概型

重难点:掌握几何概型中概率的计算公式并能将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题.

考纲要求:①了解几何概型的意义,并能正确应用几何概型的概率计算公式解决问题. ②了解随机数的意义,能运用模拟方法估计概率.

经典例题:如图,60AOB ∠=

,2OA =,5OB =,在线段OB 上任取一点C , 试求:(1)AOC ?为钝角三角形的概率;

(2)AOC ?为锐角三角形的概率.

当堂练习:

1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( )

A .0.62

B .0.38

C .0.02

D .0.68

2.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2

与49 cm 2

之间的概率为( ) A .

310

B .

15

C .

25

D .

45

3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( ) A .1

B .

216

C

3

D .

14

4.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( ) A .

34 B .

38

C .

14

D .

18

5.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( ) A .13

B .

49

C .

59

D .

710

6如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ) A .2

π

B .

1

π

C .

23

D .

13

7.如图,有一圆盘其中的阴影部分的圆心角为45

,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为( ) A .18

B .

14

C .

12

D .

34

8.现有100ml 的蒸馏水,假定里面有一个细菌,现从中抽取20ml 的蒸馏水,则抽到细菌的概率为 ( ) A .

1100

B .120

C .

110

D .

15

9.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午

5:00至6:00,则该船在一昼夜内可以进港的概率是( )

A .1

4 B .1

8 C .1

10 D .1

12

10.在区间[0,10]中任意取一个数,则它与4之和大于10的概率是( )

A .1

5 B .2

5 C . 35 D .2

7 11.若过正三角形ABC 的顶点

A 任作一条直线L ,则L 与线段BC 相交的概率为( )

A .1

2 B .1

3 C . 1

6 D .1

12

12.在500ml 的水中有一个草履虫,现从中随机取出2ml 水样放到显微镜下观察,则发现草履虫的概率是( )

A .0.5

B .0.4

C .0.004

D .不能确定

13.平面上画了一些彼此相距2a 的平行线,把一枚半径r

A .

r a

B .

2r a

C .

a

r a - D .

2a r a

-

14.已知地铁列车每10min 一班,在车站停1min .则乘客到达站台立即乘上车的概率为 . 15.随机向边长为2的正方形ABCD 中投一点P,则点P 与A 的距离不小于1且与CPD ∠为锐角的概率是__________________.

16.在区间(0,1)中随机地取出两个数,则两数之和小于

56

的概率是 .

17.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间为早上7:00~8:00之间,你父亲在离开家前能拿到报纸的概率为_______. 18.飞镖随机地掷在下面的靶子上.

(1)在靶子1中,飞镖投到区域A 、B 、C 的概率是多少?

(2)在靶子1中,飞镖投在区域A 或B 中的概率是多少?在靶子2中,飞镖没有投在区域C 中的概率是多

少?

19.一只海豚在水池中游弋,水池为长30m,宽20m的长方形,求此刻海豚嘴尖离岸边不超过2m的概率.

20.在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.

21.利用随机模拟方法计算曲线

1

y

x

=,1

x=,2

x=和0

y=所围成的图形的面积.

几何概型

经典例题:解:如图,由平面几何知识:

AD OB ⊥时,1OD =;

当OA AE ⊥时,4OE =,1BE =.

(1)当且仅当点C 在线段OD 或BE 上时,AOC ?为钝角三角形

记"AOC ?为钝角三角形"为事件M ,则11

()0.45

OD EB P M OB ++=

== 即AOC ?为钝角三角形的概率为0.4.

(2)当且仅当点C 在线段DE 上时,AOC ?为锐角三角,

记"AOC ?为锐角三角"为事件N ,则3

()0.65

DE P N OB =

== 即AOC ?为锐角三角形的概率为0.6.

当堂练习:

1.B;

2.B;

3.C;

4.A;

5.C;

6.A;

7.A;

8.B;

9.C; 10.C; 11.C; 12.B; 13.B; 14.

111

; 15.

4arcsin

52

π; 16.

