印制电路板PCB的电磁兼容设计
印制电路板设计规范

印制电路板设计规范印制电路板(Printed Circuit Board,简称PCB)设计规范是指为了保证电路板的设计、制造和使用中的质量和可靠性,制定的一系列规则和准则。
以下是一份典型的PCB设计规范,详细介绍了各个方面的要求。
一、电路板尺寸和层数1.PCB尺寸应符合实际需求,合理调整尺寸以满足其他设备的要求。
2.PCB层数应根据电路复杂度、电磁兼容性和成本等因素合理选择。
二、布局设计1.元器件布局应科学合理,尽量避免元器件之间的相互干扰。
2.高频信号和低频信号的布局应相互分离,以减少相互干扰。
3.电源和地线应尽量宽厚,减小电阻和电感,提高电路的稳定性。
三、网络连接1.信号线应尽量短、直且排布整齐,最大程度地避免信号交叉和串扰。
2.不同信号层之间的信号连线应通过过孔、通孔或阻抗匹配的方式进行连接。
四、电源和地线设计1.电源线和地线应尽量宽厚,减小电阻和电感,提高电压的稳定性。
2.电源和地线的路径应尽量短,减少电源回路的串扰和噪声。
五、元器件选择和焊接1.元器件的选择应根据设计需求,考虑其性能、品质和可靠性。
2.焊接工艺应符合IPC-610标准,保证焊点的牢固和质量。
六、阻抗匹配和信号完整性1.高速信号线应进行阻抗匹配,以减少反射和信号失真。
2.信号线应采用差分传输方式,以提高抗干扰能力和信号完整性。
七、电磁兼容性设计1.尽量合理布局和组织信号线,以减少电磁干扰和辐射。
2.使用合适的屏蔽措施,包括屏蔽罩、电磁屏蔽层和绕线等。
八、PCB制造和组装1.PCB制造应按照标准工艺进行,确保PCB质量和可靠性。
2.元器件的组装应按照标准操作进行,保证焊接质量。
九、测试和调试1.PCB设计完成后,应进行严格的电路测试和调试,确保其性能和可靠性。
2.测试和调试工具应符合要求,确保测试结果的准确性和可靠性。
以上是一份典型的PCB设计规范,设计师在进行PCB设计时应考虑到电路的复杂性、可靠性和成本等因素,并严格按照规范进行设计和制造,以提高电路板的质量和可靠性。
浅谈PCB电磁兼容设计

浅谈 பைடு நூலகம் CB 电 磁 兼 容 设 计
An Outi o h e t o a ne i m p tb lt s g fPCB lne f rt e El c r m g tc Co a i iiy De i n o
王 萍 ( 京无 线 电测 量 研 究 所 , 京 10 5 ) 北 北 84 0
首 先应把 所有严 格定位 的器件( 如变 压器 、 传感 器 、 散热
器 、 示 器 、 调 式 电位 器 、 键 等 ) 定 , 后 应 根 据 电 源 电 显 可 按 锁 然 压 、 流大 小 、 字 器 件 与 模 拟 器 件 、 速 器 件 与低 速 器 件 , 电 数 高 对 电路板上的电气单元进行分组 。 应原理 图, 对 把各 组 元 器 件 放 人 印 制 电路 板㈣ 。
抗 干扰 设 计 。
在印制板 中设置元器件时 , 从频率而言应先高频 电路 , 再 中频电路 , 最后低频 电路 ; 从逻辑速度 而言 , 先高速逻辑 电 应 路 , 中速逻辑 电路 , 再 最后 是低速逻辑 电路 , 如图 1 所示 的器 件 排列方式( 即高速 的器件 , 例如快逻辑 、 时钟振 荡器等 , 应安
s p l a ds nw ihc ne h n etee crma n t o p t iy n l bl o eP u py n oo .hc a n a c l t h e o g ei c c m ai l dr i i fh CB bi a t ea 船 t
中 图分 类 号 :N 1 T 4
文 献标 识 码 : A
文 章 编 号 :0 30 0(001- 03 0 10- 17 1) 07 — 3 2 0
