【新教材】新人教A版必修一 集合.知识框架 教案
人教版高一数学必修1集合的教案

高一数学必修1的教案人教版高一数学必修1集合的教案作为一名优秀的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
那么优秀的教案是什么样的呢?下面是小编收集整理的人教版高一数学必修1集合的教案,仅供参考,大家一起来看看吧。
人教版高一数学必修1集合的教案1教学目标:1、理解集合的概念和性质。
2、了解元素与集合的表示方法。
3、熟记有关数集。
4、培养学生认识事物的能力。
教学重点:集合概念、性质教学难点:集合概念的理解教学过程:1、定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集)。
元素:集合中每个对象叫做这个集合的元素。
由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x—2> x+3的实数x,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学。
一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。
则上几例可表示为??为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(1)确定性;(2)互异性;(3)无序性。
3、元素与集合的'关系:隶属关系元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。
如A={2,4,8,16},则4∈A,8∈A,32?A。
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??元素通常用小写的拉丁字母表示,如a、b、c、p、q??2、“∈”的开口方向,不能把a∈A颠倒过来写。
4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。
记作NXX或N+ 。
Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成ZXX请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。
高中数学新人教A版必修第一册 第一章 12 集合间的基本关系 教案

集合间的基本关系【学习目标】1.理解子集、集合相等、真子集的概念.2.能用符号和Venn 图表达集合间的关系.3.掌握列举有限集的所有子集的方法.【重点难点】子集与空集的概念;用Venn 图表达集合间的关系.弄清元素与子集、属于与包含之间的区别.【课堂导入】思考 如果把“马”和“白马”视为两个集合,则这两个集合中的元素有什么关系?【新知讲解】知识点一、子集梳理:一般地,对于两个集合A 与B ,如果集合A 中的________元素都是集合B 中的元素,即若a A ∈,则a B ∈,我们就说集合A 包含于集合B ,或集合B 包含集合A ,称集合A 为集合B 的子集,记作________(或________),读作“________”(或“________”).子集的有关性质:(1)∅是任何集合A 的子集,即A ∅⊆.(2)任何一个集合是它本身的子集,即________.(3)对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么________.(4)若A B ⊆,B A ⊆,则称集合A 与集合B 相等,记作A B =.知识点二、真子集思考:在知识点一里,我们知道集合A 是它本身的子集,那么如何刻画至少比A 少一个元素的A 的子集?梳理如果集合A B ⊆,但A B ≠,称集合A 是集合B 的真子集,记作:________(或________),读作:________(或________).知识点三、Venn 图思考图中集合A ,B ,C 的关系用符号可表示为__________.梳理一般地,用平面上__________曲线的内部代表集合,这种图称为Venn 图.Venn 图可以直观地表达集合间的关系.[思考辨析判断正误]1.若用“≤”类比“⊆”,则“”相当于“<”.( ) 2.空集可以用{}∅表示.( )3.若a A ∈,则{}a A ⊆.( )4.若a A ∈,则{}a A .( )【题型探究】类型一 求集合的子集例1 (1)写出集合{,,,}a b c d 的所有子集;(2)若一个集合有()n n N ∈个元素,则它有多少个子集?多少个真子集?验证你的结论.反思与感悟为了罗列时不重不漏,要讲究列举顺序,这个顺序有点类似于从1到100数数:先是一位数,然后是两位数,在两位数中,先数首位是1的等等.跟踪训练1 适合条件{1}A ⊆{1,2,3,4,5}的集合A 的个数是()A.15B.16C.31D.32类型二 判断集合间的关系命题角度1 概念间的包含关系例2 设集合{M =菱形},{N =平行四边形},{P =四边形},{Q =正方形},则这些集合之间的关系为()A.P N M Q ⊆⊆⊆B.Q M N P ⊆⊆⊆C.P M N Q ⊆⊆⊆D.Q N M P ⊆⊆⊆反思与感悟 一个概念通常就是一个集合,要判断概念间的关系首先要准确理解概念的定义. 跟踪训练2 我们已经知道自然数集、整数集、有理数集、实数集可以分别用N ,Z ,Q ,R 表示,用符号表示N ,Z ,Q ,R 的关系为______________.命题角度2 数集间的包含关系例3 设集合{0,1}A =,集合{|2B x x =<或3}x >,则A 与B 的关系为()A.A B ∈B.B A ∈C.A B ⊆D.B A ⊆反思与感悟判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn 图.跟踪训练3 已知集合{|14}A x x =-<<,{|5}B x x =<,则()A.A B ∈B.A BC.BAD.B A ⊆类型三 由集合间的关系求参数(或参数范围)例4 已知集合2{|0}A x x x =-=,{|1}B x ax ==,且A B ⊇,求实数a 的值.反思与感悟集合A 的子集可分三类:∅,A 本身,A 的非空真子集,解题中易忽略∅.跟踪训练4 已知集合{|12}A x x =<<,{|232}B x a x a =-<<-,且A B ⊇,求实数a 的取值范围.。
高中数学人教A版必修1教案-1.1_集合_教学设计_教案

教学准备1. 教学目标教学目标 A.知识与技能(1)使学生参与并深刻体会全集的必要性,理解集合的子集、补集的含义,会求补集。
(2)能够应用Venn图和数轴表述集合间的关系,体会直观图示对理解抽象概念的作用。
B、过程与方法:通过对全集补集概念、性质、规律的探究,不断提高学生抽象概括能力,培养数形结合能力,掌握归纳类比的方法。
C.情感态度与价值观:(1)在参与数学学习的过程中,培养学生主动学习的意识。
(2)在将所学知识系统化、条理化的基础上通过合作学习的形式,培养学生积极参与的主体意识。
(3)在感受生活中集合实例的同时,让学生认识到数学的科学价值、应用价值.2. 教学重点/难点教学重点补集概念的理解及初步应用。
教学难点全集的理解,补集应用中方法规律的探究。
3. 教学用具4. 标签教学过程一、新知探究知识探究1:全集〈1〉旧知新问子集与真子集符号的方向1.预设问题:U是全班同学的集合,集合A是班上所有参加校运会同学的集合,集合B是班上所有没有参加校运动会同学的集合。
集合B可以认为是由集合U中除去集合A中元素余下来的所有元素组成的集合。
预案1:我们在研究一个问题之前必须清楚研究范围。
2:在研究某些集合时,这些集合往往是某个给定集合的子集,这个给定的集合叫全集,常用符号U表示。
3:学生讨论后会有不同的答案。
知识探究:补集〈1〉补集理解1、设U是全集,A是U的一个子集,则由U中所有不属于A的元素组成的集合,叫做U中子集A的补集,〈2〉性质归纳1、观察图形解(1) A∩B= {x|x<5} ∩ {x|x>3}={x|3<x<5}(2) A ∪ B= {x|x<5} ∪ {x|x>3}=R(3) CRA= {x|x≥5}, CRB= {x|x≤3}(4) (CRA) ∩ (CRB)= {x|x≥5} ∩{x|x≤3} =(5) (CRA) ∪ (CRB)= {x|x≥5} ∪{x|x≤3}(6) CR(A ∩ B)={x|x≥5或x≤3}(7) CR(A ∪ B)=观察这些式子,你能发现什么结论?CR(A ∩ B)= (CRA) ∪ (CRB)CR(A ∪ B)= (CRA) ∩ (CRB) 观察这些式子,你能发现什么结论?CR(A ∩ B)= (CRA) ∪ (CRB)数学之精深来源于:八方联系、大胆猜想,细心求证,深刻反思。
新课程人教A版必修1全部教案

第一章集合与函数概念§1.1集合1.1.1集合的含义与表示(第一课时)教学时间:2004年8月26日星期四教学班级:高一(11、12)班教学目标:1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.培养学生认识事物的能力。
教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。
归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。
复习问题问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有理x-<的解的集合,到一个定点的距离等于定长的点的集合,到一条线数的集合,不等式73段的两个端点距离相等的点的集合等等)。
(II)讲授新课1.集合含义通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。
说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
问题4:由此上述例中集合的元素分别是什么?由以上四个问题可知,集合元素具有三个特征:(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
新教材 人教A版高中数学必修第一册 第一章 集合与常用逻辑用语 知识点考点汇总及解题方法规律提炼

第一章集合与常用逻辑用语1.1.1集合的概念 (1)1.1.2集合的表示 (4)1.2集合间的基本关系 (8)1.3.1并集与交集 (13)1.3.2补集及集合运算的综合应用 (17)1.4.1充分条件与必要条件 (20)1.4.2充要条件 (24)1.5.1全称量词与存在量词 (28)1.5.2全称量词命题与存在量词命题的否定 (32)1.1.1集合的概念要点整理1.元素与集合的概念及表示(1)元素:一般地,把研究对象统称为元素,元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.2.元素的特性(1)确定性:给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.(2)互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.简记为“互异性”.(3)无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.温馨提示:集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是数、点,也可以是一些人或一些物.3.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作a∉A.温馨提示:(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.4.常用的数集及其记法题型一集合的基本概念【典例1】判断下列每组对象的全体能否构成一个集合?(1)接近于2019的数;(2)大于2019的数;(3)育才中学高一(1)班视力较好的同学;(4)方程x2-2=0在实数范围内的解;(5)函数y=x2图象上的点.[思路导引] 构成集合的关键是要有明确的研究对象,即元素不能模糊不清、模棱两可.