2572

; 17. 87.5%;

18.(1)都是

13;(2)23;34

。 19.解:由已知可得,海豚的活动范围在26×16㎡的区域外, 所以海豚嘴尖离岸边不超过m 2的概率为2616

10.3083020

P

?=-

=?。

20.解:设构成三角形的事件为A ,长度为10的线段被分成三段的长度分别为x ,y ,

10-(x +y ),

则 010010010()10x y x y <

由一个三角形两边之和大于第三边,有

10()x y x y +>-+,即510x y <+<.

又由三角形两边之差小于第三边,有

5x < ,即05x <<,同理05y <<.

∴ 构造三角形的条件为05

05510x y x y <

<

∴ 满足条件的点P (x ,y )组成的图形是如图所示中的阴影区域(不包括区域的边界).

2125·522S ?阴影==,2

1·1052

OAB S ?==0.

∴ 1

()4

OMN S P A S ??阴影=

=.

21. 解:(1)利用计算器或计算机产生两组0到1区间上的随机数,1a RAND =,b RAND =;

(2)进行平移变换:11a

a =+;

(其中,a b 分别为随机点的横坐标和纵坐标) (3)数出落在阴影内的点数1N ,用几何概型公式计算阴影部分的面积. 例如,做1000次试验,即1000N =,模拟得到1689N =,

所以

1

0.6891S N N ≈=,即0.689S ≈.

几何概型测试题

、选择题 1、取一根长度为3cm 的绳子,拉直后在任意位置剪断,那么间的两段的长都不 小于m 的概率是( ) 、不能确定 发现表停了,他打开收音机想听电台整点报时,则他等待 的时间小于10分钟的概率是( ) 3、在线段[0,3]上任取一点,则此点坐标大于1的概率是( 4、在1万平方公里的海域中有40平方公里的大陆架贮藏着石油,假若在海域中 任意一点钻探,那么钻到油层面的概率是( ) 、填空题 5、已知地铁列车每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车 的概率 是 _________________ 。 &边长为2a 的正方形及其内切圆,随机向正方形内扔丢一粒豆子,则豆子落在 圆和及正方形夹的部分的概率是 ___________ 。 7、在等腰直角三角形ABC 中,在斜线段AB 上任取一点M 则AM 的长小于AC 的 长的概率 是 _____________________ 。 8、在400ml 自来水中有一个大肠杆菌,今从中随机取出 2ml 水样放到显微镜下 观察,则发现大肠杆菌的概率是 _____________ 。 几何概型测试题 2、某人睡午觉醒来, 1 12 1 60 丄 72 40 丄 25 1 250 1 500

9、两人相约8点到9点在某地会面,先到者等候后到者20分钟,过时就可离开, 这两人能会面的概率为_______________________ 。 10、公共汽车站每隔5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可 能的,则乘客候车不超过3分钟的概率是_____________ 。 三、解答题 11、如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形, 现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少? 12、在2L高产优质小麦种子中混入了一粒带白粉病的种子,从中随机取出10mL 求含有白粉病种子的概率是多少?

Strongart数学笔记:代数几何概型学习指南

Hartshorne代数几何概型部分学习指南(2014-04-1614:30:14) 在Hartshorne的著名教科书《代数几何》中,有这样一段话“对于代数几何来说,毋庸置疑,概型的引入是一种革命,给代数几何带来了巨大的进步。但是,跟概型打交道的人们必须背负相当沉重的技术包袱,例如层、Abel范畴、上同调、谱序列等等”,同时他的代数几何教科书只能说是瑕瑜互见,使得很多初学者对于代数几何的概型理论望而生畏,下面Strongart教授就来科普一下代数几何中概型理论。 约定:本文中的环指含有单位元1的交换环,k表示特征为零的域,必要时就作为基域。 首先,我们遇到的第一个障碍就是层(sheaf),实际上层这个概念并不难理解,但很多书都在预层与层之间做技术性讨论,就好比是学微积分之前就先钻研点集拓扑,自然会让初学者感觉一头雾水。实际上,层就是在拓扑空间的开集族上定义的到Abel群(或其他良好代数对象)的映射,可以视为拓扑流形上连续函数的公理化,后者不但说明了层这个