^ b a : T s pa erm any it d u s t e e e t ct hi p il n r o ce h l c r a ei o pa iit de i ft e p it d c r utbo r , it ut om gn t c m c t l bi y sgn o h r e ic i n a dspon i o ng s m e ee enar ues a d m e h s ab u h a ou fc o lm t y rl n t  ̄ o tt e ly t o ompol t wi n gr n n a i i t r e c esg o we c ens, r g. ou dig。nt n e er n e d in f rpo r i - f
PCB的电磁兼容设计概述

PCB的电磁兼容设计概述引言电磁兼容(Electromagnetic Compatibility,简称EMC)是指电子设备在不产生或不受外界电磁干扰的情况下,正常工作以及在其工作环境中不对其他设备产生电磁干扰的能力。
在PCB设计中,电磁兼容设计的重要性不言而喻。
本文将对PCB的电磁兼容设计概述进行讨论,包括EMC的基本原理、常见问题以及相应的解决方案。
电磁兼容的基本原理电磁兼容设计的基本原理是通过合理的电路布局、地线设计以及滤波等措施来减少电磁辐射和电磁感应干扰。
在PCB设计中,以下原则应被遵循:1. 电路布局在PCB的电路布局中,重要的电路组成部分应尽可能远离辐射噪声源。
此外,不同功能的电路应相互隔离,以避免彼此之间的干扰。
例如,高频电路和低频电路应分别布局在不同的地方,并通过光隔离、屏蔽罩等手段来相互隔离。
2. 地线设计地线是PCB中保证信号的可靠传输以及防止电磁干扰的重要组成部分。
良好的地线设计可以有效减少信号回流路径上的电磁辐射。
为了实现良好的地线设计,在PCB布线过程中,应遵循以下几点原则: - 尽量将地线和信号线走在同一层,减少信号与地线之间的交叉。
- 采用宽而短的地线,以降低地线的电阻和电感。
- 在PCB布线中,要避免地线回流路径过长,尽量使其短而直。
3. 滤波措施滤波是一种常用的减少电磁干扰的手段。
在PCB设计中,通过合理的滤波器设计可以有效滤除电磁噪声,从而提高系统的电磁兼容性。
常见的滤波器包括低通滤波器、带通滤波器和带阻滤波器等。
在选取滤波器时,应结合系统的实际需求来确定合适的滤波器类型和参数。
常见问题及解决方案在PCB设计中,存在一些常见的电磁兼容问题,下面将结合这些问题给出相应的解决方案。
1. 辐射噪声问题辐射噪声是指电子设备所产生的电磁波通过空气或其他传导介质传播到周围环境中产生的干扰。
为了减少辐射噪声,可以采取以下措施:- 合理规划PCB布局,将辐射噪声源与敏感电路部分分开。
提高PCB设计中的抗干扰能力和电磁兼容性

微控 制器 主 要采用 高速 C O 技 术制 造 。信 号输入 M S
端静 态 输入 电流在 1 mA左 右 , 输入 电容 IP O F左 右 , 输入
主 要装 配方 式 。实践 证 明 , 即使 电路 原 理 图设 计正 确 , 如
应 用 越 来 越 普 遍 。 电 子 设 计 自 动 化 E A(lcrnc D Eet i o DeinA t t n ̄ 今 已成为 不可 逆转 的 潮流 。Poe 就 s uo i )P g ma o rtl
是建 立在 P C环境 下 的 E A 电路 集 成设 计 系统 。 目前 电 D
2 0 1 .0 01 . 22
囝圜国四
面 引线 , 右两侧 布地 线。 左
周 梅 — 高 c设 中 抗 扰 力 电 兼 性 春 — 提 PB 计 的 干 能 和 磁 容
第6 期
拟 线与地距 离 的 2 3倍。可用局 部屏蔽地 , 有 引线的 一 ~ 在
刷 线路板 时 ,每个 集成 电路 的电源 和地 之 间都要 加一 个