[解] (1)(3)由于标准不明确,故不能构成集合;(2)(4)(5)能构成集合.对集合含义的理解给定一个集合,那么任何一个元素在不在这个集合中就确定了,所谓“确定”,是指所有被“研究的对象”都是这个集合的元素,没有被“研究的对象”都不是这个集合的元素.题型二元素与集合的关系【典例2】(1)下列关系中,正确的有( )①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A.1个 B.2个 C.3个D.4个(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.[思路导引] 判断一个元素是否为某集合的元素,关键是抓住集合中元素的特征.[解析] (1)12是实数;2是无理数;|-3|=3,是自然数;|-3|=3,是无理数.故①②③正确,选C.(2)当x=0时,63-0=2;当x=1时,63-1=3;当x=2时,63-2=6;当x≥3时不符合题意,故集合A中元素有0,1,2.[答案] (1)C (2)0,1,2判断元素与集合关系的2种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.题型三集合中元素的特性【典例3】已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.[思路导引] 由集合中元素的确定性和互异性切入.[解析] 若a=1,则a2=1,此时集合A中两元素相同,与互异性矛盾,故a≠1;若a2=1,则a=-1或a=1(舍去),此时集合A中两元素为-1,1,故a=-1.综上所述a=-1.[答案] -1[变式] (1)本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.(2)本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?[解] (1)若a=2,则a2=4,符合元素的互异性;若a2=2,则a=2或a=-2,符合元素的互异性.所以a的取值为2,2,- 2.(2)根据集合中元素的互异性可知,a≠a2,所以a≠0且a≠1.应用集合元素的特性解题的要点(1)集合问题的核心即研究集合中的元素,在解决这类问题时,要明确集合中的元素是什么.(2)构成集合的元素必须是确定的(确定性),而且是互不相同的(互异性),在书写时可以不考虑先后顺序(无序性).(3)利用集合元素的特性求参数问题时,先利用确定性解出字母所有可能值,再根据互异性对集合中元素进行检验,要注意分类讨论思想的应用.1.1.2集合的表示1.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素可以是任何事物.2.描述法(1)定义:一般地,设A表示一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.温馨提示:(1)写清楚集合中元素的符号.如数或点等.(2)说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等.(3)不能出现未被说明的字母.题型一用列举法表示集合【典例1】 用列举法表示下列集合:(1)方程x (x -1)2=0的所有实数根组成的集合;(2)不大于10的非负偶数集;(3)一次函数y =x 与y =2x -1图象的交点组成的集合.[思路导引] 用列举法表示集合的关键是弄清集合中的元素是什么,还要弄清集合中的元素个数.[解] (1)方程x (x -1)2=0的实数根为0,1,故其实数根组成的集合为{0,1}.(2)不大于10的非负偶数即为从0到10的偶数,故不大于10的非负偶数集为{0,2,4,6,8,10}.(3)由⎩⎨⎧ y =x y =2x -1,解得⎩⎨⎧ x =1,y =1.故一次函数y =x 与y =2x -1图象的交点组成的集合为{(1,1)}.题型二用描述法表示集合【典例2】 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合;(4)不等式3x -2<4的解集.[思路导引] 用描述法表示集合的关键是确定代表元素的属性和表示元素的共同特征.[解] (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.(4)不等式3x-2<4可化简为x<2,所以不等式3x-2<4的解集为{x|x<2}.用描述法表示集合应注意的3点(1)用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.题型三集合表示方法的应用【典例3】(1)若集合A={x|ax2-8x+16=0,a∈R}中只有一个元素,则a的值为( )A.1 B.4 C.0 D.0或1(2)已知A={x|kx+2>0,k∈R},若-2∈A,则k的取值范围是________.[思路导引] 借助描述法求值或范围的关键是弄清集合中元素的特征.[解析] (1)①当a=0时,原方程为16-8x=0.∴x=2,此时A={2};②当a≠0时,由集合A中只有一个元素,∴方程ax2-8x+16=0有两个相等实根,则Δ=64-64a=0,即a=1.从而x1=x2=4,∴集合A={4}.综上所述,实数a的值为0或1.故选D.(2)∵-2∈A,∴-2k+2>0,得k<1.[答案] (1)D (2)k<1[变式] (1)本例(1)中条件“有一个元素”改为有“两个元素”,其他条件不变,求a的取值范围.(2)本例(2)中条件“-2∈A ”改为“-2∉A ”,其他条件不变,求k 的取值范围.[解] (1)由题意可知方程ax 2-8x +16=0有两个不等实根.∴⎩⎨⎧ a ≠0,Δ=64-64a >0,解得a <1,且a ≠0.(2)∵-2∉A ,∴-2k +2≤0,得k ≥1.集合表示方法的应用的注意点(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键.(2)与方程ax 2-8x +16=0的根有关问题易忽视a =0的情况.集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合:(1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y=x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.子集的概念温馨提示:“A是B的子集”的含义是:对任意x∈A都能推出x∈B.2.集合相等的概念如果集合A的任何一个元素是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么,集合A与集合B相等,记作A=B.也就是说,若A⊆B 且B⊆A,则A=B.3.真子集的概念温馨提示:在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x ∈B,但x∉A.4.空集的概念题型一集合间关系的判断【典例1】判断下列两个集合之间的关系:(1)A={-1,1},B={x|x2=1};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.[思路导引] 集合间基本关系的刻画均是由元素的从属关系决定的.[解] (1)用列举法表示集合B={-1,1},故A=B.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(4)解法一(特殊值法):两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.解法二(列举法):由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.判断集合间关系的3种方法(1)列举法:用列举法将两个集合表示出来,再通过比较两集合中的元素来判断两集合之间的关系.(2)元素特征法:根据集合中元素满足的性质特征之间的关系判断.(3)图示法:利用数轴或Venn图判断两集合间的关系.题型二有限集合子集、真子集的确定【典例2】(1)填写下表,并回答问题原集合子集子集的个数∅________________{a}________________{a,b}________________{a,b,c}________________由此猜想,含n个元素的集合的所有子集的个数是多少?真子集的个数及非空真子集个数呢?(2)求满足{1,2}M⊆{1,2,3,4,5}的集合M.[解] (1)原集合子集子集的个数∅∅ 1{a}∅,{a} 2{a,b}∅,{a},{b},{a,b} 4{a,b,c}∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}8猜想:含n个元素的集合的子集共有2n个,真子集有2n-1个,非空真子集有2n-2个.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(1)求解有限集合子集问题的3个关键点①确定所求集合,是子集还是真子集.②合理分类,按照子集所含元素的个数依次写出.③注意两个特殊的集合,即空集和集合本身.空集是任何集合的子集,是任何非空集合的真子集.(2)与子集、真子集个数有关的3个结论 假设集合A 中含有n 个元素,则有: ①A 的子集的个数为2n 个; ②A 的真子集的个数为2n -1个; ③A 的非空真子集的个数为2n -2个.【典例3】 已知集合A ={x |-3<x <4},B ={x |1-m <x ≤2m -1},且A ⊆B ,求实数m 的取值范围.[思路导引] A ⊆B ,即集合A 中的数在集合B 中,特别注意A =∅的情况. [解] 由A ⊆B ,将集合A ,B 分别表示在数轴上,如图所示,则⎩⎨⎧1-m ≤-3,1-m <2m -1,4≤2m -1,解得m ≥4.故m 的取值范围是{m |m ≥4}.[变式] (1)本例中若将“A ⊆B ”改为“B ⊆A ”,其他条件不变,求m 的取值范围.(2)本例若将集合A ,B 分别改为A ={3,m 2},B ={1,3,2m -1},其他条件不变,求实数m 的值.[解] (1)由B ⊆A ,将集合A ,B 分别表示在数轴上,如图所示.∵B ⊆A ,∴当B =∅时,1-m ≥2m -1,解得m ≤23;当B ≠∅时,有⎩⎨⎧2m -1>1-m ,2m -1<4,1-m ≥-3,解得23<m <52.综上可知,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <52. (2)由A ⊆B ,按m 2=1和m 2=2m -1两种情况分类讨论. ①若m 2=1,则m =-1或m =1.当m =-1时,B 中元素为1,3,-3,适合题意; 当m =1时,B 中元素为1,3,1,与元素的互异性矛盾. ②若m 2=2m -1,则m =1,由①知不合题意. 综上所述,m =-1.由集合间的关系求参数的2种方法(1)当集合为连续数集时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点.(2)当集合为不连续数集时,常根据集合包含关系的意义,建立方程求解,此时应注意分类讨论思想的运用.1.3.1并集与交集1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质【典例1】(1)若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{1,2} D.{0}(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于( )A.{x|-1≤x<3} B.{x|-1≤x≤4} C.{x|x≤4}D.{x|x≥-1}[思路导引] 由并集的定义,结合数轴求解.[解析] (1)A∪B={0,1,2,3,4},选A.(2)在数轴上表示两个集合,如图.∴P∪Q={x|x≤4}.选C.[答案] (1)A (2)C求集合并集的2种方法(1)定义法:若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果.