概念的直观来源,同时还反映从局部性质到整体行为的基本目的, 代数几何中对应的“拓扑流形”是交换环的局部环层空间(ringed space).所谓环层空间,就是指拓扑空间X与其上的环层O_X组成的对(X,O_X),其中O_X就是X上的结构层。假若O_X在各个茎上是局部环,那么它就称为局部环层空间。给定一个交换环R,其局部环层空间就是取X=Spec R,其环层由交换环R的素谱Spec R上给定,在各个茎上由环的局部化给出,这样对应的(Spec R,O_Spec R)又称为仿射概型,它在概型上起到了类似流形上坐标卡的作用。 X是概型,就是指局部环层空间,即对任何x∈X,存在X的邻域U,使得(U,O_U)同构于仿射概型。概型之间的态射可以通过局部环层空间的态射定义。环层空间的态射f:(X,O_X)→(Y,O_Y)则是包含着两个要求:首先f:X→Y是环同态;其次是环层映射f#:O_Y→f*O_X,它满足对任何x∈X,y=f(x),则f#在各茎上诱导局部环之间的同态f_x:(O_(Y,y),M_y)→(O_(X,x),M_x). 下面我们看概型的若干性质,它们大都来自于环的代数或(Krull)拓扑。来自于代数的概念有:概型(X,O_X)是既约的(或整的),若对X的任何开集U,O_X(U)是

古典概型和几何概型专题训练[答案解析版]

古典概型与几何概型专题训练 1.在集合{} 04M x x =<≤中随机取一个元素,恰使函数2log y x =大于1的概率为( ) A .1 B. 14 C. 12 D. 34 答案及解析:1.C 2.考虑一元二次方程2 0x mx n ++=,其中,m n 的取值分别等于将一枚骰子连掷两次先后出现的点数,则方程有实根的概率为( ) A. 3619 B.187 C.94 D.36 17 答案及解析:2.A 3.如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形, 直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则 小花朵落在小正方形内的概率为 A . 117 B .217 C .317 D .4 17 答案及解析:3.B . 因为大正方形的面积是34,所以大正方形的边长是34,由直角三角形的较短边长为 3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4.所以 小花朵落在小正方形内的概率为42 3417 P = =.故选B . 【解题探究】本题考查几何概型的计算. 几何概型的解题关键是求出两个区间的长度(面积或体积),然后再利用几何概型的概率计算公式 ()= A P A 构成事件的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) 求解.所以本题求小花朵落在小正 方形内的概率,关键是求出小正方形的面积和大正方形的面积. 4.如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )

几何概型经典练习题

几何概型题目选讲 1?在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段 AC , CB 的长,则该矩形面积 4 — 0+ 12— 8 2 解析:设AC = x ,由题意知x(12 — x)v 32? 0v x v 4或8v x v 12,所求事件的概率 P =―0+—— =-. 12 3 小于32 cm 2 的概率为( ) A.1 6 C.f D'4 2 .已知圆 C : x 2 y 2 =12,l : 4x 3y =25在圆上任取一点 P,设点P 到直线l 的距离小于2的事件为A 求P(A) 的值。 解:P(A)= 3 ?设不等式组 ° 仝x < 2 表示的平面区域为 D.在区域D 内随机取一个点,则此点到坐标原点的距离大于 0< y w 2 2的概 率是 解析:坐标系中到原点距离不大于 2的点在以原点为圆心,2为半径的圆内及圆上, * 0W x < 2 , 表示的区域D 0W y < 2 nX 4 4 — 4 4— n 为边长为2的正方形及其内部,所以所求的概率为 —= 4 4 4 ?在区间[0,9]上随机取一实数x ,则该实数x 满足不等式 K log z x w 2的概率为 2 解析:由1W Iog 2x w 2,得2W x w 4,根据区间长度关系,得所求概率为 -. 5.在[—6,9]内任取一个实数 m ,设f(x) =— x 2 + mx + m,则函数f(x)的图像与x 轴有公共点的概率等于 ______________ . 解析:函数f(x)的图像与x 轴有公共点应满足 △= m 2 + 4m > 0,解得m W — 4或m 》0,又m € [ — 6,9],故—6< m W 2 + 9 44 —4 或 W m w 9,因此所求概率P =石 6 ?甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的. (1)如果甲船和乙船的停泊时间都是 4 停泊时间为4小时,乙船的停泊时间为 小时,求它们中的任何一条船不需要等待码头空出的概率; ⑵如果甲船的 2小时,求它们中的任何一条船不需要等待码头空出的概率. 解析:(1)设甲、乙两船到达时间分别为 x 、y ,贝U 0< x v 24,0< y v 24 且 y — x > 4 或 y — x < — 4. 0< x v 24, 作出区域 0W y v 24, y — x > 4或 y — x v — “两船无需等待码头空出”为事件 1 2 X-X 20 X 20 2 _______ _ 25 24 X 24 — 36. ⑵当甲船的停泊时间为 4小时,乙船的停泊时间为 2小时,两船不需等待码头空出,贝U 满足x — y >2或y — x >4. 设在上 述条件时“两船不需等待码头空出”为事件 B ,画出区域 A ,贝U P(A)=

