绝对值(2)

合集下载

初中数学知识点精讲精析 绝对值 (2)

初中数学知识点精讲精析 绝对值 (2)

2.3 绝对值学习目标1.会借助数轴,理解绝对值和相反数的概念。

2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。

3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。

知识详解1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0。

相反数的理解:①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数③0的相反数为0是相反数定义的重要组成部分。

(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数。

一个有理数a,它的相反数是多少呢?有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m +n),所以m+n的相反数是-(m+n).(3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等。

2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4②绝对值是一个距离。

(2)绝对值的表示方法一个数a的绝对值记作|a|,读作a的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|。

(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0。

用式子表示为:|a|=⎩⎪⎨⎪⎧ a ,a>0,0,a =0,-a ,a<0.3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大。

初一奥数提高班第04讲-绝对值 (2)

初一奥数提高班第04讲-绝对值 (2)

第4讲绝对值(2)
绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.
一、典型例题分析
例1已知x<-3,化简:|3+|2-|1+x|||.
例2若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.
例3化简:|3x+1|+|2x-1|.
二、专项练习
练习1.已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.
练习2.设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.
练习3.若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.
三、巩固练习
1.x是什么实数时,下列等式成立:
(1)|(x-2)+(x-4)|=|x-2|+|x-4|;
(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).
2.化简下列各式:
(2)|x+5|+|x-7|+|x+10|.
3.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.
4.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,T的最小值是多少?
5.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).
(1)在A,C点的右边;
(2)在A,C点的左边;
(3)在A,C点之间;
(4)以上三种情况都有可能.。

绝对值(2)

绝对值(2)

4
【解析】(1)化简,得-(-1)=1,因为正数大于0, 所以1>0,即-(-1)>0. (2)化简,得-(+3)=-3,因为正数大于负数,所以-3<2, 即-(+3)<2.
(3)化简,得-(+ 4 )=- 4 ,-|- 3 |=- 3 .这是两个负数比较大小,
5 5
4 4
先求它们的绝对值.
|- 4 |= 4 = 16 ,|- 3 |= 3 = 15 .
20
5
5
20
因为 5 > 4 ,即|- 1 |>|- 1 |,所以- 1 <- 1 .
20 20
4
5
4
5
【想一想错在哪?】比较大小:- 2 与- 3 .
5 7
提示:错在两个负数比较大小时,绝对值大的那个负数大,应 为绝对值大的反而小.
2.比较下列各对数的大小: (1)-(-1)和0. (2)-(+3)和2. (3)-(+ 4 )和-|- 3 |.
1.2.4 绝 对 值
第2课时
(1)一个正数的绝对值是它本身;
(2)零的绝对值是零; (3)一个负数的绝对值是它的相反数。
a 即:︱a︱= 0
-a
(a>0) (a=0)
(a<0)
1、
3 =
-3
0.27 =
+0.27
26 =
a 8
- 26
- 24=
-8或 8
- 24
观察下图给出的未来一周中每天的最高气温和最低气温,其
中最低的是___℃,最高的是__℃,将这 -4 9 14个温度按从低到高的
顺序排列为________________________________. -4<-3<-2<-1<0<1<2<3<4<5<6<7<8<9

《绝对值》(2)教案 (公开课)2022年

《绝对值》(2)教案 (公开课)2022年

§2.3绝对值〔2〕二、教学目标1、使学生进一步掌握绝对值概念;2、使学生掌握利用绝对值比较两个负数的大小;3、注意培养学生的推时论证能力 三、教学重点和难点负数大小比较 四、教学手段现代课堂教学手段 五、教学方法启发式教学 六、教学过程〔一〕、从学生原有认知结构提出问题1、计算:|+15|;|-31|;|0| 2、计算:|21-31|;|-21-31|.3、比较-(-5)和-|-5|,+(-5)和+|-5|的大小4、哪个数的绝对值等于0?等于31?等于-1? 5、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个? 6、a ,b 所表示的数如以下列图,求|a|,|b|,|a+b|,|b-a| 7、假设|a|+|b-1|=0,求a ,b这一组题从不同角度提出问题,以使学生进一步掌握绝对值概念 解:1、|+15|=15,|-31|=31,|0|=0让学生口答这样做的依据 2、|21-31|=|61|=61|,|-21-31=-〔-21-31〕。