(2)数形结合法:若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.题型二交集的运算【典例2】(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4}D.{x|1≤x≤4}(2)设A={x∈N|1≤x≤5},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为( )A.{2} B.{3} C.{-3,2} D.{-2,3}[思路导引] 既属于集合A,又属于集合B的所有元素组成的集合,借助图示方法求解.[解析] (1)在数轴上表示出集合A与B,如下图.则由交集的定义可得A∩B={x|0≤x≤2}.选A.(2)A={x∈N|1≤x≤5}={1,2,3,4,5},B={x∈R|x2+x-6=0}={-3,2},图中阴影部分表示的是A∩B,∴A∩B={2}.选A.[答案] (1)A (2)A求集合交集的2个注意点(1)求两集合的交集时,首先要化简集合,使集合的元素特征尽量明朗化,然后根据交集的含义写出结果.(2)在求与不等式有关的集合的交集运算中,应重点考虑数轴分析法,直观清晰.题型三由集合的并集、交集求参数【典例3】 (1)设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求a 的取值范围.(2)已知集合A ={x |-3<x ≤4},B ={x |2-k ≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.[思路导引] (1)画出数轴求解.(2)若A ∪B =A ,则B ⊆A ;若A ∩B =A ,则A ⊆B .[解] (1)如下图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3. (2)∵A ∪B =A ,∴B ⊆A .若B =∅,则2-k >2k -1,得k <1;若B ≠∅,则⎩⎨⎧2-k ≤2k -1,2-k >-3,2k -1≤4,解得1≤k ≤52.综上所述,k ≤52.[变式] 本例(2)若将“A ∪B =A ”改为“A ∩B =A ”,其他条件不变,求k 的取值范围.[解] ∵A ∩B =A ,∴A ⊆B . ∴⎩⎨⎧2-k ≤-3,2k -1≥4,解得k ≥5.由集合交集、并集的性质解题的策略、方法及注意点(1)策略:当题目中含有条件A ∩B =A 或A ∪B =B ,解答时常借助于交集、并集的定义及集合间的关系去分析,将A ∩B =A 转化为A ⊆B ,A ∪B =B 转化为A ⊆B .(2)方法:借助数轴解决,首先根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组),求解即可,特别要注意端点值的取舍.(3)注意点:当题目条件中出现B⊆A时,若集合B不确定,解答时要注意讨论B=∅的情况.1.3.2补集及集合运算的综合应用要点整理1.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2.补集温馨提示:∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.题型一补集的运算【典例1】(1)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________________;(2)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________________.[思路导引] 借助补集定义,结合数轴及Venn图求解.[解析] (1)将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.(2)解法一:A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.解法二:借助Venn图,如图所示.由图可知B={2,3,5,7}.[答案] (1){x|x<-3或x=5} (2){2,3,5,7}求集合补集的基本方法及处理技巧(1)基本方法:定义法.(2)两种处理技巧①当集合用列举法表示时,可借助Venn图求解;②当集合是用描述法表示的连续数集时,可借助数轴,利用数轴分析求解.题型二交集、并集、补集的综合运算【典例2】已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3}.求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.[解] 把全集U和集合A,B在数轴上表示如下:由图可知∁U A={x|x≤-2或3≤x≤4},A∩B={x|-2<x<3},∁(A∩B)={x|x≤-2或3≤x≤4},(∁U A)∩B={x|-U3<x≤-2或x=3}.解决集合交、并、补运算的2个技巧(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.(2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.题型三利用集合间的关系求参数【典例3】设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁A)∩B=∅,求实数m的取值范围.U[思路导引] 理清集合间的关系,分类求解.[解] 由已知A={x|x≥-m},得∁U A={x|x<-m},因为B={x|-2<x<4},(∁U A)∩B=∅,所以-m≤-2,即m≥2,所以m的取值范围是m≥2.[变式] (1)将本例中条件“(∁U A)∩B=∅”改为“(∁U A)∩B≠∅”,其他条件不变,则m的取值范围又是什么?(2)将本例中条件“(∁U A)∩B=∅”改为“(∁U B)∪A=R”,其他条件不变,则m的取值范围又是什么?[解] (1)由已知得A={x|x≥-m},所以∁U A={x|x<-m},又(∁U A)∩B≠∅,所以-m>-2,解得m<2.(2)由已知得A={x|x≥-m},∁U B={x|x≤-2或x≥4}.又(∁U B)∪A=R,所以-m≤-2,解得m≥2.利用集合关系求参数的2个注意点(1)与集合的交、并、补运算有关的求参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情况.(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.[针对训练]5.已知集合A={x|x<a},B={x|1<x<3}.(1)若A∪(∁R B)=R,求实数a的取值范围;(2)若A(∁R B),求实数a的取值范围.[解](1)∵B={x|1<x<3},B={x|x≤1或x≥3},∴∁R因而要使A∪(∁R B)=R,结合数轴分析(如图),可得a≥3.(2)∵A={x|x<a},∁R B={x|x≤1或x≥3}.要使A(∁R B),结合数轴分析(如图),可得a≤1.1.4.1充分条件与必要条件要点整理1.命题及相关概念2.充分条件与必要条件一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.温馨提示:(1)充分、必要条件的判断讨论的是“若p,则q”形式的命题.若不是,则首先将命题改写成“若p,则q”的形式.(2)不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”.题型一充分、必要条件的概念及语言表述【典例1】将下面的定理写成“若p,则q”的形式,并用充分条件、必要条件的语言表述:(1)两个全等三角形的对应高相等;(2)等底等高的两个三角形是全等三角形.[解] (1)若两个三角形是全等三角形,则它们的对应高相等,所以“两个三角形是全等三角形”是“它们的对应高相等”的充分条件;“对应高相等”是“两个三角形是全等三角形”的必要条件.(2)若两个三角形等底等高,则这两个三角形是全等三角形,所以“两个三角形等底等高”是“这两个三角形是全等三角形”的不充分条件;“两个三角形是全等三角形”是“这两个三角形等底等高”的不必要条件.(1)对充分、必要条件的理解①对充分条件的理解:i)所谓充分,就是说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.“有之必成立,无之未必不成立”.ii)充分条件不是唯一的,如x>2,x>3都是x>0的充分条件.②对必要条件的理解:i)所谓必要,就是条件是必须有的,必不可少的,缺其不可.“有之未必成立,无之必不成立”.ii)必要条件不是唯一的,如x>0,x>5等都是x>9的必要条件.(2)用充分、必要条件的语言表述定理的一般步骤第一步:分析定理的条件和结论;第二步:将定理写成“若p,则q”的形式;第三步:利用充分、必要条件的概念来表述定理.题型二充分条件、必要条件的判定【典例2】判断下列各题中p是q的充分条件吗?p是q的必要条件吗?(1)p:x>1,q:x2>1;(2)p:(a-2)(a-3)=0,q:a=3;(3)已知:y=ax2+bx+c(a≠0),p:Δ=b2-4ac>0,q:函数图象与x轴有交点.[思路导引] 判断“若p,则q”命题的真假及“若q,则p”命题的真假.[解] (1)由x>1可以推出x2>1,因此p是q的充分条件;由x2>1,得x<-1,或x>1,不一定有x>1.因此,p不是q的必要条件.(2)由(a-2)(a-3)=0可以推出a=2或a=3,不一定有a=3,因此p不是q的充分条件;由a=3可以得出(a-2)(a-3)=0.因此,p是q的必要条件.(3)二次函数y=ax2+bx+c,当Δ>0时,其图象与x轴有交点,因此p是q的充分条件;反之若函数的图象与x轴有交点,则Δ≥0,不一定是Δ>0,因此p不是q的必要条件.充分、必要条件的判断方法(1)定义法:首先分清条件和结论,然后判断p⇒q和q⇒p是否成立,最后得出结论.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p 的必要条件;②如果命题:“若p ,则q ”为假命题,那么p 不是q 的充分条件,同时q 也不是p 的必要条件.显然,p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,即p ⇒q ,只是说法不同而已.题型三充分条件、必要条件与集合的关系【典例3】 (1)已知p :关于x 的不等式3-m 2<x <3+m 2,q :0<x <3,若p 是q 的充分条件,求实数m 的取值范围.(2)已知集合A ={y |y =x 2-3x +1,x ∈R },B ={x |x +2m ≥0};命题p :x ∈A ,命题q :x ∈B ,并且q 是p 的必要条件,求实数m 的取值范围.[思路导引] p 是q 的充分条件转化为对应集合A ⊆集合B ,q 是p 的必要条件转化为集合A ⊆集合B .[解] (1)记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3}, 若p 是q 的充分条件,则A ⊆B .注意到B ={x |0<x <3}≠∅,分两种情况讨论:①若A =∅,即3-m 2≥3+m 2,解得m ≤0,此时A ⊆B ,符合题意; ②若A ≠∅,即3-m 2<3+m 2,解得m >0, 要使A ⊆B ,应有⎩⎪⎨⎪⎧ 3-m 2≥0,3+m 2≤3,m >0,解得0<m ≤3. 综上可得,实数m 的取值范围是{m |m ≤3}.(2)由已知可得 A =⎩⎨⎧⎭⎬⎫y | y =⎝ ⎛⎭⎪⎫x -322-54,x ∈R =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y | y ≥-54, B ={x |x ≥-2m }.因为q 是p 的必要条件,所以p ⇒q ,所以A ⊆B ,所以-2m ≤-54,所以m ≥58,即m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m |m ≥58. [变式] 本例(1)中若将“若p 是q 的充分条件”改为“p 是q 的必要条件”,其他条件不变,求实数m 的取值范围.