概率论习题试题集

11. 将8本书任意放到书架上,求其中3本数学书恰排在一起的概率。 12. 某人买了大小相同的新鲜鸭蛋,其中有a只青壳的,b只白壳的,他准备将青壳蛋加工成咸蛋,故将鸭 蛋一只只从箱中摸出进行分类,求第k次摸出的是青壳蛋的概率。 13. 某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运中所有标签脱落,交货人随 意将这些油漆发给顾客。问一个订货为4桶白漆、3桶黑漆,2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少? 14. 将12名新技工随机地平均分配到三个车间去,其中3名女技工,求: (1)每个车间各分配到一名女技工的概率;(2)3名女技工分配到同一车间的概率。 15.从6双不同的手套中任取4只,求其中恰有两只配对的概率。 16.从0,1,2,......,9十个数中随机地有放回的接连取三个数字,并按其出现的先后排成一列,求下列事件的概率:(1)三个数字排成一奇数;(2)三个数字中0至多出现一次; (3)三个数字中8至少出现一次;(4)三个数字之和等于6。 (利用事件的关系求随机事件的概率) 17. 在1~1000的整数中随机地取一个数,问取到的整数既不能被4整除,又不能被6整除的概率是多少? 18. 甲、乙两人先后从52张牌中各抽取13张, (1)若甲抽后将牌放回乙再抽,问甲或乙拿到四张A的概率; (2)若甲抽后不放回乙再抽,问甲或乙拿到四张A的概率。 19. 在某城市中发行三种报纸A,B,C,经调查,订阅A报的有45%,订阅B报的有35%,订阅C报的有30%,同时订阅A及B的有10%,同时订阅A及C的有8%,同时订阅B及C的有5%,同时订阅A,B,C 的有3%。试求下列事件的概率: (1)只订A报的;(2)只订A及B报的;(3)恰好订两种报纸。

高中数学必修三 古典概型与几何概型

古典概型与几何概型 1.1基本事件的特点 ①任何两个基本事件都是互斥的; ②任何事件(除不可能事件)都可以表示成基本事件的和. 1.2古典概型 1.2.1古典概型的概念 我们把具有:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等,两个特点的概率模型称为古典概率模型,简称为古典概型. 1.2.2古典概型的概率公式: 如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是n 1 ,如果某个事件A 包含的结果有m 个基本事件,那么事件A 的概率()n m A P =. 1.3几何概型 1.3.1几何概型的概率公式: 在几何概型中,事件A 的概率的计算公式如下: ()积) 的区域长度(面积或体实验的全部结果所构成积) 的区域长度(面积或体构成事件A = A P 1.从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( ) A . 2 1 B . 10 3 C . 5 1 D . 5 2 2.甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为( ) A . 12 B .13 C . 14D .16 3.袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( ) A . 11 1 B . 33 2 C . 33 4 D . 33 5 4.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰 子朝上的面的点数分别为X ,Y ,则1log 2=Y X 的概率为( ) A . 6 1 B . 36 5 C . 121D .2 1