说明:“| |〞有两重作用,即绝对值和括号3、因为-(-5)=5,-|-5|=-5,5>-5, 所以-(-5)>-|-5|。

这里需讲清一个问题,即-(-5)和-|-5|的读法,让学生熟悉,-(-5)读作-5的相反数,-|-5|读作-5绝对值的相反数因为+(-5)=-5,+|-5|=,-5<5, 所以+(-5)<+|-5|4、0的绝对值等于0,±31的绝对值等于31,没有什么数的绝对值等于-1(为什么?)用符号语言表示应为:|0|=0,|+31|=31|,|-31|=31。

这里应再次强调绝对值是数轴上的点与原点的距离,并指出距离是非负量5、绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2用符号语言表示应为:因为|x|<3,所以-3<x <3如果x 是整数,那么x=-2,-1,0,1,26、由数轴上a 、b 的位置可以知道a <0,b >0,且|a|<|b| 所以|a|=-a ,|b|=b ,|a+b|=a+b ,|b-a|=b-a 7、假设a+b=0,那么a ,b 互为相反数或a ,b 都是0,因为绝对值非负,所以只有|a|=0,|b-1|=0,由绝对值意义得a=0,b-1=0用符号语言表示应为:因为|a|+|b-1|=0,所以a=0,b-1=0, 所以a=0,b=1〔二〕、师生共同探索利用绝对值比较负数大小的法那么 利用数轴我们已经会比较有理数的大小由上面数轴,我们可以知道c <b <a ,其中b ,c 都是负数,它们的绝对值哪个大?显然c >b 引导学生得出结论:两个负数,绝对值大的反而小这样以后在比较负数大小时就不必每次再画数轴了 〔三〕、运用举例 变式练习 例1 比较-421与-|—3|的大小 例2 a >b >0,比较a ,-a ,b ,-b 的大小 例3 比较-32与-43的大小 课堂练习1、比较以下每对数的大小:32与52;|2|与36;-61与112;73-与52-2、比较以下每对数的大小: -107与-103;-21与-31;-51与-201;-21与-32〔四〕、小结先由学生表达比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了 七、练习设计1、判断以下各式是否正确:(1)|-01|<|-001|; (2)|-31|<41; (3) 32<43-; (4)81>-712、比较以下每对数的大小:(1)-85与-83;(2)-113与-0273;(3)-73与-94;(4)- 65与-1110;(5)- 32与-53;(6)- 97与-1193、写出绝对值大于3而小于8的所有整数4、你能说出符合以下条件的字母表示什么数吗? (1)|a|=a ; (2)|a|=-a ; (3)xx =-1; (4)a >-a ;(5)|a|≥a ; (6)-y >0; (7)-a <0; (8)a+b=05假设|a+1|+|b-a|=0,求a ,b 八、板书设计2.3绝对值〔2〕〔一〕知识回忆 〔三〕例题解析 〔五〕课堂小结例1、例2〔二〕观察发现 〔四〕课堂练习 练习设计九、教学后记在传授知识的同时,一定要重视学科根本思想方法的教学关于这一点,布鲁纳有过精彩的论述他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路〞,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力不但使数学学习变得容易,而且会使得别的学科容易学习显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和开展数学能力为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内窬形式地传授本课中,我们有意识地突出“分类讨论〞这一数学思想方法,以期使学生对此有一个初步的认识与了解平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。

绝对值2教案

绝对值2教案

学科:数学 教学内容:绝对值【基础知识精讲】1.给出一个数,能求出它的绝对值. 2.会利用绝对值比较两个负数的大小.【重点难点解析】 明确绝对值的意义一个数的绝对值就是数轴上表示这个数的点与原点的距离,这就是绝对值的几何意义,即表示数a 的点是P ,则一定是|a|=OP .绝对值的代数定义是:设a 为有理数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值为0,注意对于任何有理数a ,都有0||≥a ,在今后的学习中很重要.A .重点、难点提示B .考点指要绝对值是初中数学的一个重要内容,也是中考的必考内容之一。