[解] 记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3},若p 是q 的必要条件,则B ⊆A .应有⎩⎪⎨⎪⎧ 3-m 2≤0,3+m 2≥3,解得m ≥3.综上可得,实数m 的取值范围是{m |m ≥3}.(1)利用充分、必要条件求参数的思路根据充分、必要条件求参数的取值范围时,先将p ,q 等价转化,再根据充分、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.(2)从集合角度看充分、必要条件:设命题p 、q 分别对应集合A 、B ,若A ⊆B ,则p 是q 的充分条件;若B ⊆A ,则p 是q 的必要条件.1.4.2充要条件要点整理充要条件如果“若p ,则q ”和它的逆命题“若q ,则p ”均是真命题,即既有p ⇒q ,又有q ⇒p ,记作p ⇔q .此时p 既是q 的充分条件,也是q 的必要条件.我们说p 是q 的充分必要条件,简称为充要条件.如果p 是q 的充要条件,那么q 也是p 的充要条件,即如果p ⇔q ,那么p 与q 互为充要条件.温馨提示:(1)从概念的角度去理解充分条件、必要条件、充要条件①若p⇒q,则称p是q的充分条件,q是p的必要条件.②若p⇔q,则p是q的充要条件.③若p⇒q,且q⇒/p,则称p是q的充分不必要条件.④若p⇒/q,且q⇒p,则称p是q的必要不充分条件.⑤若p⇒/q,且q⇒/p,则称p是q的既不充分也不必要条件.(2)“⇔”的传递性若p是q的充要条件,q是s的充要条件,即p⇔q,q⇔s,则有p⇔s,即p 是s的充要条件.题型一充要条件的判断【典例1】在下列各题中,试判断p是q的什么条件.(1)p:a+5是无理数,q:a是无理数;(2)若a,b∈R,p=a2+b2=0,q:a=b=0;(3)p:A∩B=A,q:∁U B⊆∁U A.[思路导引] 判断是否p⇒q,q⇒p.[解] (1)因为a+5是无理数⇒a是无理数,并且a是无理数⇒a+5是无理数,所以p是q的充要条件.(2)因为a2+b2=0⇒a=b=0,并且a=b=0⇒a2+b2=0,所以p是q的充要条件.(3)因为A∩B=A⇒A⊆B⇒∁U A⊇∁U B,并且∁U B⊆∁U A⇒B⊇A⇒A∩B=A,所以p 是q的充要条件.[变式] 已知p是q的充分条件,q是r的必要条件,也是s的充分条件,r是s的必要条件,问:(1)p是r的什么条件?(2)s是q的什么条件?(3)p,q,r,s中哪几对互为充要条件?[解] 作出“⇒”图,如右图所示,。
1.1集合的概念教学设计-高一上学期数学人教A版

集合的概念教学设计一、课标分析在高中数学课程中,集合是刻画一类事物的语言和工具。
本单元的学习,可以帮助学生使用集合的语言简洁、准确地表述数学的研究对象,学会用数学的语言表达和交流,积累数学抽象的经验。
二、教材分析本节内容选自高中数学人教A版必修第一册第一章第1节,也是高中数学学习的第一节。
本节内容是在小学和初中的基础上,引入集合的含义及其表示。
为学生在解决之后的数学问题时,能够更加简洁,准确地表述数学对象及研究范围作铺垫。
三、学情分析本节内容属于高中数学的“预备知识”,定位是帮助学生完成初高中数学学习的过渡。
在初中学生基础的集合知识较为零散,在本节课中,学生首次系统学习描述数学内容的语言和工具。
通过学习,学生能够在现实情境或数学情境中概括出数学对象的一般特征,并用集合语言予以表达、初步学会用三种语言——自然语言、符号语言表达数学研究对象、并进行交流。
因此在本节教学中特别注重通过抽象的数学符号语言的学习,提升学生表达抽象的层次,从而做好初高中数学学习的过渡。
四、教学目标1.了解集合的含义,能判断给定元素组成的全体是否是集合;理解素与集合“属于”与“不属于”的关系;熟记常用数集专用符号;掌握集合的表示法并根据情况选择。
2.在小组交流中深刻理解集合元素间的确定性,互异性与无序性。
3.密切数学与生活之间的联系,感受集合语言的作用。
五、教学重、难点重点:集合元素的三个特征;元素与集合的关系;集合的表示方法。
难点:用描述法表示集合。
六、评价设计1.任务一:通过让学生判断下列元素的全体是否组成集合来了解学生对元素与集合关系的掌握程度。
(采取学生互评,学生所评题目对的举手检验)2.任务二:请用描述法表示奇数集、偶数集、有理数集。
(学生互评)3.任务三:用适当的方法描述下列集合,课本练习3(请学生上黑板写,老师查看下面学生的回答情况)七、教学过程八、板书设计§1.1集合的概念1、含义:研究对象称为元素,用a、b、c表示;把一些元素组成的总体叫做集合用A、B、C表示。
高中数学人教A版(2019新教材) 必修(第一册)全册分章节分课时教学案

第一章集合与函数概念1.1集合1.1.1集合的含义与表示第1课时集合的含义[目标] 1.通过实例,能说出集合的含义,体会元素与集合的“属于”关系;2.记住集合元素的特性以及常用数集;3.会用集合元素的特性解决相关问题.[重点] 用元素与集合的“属于”关系判断元素与集合的关系;用集合元素的特性解答相关问题.[难点] 集合元素特性的应用.知识点一元素与集合的含义[填一填]1.定义(1)元素:一般地,把所研究的对象统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),常用大写拉丁字母A,B,C,…表示.2.集合相等:指构成两个集合的元素是一样的.3.集合中元素的特性:确定性、互异性和无序性.[答一答]1.以下对象的全体能否构成集合?(1)河北《红对勾》书业的员工;(2)平昌冬奥会速滑比赛中滑得很快的选手;(3)一次函数y=kx+b(k≠0)的图象上的若干个点;(4)不超过2 019的非负数.提示:(1)能构成集合.河北《红对勾》书业的员工是确定的,因此有一个明确的标准,可以确定出来.所以能构成一个集合.(2)“滑得很快”无明确的标准,对于某位选手是否“滑得很快”无法客观地判断,因此,“平昌冬奥会速滑比赛中滑得很快的选手”不能构成一个集合.(3)“若干个点”是模糊的概念,因此与之对应的对象都是不确定的,自然它们不能构成集合,故“一次函数y=kx+b(k≠0)的图象上的若干个点”不能构成一个集合.(4)任给一个实数x,可以明确地判断x是不是“不超过 2 019的非负数”,即“0≤x≤2 019”与“x<0或x>2 019”,两者必居其一,且仅居其一,故“不超过2 019的非负数”能构成一个集合.2.若集合A由0,1与x三个元素组成,则x的取值有限制吗?为什么?提示:有限制,x≠0且x≠1.因为集合中的任意两个元素必须是互异的.知识点二元素与集合的关系[填一填]如果a是集合A中的元素,就说a属于(belong to)集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于(not belong to)集合A,记作a∉A.[答一答]3.若集合A是由元素1,2,3,4所组成的集合,问1与A,5与A有什么关系?提示:1∈A,5∉A.知识点三常用数集及表示[填一填][答一答]4.常用的数集符号N,N*,N+有什么区别?提示:(1)N为非负整数集(即自然数集),而N*或N+表示正整数集,不同之处就是N 包括元素0,而N*或N+不包括元素0.(2)N*和N+的含义是一样的,初学者往往误记为N*或N+,为避免出错,对于N*和N 可形象地记为“星星(*)在天上,十字架(+)在地下”.+5.用符号“∈”或“∉”填空. (1)1∈N *;(2)-3∉N ;(3)13∈Q ;; (5)-12∈R.类型一 集合的概念[例1] 下列所给的对象能构成集合的是________. (1)所有的正三角形;(2)高一数学必修1课本上的所有难题; (3)比较接近1的正数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点距离等于1的点的集合; (6)参加里约奥运会的年轻运动员. [答案] (1)(4)(5)[解析] (1)能构成集合.其中的元素需满足三条边相等;(2)不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合; (3)不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合;(4)能构成集合.其中的元素是“16岁以下的学生”;(5)能构成集合.其中的元素是“到坐标原点的距离等于1的点”;(6)不能构成集合.因为“年轻”的标准是模糊的,不确定的,故而不能构成集合.判断元素能否构成集合,关键是集合中元素的确定性,即能否找到一个明确的评判标准来衡量元素是否为集合中的元素,若标准明确则可以构成集合,否则不可以.[变式训练1] 下列对象能组成集合的是( D ) A .3的所有近似值B .某个班级中学习好的所有同学C .2018年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员解析:D中的对象都是确定的,而且是不同的.A中的“近似值”,B中的“学习好”,C中的“难题”标准不明确,不满足确定性,因此A,B,C都不能构成集合.类型二集合中元素的特性命题视角1:集合元素的互异性[例2]已知集合A中含有两个元素a和a2,若1∈A,求实数a的值.[分析]本题中已知集合A中有两个元素且1∈A,根据集合中元素的特点需分a=1或a2=1两种情况,另外还要注意集合中元素的互异性.根据集合中元素的确定性,可以解出字母的所有可能值,再根据集合中元素的互异性对集合中的元素进行检验.另外,利用集合中元素的特性解题时,要注意分类讨论思想的应用.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A有一个元素,∴a≠1.当a=-1时,集合A含有两个元素1,-1,符合互异性.∴a=-1.当一个集合中的元素含字母时,可根据题意结合集合中元素的确定性求出集合中字母的所有取值,再根据集合中元素的互异性进行检验.[变式训练2](1)若集合M中的三个元素是△ABC的三边长,则△ABC一定不是(D)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形(2)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是(C)A.1B.-2C.6D.2解析:(1)集合中任何两个元素不相同.(2)由题意知a2≠4,2-a≠4,a2≠2-a,解得a≠±2,且a≠1.结合选项知C正确.故选C.命题视角2:集合元素的无序性[例3] 集合A 中含有三个元素0,ba ,b ,集合B 中含有三个元素1,a +b ,a ,若A ,B 两个集合相等,求a 2 019+b 2 019的值.[分析] 由两个集合相等,所含元素相同列出a ,b 的关系式,解出a 与b ,再求a 2 019+b 2 019的值.[解] 由两个集合相等易知a ≠0,a ≠1,故a +b =0,且b =1或ba =1.若b =1,由a +b =0得a =-1,经验证,符合题意;若ba =1,则a =b ,结合a +b =0,可知a =b =0,不符合题意.综上知a =-1,b =1. 所以a 2 019+b 2 019=(-1)2 019+12 019=0.两个集合相等,元素相同,因为集合元素无序,所以要进行讨论.同时还需要对集合求值问题代入验证,注意集合中元素的互异性.[变式训练3] 集合A 由1,3,5,7四个元素组成,已知实数a ,b ∈A ,那么ab 的不同值有( B )A .12个B .13个C .16个D .17个解析:a ,b 是集合A 的元素,ab 的值会因a ,b 的顺序不同而不同.a ,b 所取的值按顺序分别为:1,1;3,3;5,5;7,7;1,3;3,1;1,5;5,1;1,7;7,1;3,5;5,3;3,7;7,3;5,7;7,5,其对应的ab 有13个不同的值.类型三 元素与集合的关系[例4] (1)给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N . 