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

公开课几何概型教案

几何概型 一、教学目标: 1、知识与技能: (1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; 2、过程与方法: (1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力; ' (2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。 3、情感态度与价值观: 本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。 二、重点与难点: 1、几何概型的概念、公式及应用; 2、几何概率模型中基本事件的确定,几何“度量”的选择;将实际问题转化为几何概型. 三、教学过程 复习回顾 、 同学们,咱们前面学习了古典概型,现在回顾一下古典概型的特点及求概率的公式 特点:(1)试验中所有可能出现的基本事件只有有限个(有限性); (2)每个基本事件出现的可能性相等(等可能性). (一)问题引入 (1)若x的取值是区间[1,4]中的整数,任取一个x的值,求“取得值不小于2”的概率。 (古典概型) ~ (2)若x的取值是区间[1,4]中的实数,任取一个x的值,求“取得值不小于2”的概率。 (几何概型) 自主探究 试验1、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1米的概率有多大 试验2、取一个长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,那么豆子落入圆内的概率有多大 试验3、一只蜜蜂在一个棱长为60cm的正方体笼子里飞,那么蜜蜂距笼边大

于10cm的概率有多大 . 试验1试验2试验3提炼概括 一个基本 事件… 取到线段AB上 某一点 豆子落在正方形(2a ×2a)内某一点 取正方体笼子内某 一点 在对应的整个图形上取一点 (随机地) 所有基本 事件形成的集合线段AB(除两端 外) 正方形(2 4a)面 正方体笼子(棱长 60)体积 《 对应的所有点形成一个可度 量的区域D 随机事件 A对应的集合线段CD内切圆(2a π)面 正方体笼子内小正 方体(棱长40)体 积 区域D内的某个指定区域d 随机事件A发生的 概率?() P A= 圆的面积 正方形的面积 2 2 44 a a ππ == 3 3 408 () 6027 P A()A P A 构成事件的区域 全部结果构成的区域 1、几何概型的概念: ] 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 古典概型几何概型 所有的试验结果有限个(n个)无限个 ` 每个试验结果的发生 等可能等可能 概率的计算P(A)=m/n 3、几何概型的概率计算公式:

高考数学模拟复习试卷试题模拟卷第03节 几何概型0015 53

高考模拟复习试卷试题模拟卷第03节 几何概型 A 基础巩固训练 1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.3 4 D .1 【答案】 C 【解析】 ∵sin x≥cos x ,x ∈[0,π], ∴π 4 ≤x≤π, ∴事件“sin x≥cos x”发生的概率为π- π4π-0=3 4 . 2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( ) A.18 B.14 C.34 D.7 8 【答案】D 3.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a 2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样, 则他击中阴影部分的概率是( ) A .1-π4B.π 4 C .1-π 8 D.与a 的取值有关 【解析】 由题意知,阴影部分的面积为a2-4×14×π????a 22= ????1-π4a2,故概率为1-π 4. 【答案】 A

4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A. 2-1 2 B.1- 22 C.2-1 D.2- 2 【答案】 D 【解析】 以O 为圆心,r 为半径作圆,易知当r >52时,轮船会遭受台风影响,所以P =10-52 10-5= 10-52 5 =2- 2. 5.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】1-π 12 B 能力提升训练 1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A . 2π B .4π C .6π D .8 π 【答案】B

古典概型与几何概型

古典概型与几何概型 古典概型与几何概型 【知识网络】 1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基 本事件数及事件发生的概率。 2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、 特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 【典型例题】 [例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( ) A . 4 9 B .2 9 C .23 D .13 (2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6), 骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( ) A . 6 1 B . 36 5 C . 12 1 D . 2 1 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形 的面积介于36cm 2与81cm 2之间的概率为 ( ) A . 56 B . 12 C .13 D . 16 (4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3 S ”的概率为 . (5)任意投掷两枚骰子,出现点数相同的概率为 . [例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。 [例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟, 过时即可离去.求两人能会面的概率.