会 变 小。 原 因是 , 面积 的地 减 小 了信 号 线 的特 性 阻抗 。 大 对 于模 拟 信号 , 要避 免 数 字电路 信号 线 间的 干扰 , 拟 线 模
下方要 有 大面 积 的地 ,模 拟线 到数 字 线 的距 离要 大于 模
★[ 收稿 日 ]ຫໍສະໝຸດ 001—8 期 21—02 [ 作者简介 ] 春梅 (901一 , , 周 17. )女 天津滨海职业学院机电工程系副教授 , 2 研究方 向 , 传感器与检测技术。
【 章编 号117 — 0 X(0 00 — 0 5 0 文 6 1 8 2 2 1)6 0 1 - 2
PCB的板级电磁兼容问题

PCB的板级电磁兼容问题一、(芯片)(集成电路)现状现阶段,(电子)系统正向高速化和高密度化飞跃发展。
在电子系统的设计过程中,系统的体积越来越小,IC引脚(in(te)grated circuit,集成电路)却越来越多,因此(PCB)(Printed Circuit Board,印制电路板)上的元件与布线越来越密集;与此同时,(信号)的(时钟)频率越来越大,并且信号上升沿越来越陡峭。
这些因素都导致了电磁环境的日益复杂,设备之间以及设备内部因互感和互容引发的种种(电磁兼容)问题已不容忽视。
这一问题在现今的强辐射源与高功率(微波)系统中也显得日益突出。
如在某高功率微波系统中,需要在限定的体积和尺寸下,采用(FPGA)芯片实现对多路(电机)的并行控制,就需要设计高速高密度的PCB。
本文就研究该情况下PCB的板级电磁兼容问题,主要包括信号完整性(Signal Integrity, SI)和(电源)完整性(PowerIntegrity,PD问题。
二、信号完整性及电源完整性问题信号完整性概括地说,是指信号在信号线上传输质量的好坏。
在(数字电路)中,体现在信号能在电路中能以正确的电压、带宽和时序做出响应。
若在PCB中,信号可以以正确的电压大小、带宽和时序都到达接收端,就能说明该PCB具有较好的信号完整性。
如果不能,则说明PCB中岀现了严重的信号完整性问题。
在高速高密度的数字电路中,信号完整性问题大致表现在一下几个方面:振铃、过冲、欠冲和时延等。
为了正确读取数据并对数据进行处理,数据在集成电路中需要在时钟边沿的前后处于稳定状态。
这个时间段内,如果信号不稳定或者发生状态的改变,集成电路就可能误判甚至发生丢失部分数据的情况,影响信号的正常传输。
如图1所示,若岀现振铃、上冲或下冲等信号完整性问题,就会影响数据的正常传输,从而影响PCB的正常工作,也可以从眼图直观判断信号传输的好坏,如图2图1PCB中信号完整性问题的表现图2 表征信号完整性问题的眼图信号完整性问题既会导致信号明显的失真和时序混乱,也会造成数据的错误,从而造成系统出错甚至瘫痪。
印制电路板的设计及电磁兼容问题

在整个研发印制电路板的工作中,最重要的也是第一个要进行的工作就是明确设计框架,画出原理图。
通常情况下,设计人员都会选择AltiumDesigner软件来开展描画和设计工作,大部分的元器件都能够在该软件的样本中找到,有少部分不在图库里面,需要设计者自己勾绘制作出来。
当绘制完成整个原理图形之后,再经过严密的检查和测试,一旦发现其中的失误或者错误的地方必须及时修正。
在确保设计出来原理图没有任何问题之后,再按照这个设计图研发印制电路板。
AltiumDesigner这个软件能够使得原理图转换为PCB图,可是这个软件的自动程度还是有限度的,布线效果往往不能使人满意,所以必须通过设计自己进行布线工作。
同时,设计印制电路板时,必须重点考虑的一个问题就是电磁兼容问题,设计出合适的技术方案。
恰当的安置各个不同元器件的位置,精确布置安排各个走线,可以最大程度的避免电子干扰现象的频繁出现[2]。
2 PCB中的电磁干扰解析印制电路板运行过程中会经常受到各种各样的电磁干扰问题,其中受到的干扰大致分成两类。
一类来源于印刷电路板自身,由于挨着比较近的线路之间会发生寄生耦合现象,而信号的整个运输线路就会受到干扰[3]。