其中正确的个数为( ) A .1 B .2 C .3D .4(2)集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.[答案] (1)B (2)0,1,2[解析] (1)12是实数;2是无理数;|-3|=3是自然数;|-3|=3是无理数;0是自然数.故①②正确,③④⑤不正确.(2)由63-x ∈N ,x ∈N 知x ≥0,63-x≥0,且x ≠3,故0≤x <3.又x ∈N ,故x =0,1,2. 当x =0时,63-0=2∈N ,当x =1时,63-1=3∈N ,当x =2时,63-2=6∈N .故集合A 中的元素为0,1,2.判断一个元素是否属于某一集合,就是判断这个元素是否满足该集合元素的条件.若满足,就是“属于”关系;若不满足,就是“不属于”关系.特别注意,符号“∈”与“∉”只表示元素与集合的关系.[变式训练4] 已知不等式3x +2>0的解集为M . (1)试判断元素-1,0与集合M 的关系;(2)若a -1是集合M 中的元素,求a 的取值范围. 解:(1)∵3×(-1)+2=-1<0, ∴-1不是集合M 中的元素,∴-1∉M . 又3×0+2=2>0,∴0是集合M 中的元素,∴0∈M . (2)∵a -1∈M ,∴3(a -1)+2>0. ∴3a >1,∴a >13.1.下列各组对象不能构成集合的是( B ) A .某中学所有身高超过1.8米的大个子 B .约等于0的实数 C .某市全体中学生D .北京大学建校以来的所有毕业生解析:由于“约等于0”没有一个明确的标准,因此B 中对象不能构成集合.2.下列命题中,正确命题的个数是( C )①集合N *中最小的数是1;②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 的最小值是2;④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2 D .3解析:N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,a ∉N *,故②错误;若a ∈N *,则a 的最小值是1,同理,b ∈N *,b 的最小值也是1,∴当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合中元素的互异性,知④是错误的.3.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M ,则下列判断正确的是( B )A .0∈MB .-1∈MC .3∉MD .1∈M解析:当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.4.集合A 由元素-1和2构成,集合B 是方程x 2+ax +b =0的解,若A =B ,则a +b =-3.解析:∵A =B ,∴方程x 2+ax +b =0的解是-1或2. ∴a =-1,b =-2,∴a +b =-3.5.已知集合A 由a 2-a +1,|a +1|两个元素构成,若3∈A ,求a 的值. 解:∵3∈A ,∴a 2-a +1=3或|a +1|=3. ①若a 2-a +1=3,则a =2或a =-1.当a =2时,|a +1|=3,此时集合A 中含有两个3,因此应舍去. 当a =-1时,|a +1|=0≠3,满足题意. ②若|a +1|=3,则a =-4或a =2(舍去). 当a =-4时,a 2-a +1=21≠3,满足题意. 综上可知a =-1或a =-4.——本课须掌握的三大问题1.理解集合的概念,关键是抓住集合中元素的三个特性:确定性、互异性和无序性.特别是处理含有参数的集合问题时,一定要注意集合中元素的互异性,即在求出参数的取值或取值范围后,一定要检验集合中元素的互异性.2.关于特定集合N ,N *(N +),Z ,Q ,R 等的意义是约定俗成的,解题时作为已知使用,不必重述它们的意义.3.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果,“∈”与“∉”具有方向性,左边是元素,右边是集合.学习至此,请完成课时作业1第2课时集合的表示[目标] 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.[重点] 集合的两种表示方法及其运用.[难点] 对描述法表示集合的理解.知识点一列举法[填一填]把集合的元素一一列举出来,并用花括号“{__}”括起来表示集合的方法叫做列举法.{}表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.[答一答]1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二 描述法[填一填]1.用集合所含元素的共同特征表示集合的方法称为描述法. 2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[答一答]4.集合{x |x >3}与集合{t |t >3}表示同一个集合吗?提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合[例1] (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[答案] (1)B (2)见解析[解析] (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点,(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素;(2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.[变式训练1] 用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合[例2] 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .[分析] 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. [解] (1)解2x -7<3得x <5, 所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.[变式训练2] 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =n n +2,n ∈N *.类型三 两种方法的灵活应用[例3] 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合; (3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.[分析] (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.该集合也可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}.(3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.[变式训练3] 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:由题x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}解析:方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}. 解析:由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5. 4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}. 解析:正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n ,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则. (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.学习至此,请完成课时作业2 学科素养培优精品微课堂 “形似异质”的集合的表示开讲啦 集合的类型有多种形式,可以是数集、点集、图形集或是其他类型的集合,判断它是哪种类型的集合主要根据代表元素的类型来判断.[典例] 有下面三个集合:①A ={x ∈R |y =x 2+1};②B ={y ∈R |y =x 2+1};③C ={(x ,y )|y =x 2+1,x ∈R ,y ∈R }.它们是不是相同集合,为什么?[分析] 分析各集合中代表元素是哪种类型以及对各元素所具有的属性作出判断. [解] 对于集合A ,其代表元素为x ,x 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1中自变量x 的取值范围,因为函数y =x 2+1中自变量x 的取值范围是R ,故A =R ;对于集合B ,其代表元素为y ,y 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1的函数值y ,故B ={y |y ≥1};对于集合C ,其代表元素为(x ,y ),它表示坐标平面中的点的坐标,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1图象上的点.综上所述,集合A 、B 、C 是不同的集合.[名师点评] 理解描述法表示的集合,关键是对符号语言所表达的含义要正确理解.认识它时,一要看集合的代表元素是什么,它反映了集合元素的类型,以此确定集合的类型;二要看代表元素所具有的属性,即它要满足什么条件,以此确定集合中元素的组成部分.[对应训练] 判断下列说法是否正确,正确的打“√”,错误的打“×”. (1)整数集Z ={x |x =n +1,n ∈Z }.( √ ) (2){y |y =x 2}≠{x |y =x }.( × )(3)两条直线y =2x 与y =x -1的交点构成集合M ,集合N =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ y =2xy =x -1,则M =N .( √ )(4)M ={(x ,y )|x +y =4,x ,y ∈N *}={(0,4),(1,3),(2,2)}.( × )解析:(1)整数集是个无限集,x =n +1,n ∈Z 能表示任意一个整数,所有的整数也能写成这种形式,故(1)正确.{y |y =x 2}表示通过计算y =x 2得到的所有y 值的集合,也可以理解为二次函数y =x 2图象上所有点的纵坐标的取值集合,即{y |y =x 2}表示非负实数集;{x |y =x }表示满足y =x 的所有x 的取值集合,因此x 可以取任意非负实数,即{x |y =x }表示非负实数集.两者表示的数集完全一样,故(2)错误.集合N 是一个点集,描述集合M 采用的是自然语言,二者含义一样,故(3)正确.集合M 是由满足x +y =4,且x ,y 均为正整数的x ,y 构成的点集,易知M ={(1,3),(2,2),(3,1)},故(4)错误.1.1.2 集合间的基本关系[目标] 1.记住集合间的包含关系,会判断两个简单集合的关系;2.能写出给定集合的子集;3.记住集合相等与空集的含义以及空集与其他集合的关系.[重点] 集合间关系及集合间关系的判断;写出给定集合的子集;空集与其他集合的关系.[难点] 集合间的关系及应用.知识点一子集的有关概念[填一填]1.Venn图通常用平面上封闭曲线的内部代表集合.用Venn图表示集合的优点:形象直观.2.子集(1)自然语言:一般地,对于两个集合A,B,如果集合A的任何一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.(2)符号语言:记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”).(3)图形语言:用Venn图表示.3.