古典概型和几何概型练习题

古典概型和几何概型 一选择题(每小题5分,共计60分。请把选择答案填在答题卡上。) 1. 同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情 况更可能正确的是 A.这100个铜板两面是一样的 E.这100个铜板两面是不同的 C. 这100个铜板中有50个两面是一样的,另外50个两面是不相同的 D. 这100个铜板中有20个两面是一样的,另外80个两面是不相同的 2. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42, 摸出白球的概率是0.28,那么摸出黒球的概率是 A. 0.42 B . 0.28 C . 0.3 D . 0.7 3. 从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是 A.至少有一个红球与都是黒球 B .至少有一个黒球与都是黒球 C.至少有一个黒球与至少有1个红球 D .恰有1个黒球与恰有2个黒球 4. 在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的 概率是 5. 先后抛掷硬币三次,则至少一次正面朝上的概率是 A. 30 B 40 12 C . 12 D .以上都不对 40 30

6.设代B为两个事件,且P A 0.3,则当(时一定有P B 0.7 A. A与B互斥B . A与B对立C. A B D. A不包含B 7.在第1、3、4、5、8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车.假定当时各路汽车首先到站的可能性相等, 则首先到站正好是这位乘客所需乘的汽车的概率等于 A. 1 B. 2 -C. 3 8.某小组共有10名学生, 其中女生3名,现选举2名代表,至少有1名女生当选的概率为 A. — B. 15 § C. 15

最新人教版高中数学必修三3.3 几何概型(1)公开课教学设计

教学目标: 1.了解随机数的概念和意义; 2.了解用模拟方法估计概率的思想; 3.了解几何概型的基本概念、特点和意义; 4.了解测度的简单含义; 5.了解几何概型的概率计算公式. 教学方法: 谈话、启发式. 教学过程: 一、问题情境 问题1:取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大? 问题2:射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”. 奥运会的比赛靶面直径为122cm , 靶心直径为12.2cm ,运动员在70m 外射.假3m

设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的概率有多大? 能用古典概型描述该事件的概率吗?为什么? (1)能用古典概型描述事件的概率吗?为什么? (2)试验中的基本事件是什么? (3)每个基本事件的发生是等可能的吗? (4)符合古典概型的特点吗? 二、学生活动 问题1:射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm 的大圆内的任意一点. 问题2:射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm 的大圆内的任意一点. 三、建构数学 几何概型的特点: (1)基本事件有无限多个; (2)基本事件发生是等可能的. 一般地,在几何区域D 中随机地取一点,记“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率: .D的测度 d的测度P(A) 四、数学运用 1.例题. 例1 两根相距8m 的木杆上系一根拉直绳子,并在绳子上挂一盏灯,求灯与两端距离都大于3m 的概率. 解:记“灯与两端距离都大于3m ”为事件A ,

高中数学-几何概型测试题

高中数学-几何概型测试题 (30分钟60分) 一、选择题(每小题5分,共40分) 1.(·厦门高一检测)两根电线杆相距100m,若电线遭受雷击,且雷击点距电线杆10m之内时,电线杆上的输电设备将受损,则遭受雷击时设备受损的概率为 ( ) A.0.1 B.0.2 C.0.05 D.0.5 【解析】选B.如图,两根电线杆相距MN=100m,MP=10m,QN=10m,则当雷击点在MP或QN范围上时,设备受损,故P==0.2. 2.将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( ) A. B. C. D. 【解题指南】求出阴影部分的面积,利用几何概型求概率. 【解析】选B.阴影部分的面积S阴=π×12=,长方形的面积S=2×1=2. 所以由几何概型知质点落在以AB为直径的半圆内的概率是==. 3.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A. B. C. D. 【解析】选B.至少需要等待15秒才出现绿灯的概率为=. 【补偿训练】如图,在正方形围栏内均匀撒米粒,一只小鸡在其中随意啄食,此刻小鸡正在正方形的内切圆中的概率是( )

A. B. C. D. 【解析】选B.设事件A表示小鸡正在正方形的内切圆中,则事件A的几何区域为内切圆的面积S=πR2(2R为正方形的边长),全体基本事件的几何区域为正方形的面积,由几何概型的概 率公式可得P(A)==,即小鸡正在正方形的内切圆中的概率为. 4.在正方体ABCD-A1B1C1D1内随机取点,则该点落在三棱锥A1-ABC内的概率是 ( ) A. B. C. D. 【解析】选B.体积型几何概型问题.P==. 5.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率为( ) A. B. C. D. 【解析】选 C.由几何概型的计算方法,可以得出所求事件的概率为P= ==. 6.如图所示,设M是半径为R的圆周上一个定点,在圆周上等可能地任取一点N,连接MN,则弦MN的长超过R的概率为( )

古典概型与几何概型-高中数学同步典型例题及训练解析版

古典概型与几何概型 高考频度:★★★★☆难易程度:★★★☆☆ 典例在线 (1)甲盒子装有分别标有数字1,2,3,4的4张卡片,乙盒子装有分别标有数字2,5的2张卡片,若从两个盒子中各随机地摸取出1张卡片,则2张卡片上的数字为相邻数字的概率为 A.B. C.D. (2)某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是 A.B. C.D. (3)一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是 A.B.