另一类就是串扰问题。
串扰顾名思义就是比较的混乱,即不同信号线之间进行能量的随意转换,由互感或者互容而引起各种噪音。
其中,互感和互容属于产生串扰问题的重要原因。
3 印制电路板设计的抗干扰方法■3.1 选用合适的印制电路板研生产材料印制板的选材是非常重要的,目前国际通用的为环氧树分析各种材料的特征,选用合适的原材料[4]。
■3.2 科学布置印制电路板的叠层印制板的层排列也是有原则的,合理的排列各层对印制板的抗干扰能力十分有益。
第一,将电源平面与地平面相邻,这样可以形成耦合电容,并与电路板上的去耦电容一起降低电源平面的阻抗,同时获得较宽的滤波效果;第二,参考面的选择应优选地平面电源;第三,相邻层的关键信号不跨分割区;第四,相邻层走线时,最好是形成垂直。
印制电路板的电磁兼容设计

设 备 和 系统 向外 部 环 境 发 射 的骚 扰 电平 是 通 过 传 导 和辐 射 的途 径 形 成 的 。如 果 设 备 作 为 一 个 黑 盒 子 , 么, 那 内部 骚扰 源 可通 过 电源 电缆 和 信号 电缆对 外 形 成传 导 发射 , 时通 过壳 体 向外 辐 射 发射 ; 之 , 同 反
少差 模 发射 电平 , 减少 源 电流外 , 除 应该 减 小环 电路
图 2 设 备 的发 射 和敏 感 度
£ 的 面积 。由 图 3可知 , 减 少共 模 发 射 , 缩短 线 的 若 电 应
●
长度。
]
是 最难 解决 的 。
3 脉 冲 信 号 的 频 谱
数 字 信号 的特点 是 方 波 信号 ,方 波 信 号是 由基
收 稿 日期 :0 1 1— 8 2 0 —1 2
作 者 简 介 : 舜 阳 (9 9 男 , 辽 宁 盖 州人 ,信 息产 业部 电 子 第 三研 究 所 研 究 员 李 13 一)
,
中 国 电磁 兼 容 认 证 委 员会 专 家 组 成 员 , 多
年从 事电磁 兼容性研 究,曾获 国家科技进 步三等 奖和 多项部科技进 步奖。
模 辐 射 和 差模 发 射 的 设 计 方 法 ,并 介 绍 了较 好 的 电路 布 局 、元 器 件 安 装 位 置 和 合 理 布 线 的 方 法 。
关键 词 :印制电路板;电磁兼容;设计
中 图分 类号 :T 3 N 0
文献 标识 码 :A
Th e t o a n ts nc r e tD e i n o e Elc r m g e im Co u r n sg fPCB
印刷电路板的电磁兼容设计

电磁兼容指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电
磁干扰的能力. 电磁兼容性设计 的目的是使 电子设备既能抑制各种外来的干扰 , 使电子设备在特定 的电 磁环境 中能够正常工作 , 又能减少电子设备本身对其 它电子设备的电磁干扰. 随着电子设备的灵敏度越 来越高 , 接受微弱信号的能力越来越强 , 电子产品频带越来越宽, 尺寸越来越小 , 电子设备抗干扰能 要求 力越来越强. 一些电子设备工作时所产生的电磁波 , 容易对周围的其它 电子设备形成电磁干扰 , 引发故 障或者影响信号 的传输. 另外 , 过度的电磁干扰会形成 电磁污染 , 危害人们 的身体健康 , 破坏生态环境. 文章就印刷 电路板( C ) P B 设计 中电磁兼容的几种关键技术进行分析.
收稿 日期 :0 6— 5— 5 20 0 2
作者简介: 吴荣海(99 , 助教, 17 一) 男, 福建龙岩人 , 现从事电子与通信教学与研究
维普资讯
第4 期
吴荣海等: 印刷电路板的电磁兼容设计
・2 4 7・
扰问题 . 电子产品中地线结构大致有系统地 、 机壳地、 数字地和模拟地等. 在地线设计 中应注意以下几点:
时可部分串联后再并联接地 . 高频电路宜采用多点串联接地 , 地线应短而粗 , 高频元件周 围尽量用栅格 状大面积地箔. 要尽量加大线性电路 的接地面积.