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(B A).4.集合相等如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此集合A和集合B相等,记作A=B.[答一答]1.若A⊆B,则A中的元素是B中的元素的一部分,对吗?提示:不对,A中的元素是B的一部分或是B的全部.2.“∈”与“⊆”有什么区别?提示:“∈”表示元素与集合之间的关系,而“⊆”表示集合与集合之间的关系.3.“”与“<”一样吗?提示:不一样,“”表示集合与集合之间的关系;“<”表示两实数间的关系.4.如何判断两个集合是否相等?提示:方法一:根据两个集合中的元素是否完全相同进行判断;方法二:根据集合相等的定义,即是否同时满足A⊆B且B⊆A.知识点二空集[填一填]不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集.[答一答]5.0,{0},∅,{∅}有何区别?提示:知识点三子集、真子集的性质[填一填]由子集、真子集和空集的概念可得:(1)空集是任何集合的子集,即∅⊆A;(2)任何一个集合是它自身的子集,即A⊆A;(3)空集只有一个子集,即它自身;(4)对于集合A,B,C,由A⊆B,B⊆C可得A⊆C;(5)对于集合A,B,C,由A B,B C可得A C.[答一答]6.(1)对于集合A、B、C,如果A⊆B,B⊆C,则A⊆C,若A B,B⊆C呢?(2)若∅A,则A≠∅对吗?提示:(1)A C.(2)对.类型一确定集合的子集、真子集[例1](1)已知集合M满足{1,2}M⊆{1,2,3,4,5},求所有满足条件的集合M.(2)填写下表,并回答问题:12n数及非空真子集的个数呢?[解](1)由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(2)}的所有子集的个数是212n是2n-1,非空真子集的个数是2n-2.1.有限集子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;,(3)注意两个特殊的集合,即空集和集合本身.2.若集合A中有n个元素,则集合A有2n个子集,(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集,该结论可在选择题或填空题中直接使用.[变式训练1]试写出满足条件∅M{0,1,2}的所有集合M.解:因为∅M{0,1,2}.所以M为{0,1,2}的非空真子集.所以M中的元素个数为1或2,当M中只有1个元素时,M可以是{0},{1},{2};当M中有2个元素时,M可以是{0,1},{0,2},{1,2};所以M可以是{0},{1},{2},{0,1},{0,2},{1,2}.类型二集合间关系的判断及应用命题视角1:利用子集的定义判断集合间的关系[例2](1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是()A.A⊆B B.A⊇BC.A B D.A B[答案](1)C(2)D[解析](1)由已知得集合M={1,2}.由真子集的定义可知M N.(2)因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.判断两集合关系的步骤:(1)先对所给集合进行化简.(2)搞清两集合中元素的组成,也就是弄清楚集合由哪些元素组成,即把集合间关系的判断转化为相应集合元素之间的关系来判断.[变式训练2]指出下列各组集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解:(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)法1:两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.法2:由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.命题视角2:利用Venn图理解集合间的关系[例3]能正确表示集合M={x|0≤x≤2}和集合N={x|x2-x=0}关系的Venn图是下图中的()[答案] B[解析]N={0,1}M.用封闭的曲线的内部表示集合,这种图形称为Venn图,是描述集合关系的图形语言,它可以是圆、矩形、椭圆等.通过图形可直观看出两个集合是否有公共元素,甚至还可以解决集合内元素的个数问题,在后续课的学习中Venn图的图解功能再进一步体会.[变式训练3] 已知集合A ={x |x 2=x ,x ∈R },集合A 与非空集合B 的关系如图所示,则满足条件的集合B 的个数为( B )A .1B .2C .3D .4 解析:∵A ={x |x 2=x ,x ∈R }={0,1},又B A ,且B 为非空集合,∴B 可以为{0}或{1}.故选B.命题视角3:利用数轴理解集合间的关系[例4] 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.[分析] 解决本题可用数形结合的方法画出数轴来分析. [解] 集合A 在数轴上表示如图.要使A ⊇B ,则集合B 中的元素必须都是A 中的元素, 即B 中元素必须都位于阴影部分内,那么由4x +m <0,即x <-m 4知,-m4≤-2,即m ≥8,故实数m 的取值范围是m ≥8.在数轴上表示集合A 与B 时要注意,端点处都是空心点,所以当-m4=-2时,集合B 为{x |x <-2},仍满足A ⊇B .这种利用子集关系求参数的问题,借助数轴分析时,要验证参数能否取到端点值.[变式训练4] 已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围. 解:(1)若A B ,则集合A 中的元素都在集合B 中,且B 中有不在A 中的元素,则a >2.(2)若B ⊆A ,则集合B 中的元素都在集合A 中,则a ≤2.因为a ≥1,所以1≤a ≤2.1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则有( B )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:正方形是邻边相等的矩形.2.已知集合M ={-1,0,1},N ={y |y =x 2,x ∈M },则( B ) A .MNB .NMC .M =ND .M ,N 的关系不确定解析:由题意,得N ={0,1},故N M .3.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 有5个.解析:∵A{1,2,3},∴A 中至多含有2个元素.∵A 中至少有一个奇数,∴A 可能为{1},{3},{1,2},{1,3},{2,3},共5个.4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是a ≤14.解析:∵∅{x |x 2-x +a =0}.∴{x |x 2-x +a =0}≠∅,即方程x 2-x +a =0有解,∴Δ=1-4a ≥0,∴a ≤14.5.已知集合B ={-1,0,1},若A ⊆B ,试写出所有满足条件的集合A . 解:当A =∅时,满足条件;当A 是单元素集合时,满足条件的集合A 有{-1},{0},{1};当A 是含两个元素的集合时,满足条件的集合A 有{-1,0},{-1,1},{0,1}; 当A 是含三个元素的集合时,满足条件的集合A 为{-1,0,1}.故满足条件的集合A 有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1}.——本课须掌握的三大问题1.写出一个集合的所有子集,首先要注意两个特殊子集:∅和自身;其次依次按含有一个元素的子集、含有两个元素的子集、含有三个元素的子集……写出子集.2.空集是任何集合的子集,是任何非空集合的真子集,在解决形如A ⊆B 类问题时, 需分类讨论A =∅与A ≠∅两种情况.3.要证明A =B ,只需要证明A ⊆B 且B ⊆A 成立即可.即可设任意x 0∈A ,证明x 0∈B 从而得出A ⊆B .又设任意y 0∈B ,证明y 0∈A ,从而得到B ⊆A ,进而证明得到A =B .。
新人教A版新教材学高中数学必修第一册第一章集合与常用逻辑用语集合间的基本关系讲义

最新课程标准:(1)在具体情境中,了解空集的含义.(2)理解集合之间包含与相等的含义,能识别给定集合的子集.知识点一子集文字语言符号语言图形语言对于两个集合A,B,如果集合A 中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集对任意元素x∈A,必有x∈B,则A⊆B(或B⊇A),读作A包含于B或B包含A错误!“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即任意x∈A都能推出x∈B.知识点二集合相等文字语言:一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B.符号语言:若A⊆B,且B⊆A,则A=B.错误!1.若A ⊆B,又B ⊆A,则A=B;反之,如果A=B,则A ⊆B,且B ⊆A.2.若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.知识点三真子集文字语言:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集(proper subset).符号语言:A B(或B A).错误!在真子集的定义中,A B首先要满足A ⊆B,其次至少有一个x∈B,但x∉A.知识点四空集不含任何元素的集合叫做空集,记为∅.规定:空集是任何集合的子集.知识点五子集的性质1.任何一个集合都是它本身的子集,即A⊆A.2.对于集合A,B,C,若A⊆B,B⊆C,则A⊆C.[教材解难]教材P8思考{a}表示含有一个元素a的集合,{a}⊆A表示集合A包含{a},这是两个集合之间的关系;a∈A,表示a是A的一个元素,这是元素与集合之间的关系.[基础自测]1.下列四句话中:1∅={0};2空集没有子集;3任何一个集合必有两个或两个以上的子集;4空集是任何一个集合的子集.其中正确的有()A.0个B.1个C.2个D.3个解析:由空集的性质可知,只有4正确,123均不正确.答案:B2.集合{0,1}的子集有()A.1个B.2个C.3个D.4个解析:集合{0,1}的子集为∅,{0},{1},{0,1}.答案:D3.已知集合A={x|—1—x<0},则下列各式正确的是()A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A解析:集合A={x|—1—x<0}={x|x>—1},所以0∈A,{0}⊆A,D正确.答案:D4.已知集合A={—1,3,2m—1},集合B={3,m2},若B⊆A,则实数m=________.解析:∵B⊆A,∴2m—1=m2,∴m=1.答案:1题型一集合间关系的判断[经典例题]例1(1)下列各式中,正确的个数是()1{0}∈{0,1,2};2{0,1,2}⊆{2,1,0};3∅⊆{0,1,2};4∅={0};5{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4(2)指出下列各组集合之间的关系:1A={—1,1},B={(—1,—1),(—1,1),(1,—1),(1,1)};2A={x|x是等边三角形},B={x|x是等腰三角形};3M={x|x=2n—1,n∈N*},N={x|x=2n+1,n∈N*}.【解析】(1)对于1,是集合与集合的关系,应为{0}{0,1,2};对于2,实际为同一集合,任何一个集合是它本身的子集;对于3,空集是任何集合的子集;对于4,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于5,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故23是正确的,应选B.