一个数的绝对值与这个数的关系:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

比较两个负数的大小,可利用绝对值比较,也可以利用数轴比较。

【难题巧解点拨】例1 求下列各数的绝对值: -32,53+,0,-2.1 解:32|32|=-,5353=+,|0|=0,|-2.1|=2.1。

例2 比较下列各组数的大小:(1)-1与0 (2)-1与-2 (3)32-与-2.1 解:(1)因为-1在数轴上的对应点在0在数轴上的对应点的左边,所以-1<0。

(2)因为|-1|=1,|-2|=2,1<2,所以-2<-1。

(3)在为3232=-,|-2.1|=2.1,1.232<,所以321.2-<-。

(两个负数的比较,转化成了它们的绝对值的大小的比较,即两个正数的大小的比较,这就是化归转化的思想)注:比较两个有理数的大小,还可以应用数轴比较,这样较直观。

方便,同学们不妨试一试。

例3 已知a>b>0,试比较-a 与-b 的大小。

解法一:因为a>b>0,所以-a<0,-b<0, 而|-a|=a ,|-b|=b ,又a>b ,所以-a<-b 。

绝对值基础练习(2)附答案

绝对值基础练习(2)附答案

绝对值基础练习(2)附答案1、判断题:⑴、|-a|=|a|.⑵、-|0|=0.⑶、|-3|=-3.⑷、-(-5)›-|-5|.⑸、如果a=4,那么|a|=4.⑹、如果|a|=4,那么a=4.⑺、任何一个有理数的绝对值都是正数.⑻、绝对值小于3的整数有2, 1, 0.⑼、-a一定小于0.⑽、如果|a|=|b|,那么a=b.⑾、绝对值等于本身的数是正数.⑿、只有1的倒数等于它本身.⒀、若|-X|=5,则X=-5.⒁、数轴上原点两旁的点所表示的两个数是互为相反数.⒂、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、填空题:⑴、当a_____0时,-a›0;⑵、当a_____0时,‹0;⑶、当a_____0时,-›0;⑷、当a_____0时,|a|›0;⑸、当a_____0时,-a›a;⑹、当a_____0时,-a=a;⑺、当a‹0时,|a|=______;⑻、绝对值小于4的整数有_____________________________;⑼、如果m‹n‹0,那么|m|____|n|;⑽、当k+3=0时,|k|=_____;⑾、若a、b都是负数,且|a|›|b|,则a____b;⑿、|m-2|=1,则m=_________;⒀、若|x|=x,则x=________;⒁、倒数和绝对值都等于它本身的数是__________;⒂、有理数a、b在数轴上的位置如图所示,则|a|=___;|b|=____;⒃、-2的相反数是_______,倒数是______,绝对值是_______;⒄、绝对值小于10的整数有_____个,其中最小的一个是_____;⒅、一个数的绝对值的相反数是-0.04,这个数是_______;⒆、若a、b互为相反数,则|a|____|b|;⒇、若|a|=|b|,则a和b的关系为__________.3、选择题:⑴、下列说法中,错误的是_____A.+5的绝对值等于5 B.绝对值等于5 的数是5C.-5的绝对值是5 D.+5、-5的绝对值相等⑵、如果|a|=||,那么a与b之间的关系是A.a与b互为倒数B.a与b互为相反数C.a〮b=-1D.a〮b=1或a〮b=-1⑶、绝对值最小的有理数是_______A.1 B.0 C.-1 D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A.a= B.|a|=|b| C.a=-b D.a⑸、如果a,那么_______A.|a|‹0 B.-(-a)›0 C.|a|›0 D.-a‹0⑹、有理数a、b在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A.|a|›|b| B.|a|‹|b| C.|a|=|b| D.无法确定⑺、下列说法正确的是________A.一个数的相反数一定是负数 B.两个符号不同的数叫互为相反数C.|-(+x)|=x D.-|-2|=-2⑻、绝对值最小的整数是_______A.-1 B.1 C.0 D.不存在⑼、下列比较大小正确的是_______A. B.-(-21)‹+(-21) C.-|-10|›8 D.-|-7|=-(-)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a、b为有理数,那么下列结论中一定正确的是_____A.若a‹b,则|a|‹|b| B.若a›b,则|a|›|b|C.若a=b,则|a|=|b|D.若a≠b,则|a|≠|b|4、计算下列各题:⑴、|-8|-|-5| ⑵、(-3)+|-3| ⑶、|-9|(+5)D、15|-3|5、填表a12-a -5 7 + -(0.1)|a| 0 126、比较下列各组数的大小:⑴、-3与-;⑵、-0.5与|-2.5|;⑶、0与-|-9|; ⑷、|-3.5|与-3.57、把下列各数用“‹”连接起来:⑴、5,0,|-3|,-3,|-|,-(-8),-;⑵、1,-,0,-6;⑶、|-5|,-6,-(-5),-(-10),-|-10|⑷(|+|)(-)=-10,求O、,其中O和表示整数.8、比较下列各组数的大小:⑴、-(-9)与-(-8);⑵、|-|与50 ⑶、-与-3.14 ⑷、-与-0.273答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴‹⑵‹⑶‹⑷≠⑸‹⑹= ⑺-a ⑻±1,±2,±3,0⑼、>⑽3 ⑾‹⑿3或1 ⒀≧0 ⒁1 ⒂-a、b ⒃2 ⒄19 -9 ⒅±0.04 ⒆⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3 ⑵0 ⑶45 ⑷55a 5 0 -7 - 0.1-a - 0 -12|a| 5 7 0.16.⑴‹⑵‹⑶›⑷›7.⑴‹-3‹0‹|-|‹|-3|‹5‹-(-8);⑵-6‹-5‹0‹1;⑶-|-10|‹-6‹-|-5|‹|-5|‹-(-10);⑷5,5,1或1,1,5或-1,-1,5或-5,-5, 18.⑴›⑵‹⑶‹⑷›。