C.D. 【参考答案】(1)B;(2)A;(3)C. (2)由题意得第二节课上课的时间为8:40~9:20,该同学到达教室的时间总长度为40,其中在8:50~9:10进入教室时,听第二节课的时间不少于10分钟,其时间长度为20,故所求概率为,故选A.(3)记“蜜蜂能够安全飞行”为事件A,则它在与正方体玻璃容器六个表面的距离均大于10的区域d内飞行时是安全的,故区域d为棱长为10的正方体,所以,故选C. 【解题必备】(1)求解古典概型的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件.基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.求古典概型的基本步骤:①算出所有基本事件的个数; ②求出事件包含的所有基本事件数;③代入公式,求出 . (2)对于求较复杂事件的古典概型的概率问题,可以将所求事件转化成彼此互斥的事件的和,或者先求对立事件的概率,再用互斥事件的概率加法公式或对立事件的概率公式求出所求事件的概率.解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事

古典概型、几何概型复习知识点和综合习题精编版

知识点一:变量间的相关系数 1.两变量之间的关系 (1)相关关系——非确定性关系 (2)函数关系——确定性关系 2.回归直线方程:∧ ∧ ∧ +=a x b y ?? ??????? -=--=---=∧∧====∧∑∑∑∑x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i ,)())((1 2 21121 例题分析 例1:某种产品的广告费x (单位:百万元)与销售额y (单位:百万元)之间有一组对应数据如下表所示,变量y 和x 具有线性相关关系: x (百万元) 2 4 5 6 8 y (百万元) 30 40 60 50 70 (1)画出销售额与广告费之间的散点图;(2)求出回归直线方程。 针对练习 1、对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图左;对变量u ,v 有观测数据(1 u , 1v )(i=1,2,…,10 ),得散点图右. 由这两个散点图可以判断( ) (A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 2.在下列各图中,每个图的两个变量具有相关关系的图是( )

(1) (2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 3. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 气温/℃ 18 13 10 4 -1 杯数 24 34 39 51 63 若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( ) A. 6y x =+ B. 42y x =+ C. 260y x =-+ D. 378y x =-+ 知识点二:概率 一、随机事件概率: 事件:随机事件:可能发生也可能不发生的事件。 确定性事件: 必然事件(概率为1)和不可能事件(概率为0) (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的 次数n 很大时,我们称事件A 发生的概率为()n m A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定 性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具 体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值 二、概率的基本性质: 基本概念: (1)事件的包含、并事件、交事件、相等事件 (2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥; (3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件, 则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P ② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用

古典概型和几何概型练习题

1 古典概型和几何概型 一选择题(每小题5分,共计60分。请把选择答案填在答题卡上。) 1.同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况更可能正确的是 A.这100个铜板两面是一样的 B.这100个铜板两面是不同的 C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的 D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的 2.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是 A .0.42 B .0.28 C .0.3 D .0.7 3.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是 A .至少有一个红球与都是黒球 B .至少有一个黒球与都是黒球 C .至少有一个黒球与至少有1个红球 D .恰有1个黒球与恰有2个黒球 4.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是 A .4030 B .4012 C .30 12 D .以上都不对 5.先后抛掷硬币三次,则至少一次正面朝上的概率是 A .81 B . 83 C . 85 D . 8 7 6.设,A B 为两个事件,且()3.0=A P ,则当( )时一定有()7.0=B P A .A 与B 互斥 B .A 与B 对立 C.B A ? D. A 不包含B 7.在第1、3、4、5、8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于 A.21 B. 32 C.53 D.5 2 8. 某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为 A.157 B.158 C.5 3 D.1 9. 从全体3位数的正整数中任取一数,则此数以2为底的对数也是正整数的概率为 A.2251 B.3001 C.450 1 D.以上全不对 10. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是. A.21 B.31 C.4 1 D.不确定 11. 已知地铁列车每10 min 一班,在车站停1 min.则乘客到达站台立即乘上车的概率是 A. 101 B.91 C.111 D.8 1 12. 在1万 km 2的海域中有40 km 2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是. A.251 1 B.2491 C.2501 D.2521