1 电源的设计
电子设备的电源广泛地同其它功能单元相连 , 一方面 电源中产生的无用信号会很容易地耦合到各 功能单元中去 , 另一方面 , 一个单元中的无用信号可能通过 电源 的公共阻抗耦合到其它单元去. 因此 , 在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线路板(PCB )级的电磁兼容设计1.引言印制线路板(PCB )是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接,它是各种电子设备最基本的组成部分,它的性能直接关系到电子设备质量的好坏。
随着信息化社会的发展,各种电子产品经常在一起工作,它们之间的干扰越来越严重,所以,电磁兼容问题也就成为一个电子系统能否正常工作的关键。
同样,随着电于技术的发展,PCB 的密度越来越高,PCB 设计的好坏对电路的干扰及抗干扰能力影响很大。
要使电子电路获得最佳性能,除了元器件的选择和电路设计之外,良好的PCB 布线在电磁兼容性中也是一个非常重要的因素。
既然PCB 是系统的固有成分,在PCB 布线中增强电磁兼容性不会给产品的最终完成带来附加费用。
但是,在印制线路板设计中,产品设计师往往只注重提高密度,减小占用空间,制作简单,或追求美观,布局均匀,忽视了线路布局对电磁兼容性的影响,使大量的信号辐射到空间形成骚扰。
一个拙劣的PCB 布线能导致更多的电磁兼容问题,而不是消除这些问题。
在很多例子中,就算加上滤波器和元器件也不能解决这些问题。
到最后,不得不对整个板子重新布线。
因此,在开始时养成良好的PCB 布线习惯是最省钱的办法。
有一点需要注意,PCB 布线没有严格的规定,也没有能覆盖所有PCB 布线的专门的规则。
大多数PCB 布线受限于线路板的大小和覆铜板的层数。
一些布线技术可以应用于一种电路,却不能用于另外一种,这便主要依赖于布线工程师的经验。
然而还是有一些普遍的规则存在,下面将对其进行探讨。
为了设计质量好、造价低的PCB ,应遵循以下一般原则:2.PCB 上元器件布局首先,要考虑PCB 尺寸大小。
PCB 尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。
在确定PCB尺寸后.再确定特殊元件的位置。
最后,根据电路的功能单元,对电路的全部元器件进行布局。
电子设备中数字电路、模拟电路以及电源电路的元件布局和布线其特点各不相同,它们产生的干扰以及抑制干扰的方法不相同。
此外高频、低频电路由于频率不同,其干扰以及抑制干扰的方法也不相同。
所以在元件布局时,应该将数字电路、模拟电路以及电源电路分别放置,将高频电路与低频电路分开。
有条件的应使之各自隔离或单独做成一块电路板。
此外,布局中还应特别注意强、弱信号的器件分布及信号传输方向途径等问题。
在印制板布置高速、中速和低速逻辑电路时,应按照图1-①的方式排列元器件。
在元器件布置方面与其它逻辑电路一样,应把相互有关的器件尽量放得靠近些,这样可以获得较好的抗噪声效果。
元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题。
原则之一是各部件之间的引线要尽量短。
在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为最小。
如图1-②所示。
时钟发生器、晶振和CPU 的时钟输入端都易产生噪声,要相互靠近些。
易产生噪声的器件、小电流电路、大电流电路等应尽量远离逻辑电路。
如有可能,应另做电路板,这一点十分重要。
2.1 在确定特殊元件的位置时要遵守以下原则:(1) 尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。
易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。
(2) 某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。
带高电压的元器件应尽量布置在调试时手不易触及的地方。
(3) 重量超过15g 的元器件、应当用支架加以固定,然后焊接。
那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。
热敏元件应远离发热元件。
(4) 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。
若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。
图1:印制板元器件布置图(5) 应留出印制板定位孔及固定支架所占用的位置。