(2)1集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.2等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.3方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.【答案】(1)B (2)见解析根据元素与集合、集合与集合之间的关系直接判断1234⑥,对于5应先明确两个集合中的元素是点还是实数.方法归纳判断集合间关系的方法(1)用定义判断首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.跟踪训练1(1)若集合M={x|x2—1=0},T={—1,0,1},则M与T的关系是()A.M TB.M TC.M=TD.M T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解析:(1)因为M={x|x2—1=0}={—1,1},又T={—1,0,1},所以M T.(2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn图.如图答案:(1)A (2)见解析错误!(2)学习完知识点后,我们可以得到B ⊆A,C ⊆A,D ⊆A,D ⊆B,D ⊆C.题型二子集、真子集及个数问题[教材P8例1、2]例2(1)写出集合{a,b}的所有子集,并指出哪些是它的真子集.(2)判断下列各题中集合A是否为集合B的子集,并说明理由:1A={1,2,3},B={x|x是8的约数};2A={x|x是长方形},B={x|x是两条对角线相等的平行四边形}.【解析】(1)集合{a,b}的所有子集为∅,{a},{b},{a,b}.真子集为∅,{a},{b}.(2)1因为3不是8的约数,所以集合A不是集合B的子集.2因为若x是长方形,则x一定是两条对角线相等的平行四边形,所以集合A是集合B的子集.错误!(1)题写出集合的子集时易忘∅,真子集是在子集的基础上去掉自身.(2)题先确定集合A,B中的元素,再根据子集的定义判断.教材反思1.求集合子集、真子集个数的三个步骤2.若集合A中含有n个元素,集合A的子集个数为2n,真子集的个数为2n—1,非空真子集的个数为2n—2.跟踪训练2(1)已知集合A={x∈R|x2—3x+2=0},B={x∈N|0<x<5},则满足条件A C B的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a的值为()A.—2B.4C.0 D.以上答案都不是解析:(1)由x2—3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2,3},{1,2,4}.(2)由题意知,集合A中只有1个元素,必有x2=a只有一个解;若方程x2=a只有一个解,必有a=0.答案:(1)B (2)C错误!(1)先用列举法表示集合A,B,然后根据A C B确定集合C.(2)先确定关于x的方程x2=a解的个数,然后求a的值.题型三根据集合的包含关系求参数[经典例题]例3已知集合A={x|1<ax<2},B={x|—1<x<1},求满足A⊆B的实数a的取值范围.【解析】(1)当a=0时,1A=∅,满足A⊆B.(2)当a>0时,A=错误!.又∵B={x|—1<x<1},且A⊆B,∴错误!2∴a≥2.(3)当a<0时,A=错误!.3∵A⊆B,∴错误!∴a≤—2.综上所述,a的取值范围是{a|a=0,或a≥2,或a≤—2}.错误!1欲解不等式1<ax<2,需不等号两边同除以a,而a的正负不同时,不等号的方向不同,因此需对a分a=0,a>0,a<0进行讨论.2A ⊆B用数轴表示如图所示:(a>0时)由图易知,错误!和错误!需在—1与1之间.当错误!=—1,或错误!=1时,说明A 与B的某一端点重合,并不是说其中的元素能够取到端点,如错误!=1时,A=错误!,x 取不到1.3a<0时,不等式两端除以a,不等号的方向改变.方法归纳(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必需的.跟踪训练3设集合A={x|x2—8x+15=0},B={x|ax—1=0}.(1)若a=错误!,试判定集合A与B的关系.(2)若B⊆A,求实数a的取值集合.解析:(1)由x2—8x+15=0得x=3或x=5,故A={3,5},当a=错误!时,由ax—1=0得x=5.所以B={5},所以B A.(2)当B=∅时,满足B⊆A,此时a=0;当B≠∅,a≠0时,集合B=错误!,由B ⊆A得错误!=3或错误!=5,所以a=错误!或a=错误!.综上所述,实数a的取值集合为错误!错误!(1)解方程x2—8x+15=0,求出A,当a=错误!时,求出B,由此能判定集合A与B的关系.(2)分以下两种情况讨论,求实数a的取值集合.1B=∅,此时a=0;2B≠∅,此时a≠0.易错点忽略空集的特殊性致误例设M={x|x2—2x—3=0},N={x|ax—1=0},若N⊆M,求所有满足条件的a 的取值集合.【错解】由N⊆M,M={x|x2—2x—3=0}={—1,3},得N={—1}或{3}.当N={—1}时,由错误!=—1,得a=—1.当N={3}时,由错误!=3,得a=错误!.故满足条件的a的取值集合为错误!.【正解】由N⊆M,M={x|x2—2x—3=0}={—1,3},得N=∅或N={—1}或N={3}.当N=∅时,ax—1=0无解,即a=0.当N={—1}时,由错误!=—1,得a=—1.当N={3}时,由错误!=3,得a=错误!.故满足条件的a的取值集合为错误!.【易错警示】错误原因纠错心得错解忽略了N=∅这种情况空集是任何集合的子集,解这类问题时,一定要注意“空集优先”的原则课时作业2一、选择题1.能正确表示集合M={x|x∈R且0≤x≤1}和集合N={x∈R|x2=x}关系的Venn图是()解析:N={x∈R|x2=x}={0,1},M={x|x∈R且0≤x≤1},∴N M.答案:B2.已知集合A={1,2,3},B={3,x2,2},若A=B,则x的值是()A.1B.—1C.±1D.0解析:由A=B得x2=1,所以x=±1,故选C.答案:C3.已知集合A={—1,0,1},则含有元素0的A的子集的个数为()A.2B.4C.6 D.8解析:根据题意,含有元素0的A的子集为{0},{0,1},{0,—1},{—1,0,1},共4个.答案:B4.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3解析:因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.答案:B二、填空题5.已知集合:(1){0};(2){∅};(3){x|3m<x<m};(4){x|a+2<x<a};(5){x|x2+2x+5=0,x∈R}.其中,一定表示空集的是________(填序号).解析:集合(1)中有元素0,集合(2)中有元素∅,它们不是空集;对于集合(3),当m<0时,m>3m,不是空集;在集合(4)中,不论a取何值,a+2总是大于a,故集合(4)是空集;对于集合(5),x2+2x+5=0在实数范围内无解,故为空集.答案:(4)(5)6.已知集合A={1,3,5},则集合A的所有子集的元素之和为________.解析:集合A的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A中的每个元素出现在A的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.答案:367.若集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.解析:若A中含有一个奇数,则A可能为{1},{3},{1,2},{3,2};若A中含有两个奇数,则A={1,3}.答案:5三、解答题8.已知{1,2}⊆A{1,2,3,4},写出所有满足条件的集合A.解析:∵{1,2}⊆A,∴1∈A,2∈A.又∵A{1,2,3,4},∴集合A中还可以有3,4中的一个,即集合A可以是{1,2},{1,2,3},{1,2,4}.9.已知M={2,a,b},N={2a,2,b2},且M=N,试求a与b的值.解析:方法一根据集合中元素的互异性,有错误!或错误!解得错误!或错误!或错误!再根据集合中元素的互异性,得错误!或错误!方法二∵两个集合相同,则其中的对应元素相同.∴错误!即错误!∵集合中的元素互异,∴a,b不能同时为零.当b≠0时,由2得a=0或b=错误!.当a=0时,由1得b=1或b=0(舍去).当b=错误!时,由1得a=错误!.当b=0时,a=0(舍去).∴错误!或错误![尖子生题库]10.已知集合A={x|—3≤x≤4},B={x|2m—1<x<m+1},且B⊆A.求实数m的取值范围.解析:∵B⊆A,(1)当B=∅时,m+1≤2m—1,解得m≥2.(2)当B≠∅时,有错误!解得—1≤m<2.综上得m≥—1.即实数m的取值范围为[—1,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容 基本要求集合的含义 会使用符号“∈”或“∉"表示元素与集合之间的关系;集合的表示能选择自然语言、图形语言、集合语言描述不同的具体问题; 理解集合的特征性质,会用集合的特征性质描述一些集合,如常用数集,方程或不等式的解集等 集合间的基本关系理解集合之间包含与相等的含义,及子集的概念.在具体情景中,了解空集和全集的含义;理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集集合的基本运算 掌握有关的术语和符号,会用它们表达集合之间的关系和运算.能使用维恩图表达集合之间的关系和运算.1.集合:某些指定的对象集在一起成为集合。
(1)集合中的对象称元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,模块框架高考要求知识内容集合记作A b ∉;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;例如:{1,2,3,4,5},{1,2,3,4,5,}描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
例如:大于3的所有整数表示为:{Z |3}x x ∈>方程2250x x --=的所有实数根表示为:{R x ∈|2250x x --=}具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法:非负整数集(或自然数集),记作N; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。
〈教师备案>⑴集合是数学中最原始的概念之一,不能用其他的概念给它下定义,所以集合是不定义的概念,只能做描述性的说明.⑵构成集合的元素除了常见的数、式、点等数学对象之外,还可以是其他任何..对象.例:{小明,机器猫,哈里波特}⑶正确认识一个集合的关键是理解集合中的元素特征.①任何一个对象都能确定它是不是某一个集合的元素,这是集合中元素的最基本的特征-—确定性,反例:“很小的数”,“个子较高的同学”;②集合中的任何两个元素都是不同的对象,即在同一集合里不能重复出现相同元素——互异性,事实告诉我们,集合中元素的互异性常被忽略,从而导致解题出错.例:方程2(1)(2)0x x --=的解集不能写成{1,1,2},而应写成{1,2}③在同一集合里,通常不考虑元素之间的顺序-—无序性 例:集合{,,}a b c 与集合{,,}b c a 是相同集合 ⑷用描述法表示集合,对其元素的属性要准确理解.例如:集合{}2x y x =表示自变量x 值的全体,即{}x x ∈R ;集合{}2y y x =表示函数值y 的全体,即{}0y y ≥;集合{}2()x y y x =,表示抛物线2y x =上的点的全体,是点的集合(一条抛物线);而集合{}2y x =则是用列举法表示的单元素集.⑸关于集合的表示方法之间的转换例如:①63A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z N ,,用列举法表示为{}0124569A =,,,,,, ②a b A x x a b a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,,是非零实数,用列举法表示为{}202A =-,,2.集合的包含关系:(1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂);集合相等:构成两个集合的元素完全一样。