绝对值(第2课时) 优秀课件

绝对值(第2课时) 优秀课件
1.2.4 绝 对 值(2)
你能比较的大小:- 2 与 - 3 .
5
7
1、把这些数在数轴上表示出来,那么它们的各点在数轴 上的顺序是怎样的? 2、观察图中给出的未来一周中每天的最高气温和最低气 温,其中最低的是___℃,最高的是__℃.
【总结】
1.正数_大__于__0,0大__于___负数,正数大__于___负数. 2.两个负数,绝对值大的反而_小__.
(3)-(+ 4 )和-|- 3 |.
5
4
【归纳】含有括号(或绝对值符号)的有理数的大小比较 (1)比较含有括号(或绝对值符号)的有理数的大小时,先将原数 进行化简. (2)确定属于“正数与正数,正数与负数,正数与0,负数与0, 负数与负数”中的哪一类. (3)根据相应的法则进行大小比较.
题组二:借助数轴比较有理数的大小
1.有理数a,b在数轴上的位置如图所示,那么a,b,a,-b的大小关系是( )
A.a>b>-b>-a C.-b>a>b>-a
B.-a<b<-b<a D.-a<-b<a<b
2.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|, 那么用数轴上的点来表示a,b时,正确的是( )
3.有理数m,n在数轴上的位置如图所示, 比较大小:-m______-n.
(2)-(+0.01)与0.
(3)-(-4 3 )与-(+ 3 ).
5
7
(4)- 1 与- 1 .
45
【思路点拨】化简符号→归类→运用法则进行比较.
【总结归纳】有理数大小的比较 1.在有理数中,任取两个数,有五种情况: (1)两个正数.(2)正数和零.(3)零和负数.(4)正数和负数.(5)两个 负数. 2.应用法则:(1)两个正数比较大小,绝对值大的数大.(2)正数大 于零,零大于负数.(3)两个负数比较大小,先分别求出两个数的 绝对值,并比较绝对值的大小,再根据“两个负数,绝对值大的 反而小”进行比较.