概率论试题和答案

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、,则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B) 取到1只白球 (C) 没有取到白球(D) 至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A) 随机事件(B) 必然事件 (C) 不可能事件(D) 样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB (D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B) 与不互斥 (C) (D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D) 6. 设相互独立,则()。 (A) (B) (C) (D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D) 0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3(B) 4 p (1–p)3 (C) 5 p2(1–p)3 (D) 4 p2(1–p)3

2019届一轮复习全国通用版 第59讲几何概型 学案

第59讲 几何概型 1.几何概型 如果事件发生的概率只与构成该事件区域的__长度(面积或体积)__成比例,而与A 的形状和位置无关则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的两个特点 一是__无限性__,即在一次试验中,基本事件的个数可以是无限的;二是__ 等可能性__,即每一个基本事件发生的可能性是均等的.因此,用几何概型求解的概率问题和古典概型的思路是相同的,同属于“比例解法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的__图形面积(体积、长度)__”与“试验的基本事件所占的__总面积(总体积、总长度)__”之比来表示. 3.在几何概型中,事件A 的概率的计算公式 P (A )=__构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)__. 4.几种常见的几何概型 (1)与长度有关的几何概型,其基本事件只与一个连续的变量有关. (2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本就构成了平面上的一个区域,即可借助平面区域解决问题; (3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题. 1.思维辨析(在括号内打“√”或“×”). (1)随机模拟方法是以事件发生的频率估计概率.( √ ) (2)相同环境下两次随机模拟得到的概率的估计值是相等的.( × ) (3)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ ) (4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ )

古典概型与几何概型的区别

古典概型和几何概型的意义和主要区别 在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。 一、古典概型和几何概型的意义 (一).几何概型的定义: 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 1.几何概型的特点: (1)试验中所有可能出现的基本事件有无限多个 ..... (2)每个基本事件出现的可能性相等 ...... 2.几何概型求事件A的概率公式: P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积) (二)古典概型的意义大家都很熟知,此处不在介绍

1. 古典概型的特点: (1)试验中所有可能出现的基本事件只有有限个 .... (2)每个基本事件出现的可能性相等 ...... 2. 古典概型求事件A的概率公式: P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别 几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。 三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模 题组一: 情境1、抛掷两颗骰子,求出现两个“6点”的概率 情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少? 情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?

概率论套练习题及答案

《概率论与数理统计》 同步练习册 学号________ 姓名________ 专业________ 班级________ 广东省电子技术学校继续教育部 二O一O年四月

练习一 一、选择题 1.设A ,B ,C 表示三个随机事件,则A B C 表示 (A )A ,B ,C 中至少有一个发生; (B )A ,B ,C 都同时发生; (C )A ,B ,C 中至少有两个发生; (D )A ,B ,C 都不发生。 2. 已知事件A ,B 相互独立,且P(A)=0.5,P(B)=0.8,则P (A B )= (A) 0.65 ; (B) 1.3; (C)0.9; (D)0.3。3.设X ~B (n ,p ),则有 (A )E (2X -1)=2np ; (B )E (2X +1)=4np +1; (C )D (2X +1)=4np (1-p )+1; (D )D (2X -1)=4np (1-p )。 4.X 的概率函数表(分布律)是 xi -1 0 1 pi 1/ 4 a 5/12 则a =( ) (A )1/3; (B )0; (C )5/12; (D )1/4。 5.常见随机变量的分布中,数学期望和方差一定相等的分布是 (A )二项分布; (B )标准正态分布; (C )指数分布; (D )泊松分布。 二、填空题 6.已知:A={x|x<3} ,B={x|2a 有(1)-= -=-2 1)(1)(a F a F ? a dx x p 0 )(; (2)P (1 )(2)-=ξ。

相关文档
最新文档