若A ⊆B 且B ⊇A ,则称A 等于B ,记作A =B ;若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作AB ; (2)简单性质:1)A ⊆A ;2)Φ⊆A ;3)若A ⊆B ,B ⊆C ,则A ⊆C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ;(2)若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S. 〈教师备案>⑴强调说明,加深印象:①表示元素和集合之间的关系:属于“∈”和不属于“∉” ②表示集合与集合之间的关系:包含关系:如果对于任意a A a B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇;注意提示:A A ⊆,A ∅⊆真子集关系:对于两个集合A 与B ,若A B ⊆且.A B ≠,则集合A 是集合B 的真子集,记作AB (或BA )相等关系:对于两个集合A 与B ,如果A B ⊆,且.B A ⊆ ,那么集合A 与B 相等,记作A B =注意提示:如果“A B ⊆”,那么有A B =或A B ,两种情况二者必居其一;而AB 是不允许A B =,所以即使A B ⊆,AB 不一定成立;反之,AB 可以说A B ⊆;A B =也可说A B ⊆不包含关系:如果集合A 中存在着不属于集合B 的元素,那么集合A 不包含于B ,或B 不包含A .分别记作AB ,或BA⑵0,{0},∅,{}∅之间的区别与联系①0与{0}是不同的,0只是一个数字,而{0}则表示集合,这个集合中含有一个元素0,它们的关系是0{0}∈②∅与{0}是不同的,∅中没有任何元素,{0}则表示含有一个元素0的集合,它们的关系是两个集合之间的关系({}0∅)③∅与{}∅是不同的,∅中没有任何元素,{}∅则表示含有一个元素∅的集合,它们的关系是{}∅∈∅或{}∅⊆∅或{}∅∅④显然,0∉∅,0{}∉∅⑶集合中的计数问题当研究有限集合问题时,常有一些计数问题. 在计数时常用下列结论:设集合A 中元素个数为n ,则①子集的个数为2n ,②真子集的个数为21n -,③非空真子集的个数为22n -4.交集与并集:(1)一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集.交集}|{B x A x x B A ∈∈=⋂且。
(2)一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集。
}|{B x A x x B A ∈∈=⋃或并集。
注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法. 〈教师备案>1.理解两个集合的并集、交集、补集的含义,会求两个简单集合的并集与交集⑴能使用Venn 图表示集合的并集、交集、补集;⑵能使用数轴表示不等式或不等式组的解集和表示集合A 的补集R A2.基础知识点拨:⑴交集的概念:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作AB (读作“A 交B "),即{|,A B x x A =∈且}x B ∈① 数学符号表示:{|,A B x x A =∈且}x B ∈② Venn 图反映:BAB ABABA⑵并集的概念:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B的并集,记作A B (读作“A 并B ”),即{|,A B x x A =∈或}x B ∈① 数学符号表示: {|,A B x x A =∈或}x B ∈ ② Venn 图反映:BABABA⑶补集的概念:全集:一般地,如果一个集合含有我们所研究的问题中涉及的所有元素,那么就称这个集合为全集,通常记作U补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作UA ,即{|,UA x x U =∈且}x A ∉ ①数学符号表示:{|,UA x x U =∈且}x A ∉②Venn 图反映:AUAU()U A A U =;()U A A =∅;()UU A A =3.公式定理小结: ⑴A A ⊆;A ∅⊆;⑵若A B ⊆,B C ⊆,则A C ⊆;若A B ,B C ,则A C ;⑶A B B A =;⑷A B A ⊆;A B B ⊆;⑸A ∅=∅; ⑹A B B A =;⑺A A B ⊆;B A B ⊆;⑻A A ∅=⑼()U A A =∅;()U A A U =; ⑽()UU A A =5.集合的简单性质:(1);,,A B B A A A A A ⋂=⋂Φ=Φ⋂=⋂ (2);,A B B A A A ⋃=⋃=Φ⋃(3));()(B A B A ⋃⊆⋂(4)B B A B A A B A B A =⋃⇔⊆=⋂⇔⊆;;(5)S C (A ∩B )=(S C A )∪(S C B ),S C (A ∪B )=(S C A )∩(S C B ). 6.集合元素个数公式:()()()()n A B n A n B n A B =+-.1.集合的概念集合是一个原始的概念,是数学中一个不定义的概念.尽管如此,对于一个具体的集合而言,很多情况下我们可以通过采用列举或者描述的方法给出它的一个准确而清晰的表示.2.集合的描述法对任给的一个性质P ,存在一个集合S ,它由恰好是具有性质P 的所有对象构成,即{|()}S x P x =,其中()P x 表示“x 具有性质P ”.3.元素与集合的关系一个集合的元素是完全确定的,同时其包含的元素之间具有无序性和互异性.对于一个确定的对象x 和一个确定的集合A ,“x A ∈”与“x A ∉”有且仅有一个成立.如果对象x 满足描述集合A 的性质,则有“x A ∈”,此时称对象x 为集合A 的元素.集合的元素个数为有限数的集合称为有限集,元素个数为无限的集合称为无限集.空集∅不含任何元素.思考:{}∅是不是空集,它的元素是什么?4.集合与集合的关系集合A 包含于集合B ,即“A B ⊆"⇔“x A ∀∈,有x B ∈.”(“∀”:任给,“x A ∀∈”即“任给集合A 中的元素x ”);集合A 真包含于集合B ,即“A B ”⇔“x A ∀∈,有x B ∈.”且“x B ∃∈,使得x A ∉.”(“∃”:存在,“x B ∃∈"即“存在集合B 中的元素x ”);集合A 与集合B 相等,即“A B =”⇔“A B ⊆"且“B A ⊆”.思考:如何利用“∀”和“∃”通过数学语言叙述命题“对任何自然数a ,都存在整数b ,使得a b +是质数.”5.集合与集合的运算 集合的交集、并集、补集三种基本运算是通过元素与集合的关系来定义的.有时,我们还要用到集合的差集的概念.下面给出这四种运算的定义:交集:{|A B x x A =∈,且x B ∈}, 并集:{|A B x x A =∈,或x B ∈},补集:如果有A B ⊆,则A 对B 的补集{|BA x xB =∈,且x A ∉}.(注意前提条件,如果A B ⊆不成立,就A 对B 的补集运算就无从谈起.),当给定全集U 时,UA 常记做A .差集:\{A B x A =∈,且x B ∉}.利用维恩图可以直观的理解集合与集合的运算,例如交集和并集:竞赛知识思考:补集运算与差集运算的联系,画出补集和差集的维恩图表示.6.子集以及摩根定律 如果集合A 与集合M 间满足关系:A M ⊆,那么称集合A 是集合M 的子集.特别的,规定空集∅是任何集合的子集. 摩根定律:如果集合A 、B 都是集合M 的子集,那么()A B A B =,()A B A B =. 另外,如果集合A 、B 都是集合M 的子集,那么\M A B A B =.7.给定一个有限集,写出其所有子集的方法 写出给定有限集的所有子集的方法有很多种,在这里我们通过一个实际的例子介绍通过添加给定集合元素得到给定集合所有子集的添加元素法:例:对给定集合{1,2,3}写出其所有子集.⑴写出空集⑵将前一步得到的所有集合照抄,然后将给定集合中第一个元素添加到那些集合中,得到一些新的集合.把照抄的集合和新的集合放在一起,作为该步得到的集合.⑶与⑵类似,不过这次添加的元素为集合中的第二个元素.重复操作,直到将给定集合的所有元素都添加完毕,就得到了给定集合的所有子集.∅→∅,{1}→∅,{1},{2},{1,2}→∅,{1},{2},{1,2}→∅,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3}. 思考:写出集合{1,}∅的所有子集.8.有限集的阶 如果集合A 为有限集,那么集合A 的元素的数目叫做这个集合的阶,记做||A .特别的,定义空集∅的阶为0.思考:如果使用维恩图表示集合,那么可以用面积表示有限集的阶.9.子集族某些集合的元素是集合,例如{A =∅,{1},{1,2},{2}}就是一个含有4个元素(每个元素都是集合)的集合.特别的,将集合M 的若干子集作为元素构成的集合*M 叫做集合M 的一个子集族.最简单的子集族是由有限集M 的全体子集所构成的子集族,简称为C 族.知识提要7给出的方法,其实就是得到有限集M 的C 族*M 中所有元素的方法.C 族的基本性质:如果集合M 的阶为n ,那么集合M 的C 族*M 的阶为2n . 思考:通过写出给定有限集的所有子集的添加元素法的步骤理解C 族的基本性质.10.覆盖和集合的分划覆盖:如果对于一个集合M ,n 个非空集合1A ,2A ,…,n A 满足1ni i A M ==,则称1A ,2A ,…,n A 是集合M 的一个覆盖.集合的分划:如果1A ,2A ,…,n A 是集合M 的一个覆盖,若1A ,2A ,…,n A 两两间交集为空集,即“1i j n ∀<≤≤,i j A A =∅.”,那么这些集合的全体叫做集合M 的一个n -分划.集合M 的覆盖1A ,2A ,…,n A 构成的集合*M 一定是集合M 的一个子集族.例如集合{1,2,3,4,5}A =可以写成{1,2}{2,4,5}{3,4},记1{1A =,2},2{2A =,4,5},3{3A =,4}.所以1A ,2A ,3A 是集合A 的一个覆盖,它们所构成的集合是集合A 的一个子集族,但不是集合A 的一个分划.思考:集合A 的子集族{∅,{1},{2,3},{4,5}}中的元素是否构成集合A 的一个分划,给出集合A 的一个5—分划.11.分类与加法原理分类:对于某个问题,设所研究的对象的全体形成集合M ,那么对集合M 的一个n -分划又叫做研究对象的全体的一个n -分类,其中每一个子集叫做所研究对象的一个类.从集合的分划的定义,我们可以看到分类的原则:无重复(两两交集为空集)以及无遗漏(覆盖).加法原理:如果1A ,2A ,…,n A 是有限集M 的一个n -分划,那么1||||ni i M A ==∑.特别的,对于有限集M 的一个2-分划A ,A ,有||||||M A A =+.由于补集运算对交集和并集有摩根定律()A B A B =以及()A B A B =,我们常用到变形||||||A M A =- .12.容斥原理如果1A ,2A 为集合M 的一个覆盖,那么1212||||||||M A A A A =+-,考虑到集合的覆盖的定义,我们有121212||||||||A A A A A A =+-.由该公式在计算左端集合的元素个数时,右端采用了将“应该有的”包含进来,“不应该有的(或者重复的)"排斥出去的思想方法,所以称其为容斥原理.思考:画出容斥原理的维恩图表示.13.极端原理 最小数原理:设集合M 是实数集的一个有限非空子集,则M 中必有最小数. 推论:设集合M 是实数集的一个有限非空子集,则M 中必有最大数.最小数原理以及其推论称为极端原理.。