绝对值2 (2)

绝对值2 (2)

课前展示:
-5 -5 -4
-3
-2
-1
0
1
2
3
绝对值:在数轴上一个数所对应的点与 1、一个数的绝对值是2,则这个数为 原点之间的距离。 _____ 注意:任何有理数的绝对值都不是负数。 2、 求下列各数的绝对值: 口答:(每人5分) -7.8 , -21, + , 0, 1、一个数的绝对值为36,则这个数 以下同学到旁边黑板展示: 为—— 王小艺、石润蕾、宋雪娜 2、若︱m︱=3,则m=———— 注意:(1)标明小组(2)字要写的大一些(3)尽量靠
3
因为- 5在–1左边,所以 - 5﹤ - 1 ; -2.7 -5 -4 -3 -2 -1
5 6
0
1
2
3
5 5 因为- 2.7在 - 6 的左边,所以- 2.7﹤ - 6
-4
-3
-2
-1
0
1
2
3
4
绝对值小于3的正整数有——
解题思路:
1、先在数轴上找到绝对值等于3的点所对应的数, 即到原点的距离为3的点。
上写
正数的绝对值是它本身;
求下列各数的绝对值:
负数的绝对值是它的相反数; . -21, + , 0, -7.8
解:
0的绝对值是0.
︱0︱=0 ;
︱-21︱=21 ;
︱ + 4 ︱= 4
9
9

任何一个有理数的绝对值都是正数或0
口答: (1)一个数的绝对值是它本身,那么这个数 想一想: 正数或0 一定是__________. 一个数的绝对值与这个数有什么关系 (2)一个数的绝对值是它的相反数,那么这 ? 负数或0 个数一定是__________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)-3到原点的距离 > -2到原点的距离, 即|-3| > |-2|; -3 < -2 (3)-2到原点的距离 > -1到原点的距离, 即|-2| > |-1|; -2 < -1
3、分析问题2中的结果,你 发现了什么规律? 归纳: 两个负数比较大小,绝对值 大的 反而小 。
自学指导2
请同学们认真阅读课本第13页 的“例”,注意解题的步骤,然后 归纳方法: 异号两数比较大小,要考虑 正负 它们的 ; 同号两数比较大小,要考虑 它们的 绝对值。
自学检测2
课本第13页的“练习”
小结:
大家这节课学到哪些 知识,你能说一说吗?
作业:
1教材P14的6
当堂训练
1. 课本第14页的7,8,9
2、比较下列数的大小 (1)-9.1与-9.099 1 4 (2)-2 3与- 2
5
当堂训练:
3,用“ <”或“ > ”填空。 因为|-10| |-100|, 所以-10 -100 因为|-5/3| |-3/5|, 所以-5/3 -3/5>来自0 ;0>
负数;
> 负数(填>或<)
自学检测1 1、画数轴比较大小:(填>或<) (1)-1 < 2;
(2)0 (3)-4
>
<
-0.5; -2
2、观察数轴,并填空:(填>或<)
-4 -3 -2 -1 0 1 2 3 4
1)-4到原点的距离 > -3到原点的距离, < -3 即|-4| > |-3|; -4
1.2.4 绝对值(2)
学习目标:
会利用数轴、绝对值 比较数的大小
自学指导1
请同学们认真阅读课本第12页的 内容,并回答下列问题: 1、… -3,-2,-1,0,1,2,3,…这些数在温 度计上是怎样排列的?在数轴上呢? (1)温度计上从下向上温度依次 变大 即下面的温度 小于 上面的温度。

(2)在数轴上数字从左向右 依次 变大 ,即左边的数 小于 右边 的数。 (3)正数在0的 右 边,负数 左 在0的 边,因此: 正数 正数
相关文档
最新文档