2.2 根据电路的功能单元对电路的全部元器件进行布局时,要符合以下原则:(1) 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。
(2) 以每个功能电路的核心元件为中心,围绕它来进行布局。
元器件应均匀、整齐、紧凑地排列在PCB 上,尽量减少和缩短各元器件之间的引线和连接。
(3) 在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件平行排列。
这样,不但美观,而且装焊容易,易于批量生产。
(4) 位于电路板边缘的元器件,离电路板边缘一般不小于2mm。
电路板的最佳形状为矩形。
长宽比为3:2或4:3。
电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。
2.3 PCB元器件通用布局要求:电路元件和信号通路的布局必须最大限度地减少无用信号的相互耦合:(1) 低电子信号通道不能靠近高电平信号通道和无滤波的电源线,包括能产生瞬态过程的电路。
(2) 将低电平的模拟电路和数字电路分开,避免模拟电路、数字电路和电源公共回线产生公共阻抗耦合。
(3) 高、中、低速逻辑电路在PCB上要用不同区域。
(4) 安排电路时要使得信号线长度最小。
(5) 保证相邻板之间、同一板相邻层面之间、同一层面相邻布线之间不能有过长的平行信号线。
(6) 电磁干扰(EMI)滤波器要尽可能靠近EMI源,并放在同一块线路板上。
(7) DC/DC变换器、开关元件和整流器应尽可能靠近变压器放置,以使其导线长度最小。
(8) 尽可能靠近整流二极管放置调压元件和滤波电容器。
(9) 印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。
(10) 对噪声敏感的布线不要与大电流,高速开关线平行。
3.PCB布线3.1 印刷线路板与元器件的高频特性:一个PCB的构成是在垂直叠层上使用了一系列的层压、走线和预浸处理的多层结构。
在多层PCB中,设计者为了方便调试,会把信号线布在最外层。
PCB上的布线是有阻抗、电容和电感特性的。
阻抗:布线的阻抗是由铜和横切面面积的重量决定的。
例如,1盎司铜则有0.49mΩ/单位面积的阻抗。
电容:布线的电容是由绝缘体(EoEr)电流到达的范围(A)以及走线间距(h)决定的。
用等式表达为C=EoErA/h,Eo是自由空间的介电常数(8.854pF/m),Er是PCB基体的相关介电常数(在FR4碾压板中该值为4.7)电感:布线的电感平均分布在布线中,大约为1nH/mm。
对于1盎司铜线来说,在0.25mm(10mil)厚的FR4碾压板上,位于地线层上方的0.5mm(20mil)宽、20mm (800mil)长的线能产生9.8mΩ的阻抗,20nH的电感以及与地之间1.66pF的耦合电容。
在高频情况下,印刷线路板上的走线、过孔、电阻、电容、接插件的分布电感与电容等不可忽略。
电容的分布电感不可忽略,电感的分布电容不可忽略。
电阻会产生对高频信号的反射和吸收。
走线的分布电容也会起作用。
当走线长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过走线向外发射。
印刷线路板的过孔大约引起0.5pF的电容。
一个集成电路本身的封装材料引入2~6pF电容。
一个线路板上的接插件,有520nH的分布电感。
一个双列直插的24引脚集成电路插座,引入4~18nH的分布电感。
这些小的分布参数对于运行在较低频率下的微控制器系统是可以忽略不计的;而对于高速系统必须予以特别注意。
下面便是避免PCB布线分布参数影响而应该遵循的一般要求:(1) 增大走线的间距以减少电容耦合的串扰;(2) 平行地布电源线和地线以使PCB电容达到最佳;(3) 将敏感的高频线布在远离高噪声电源线的地方以减少相互之间的耦合;(4) 加宽电源线和地线以减少电源线和地线的阻抗。
3.2 分割:分割是指用物理上的分割来减少不同类型线之间的耦合,尤其是通过电源线和地线的耦合。
图2给出了用分割技术将4个不同类型的电路分割开的例子。
在地线面,非金属的沟用来隔离四个地线面。
L 和C 作为板子上的每一部分的过滤器,减少不同电路电源面间的耦合。
高速数字电路由于其更高的瞬时功率需求而要求放在靠近电源入口处。
接口电路可能会需要抗静电放电(ESD )和暂态抑制的器件或电路来提高其电磁抗扰性,应独立分割区域。
对于L 和C 来说,最好不同分割区域使用各自的L 和C ,而不是用一个大的L和C ,因为这样它便可以为不同的电路提供不同的滤波特性。
3.3 基准面的射频电流抑制: 不管是对多层PCB 的基准接地层还是单层PCB 的地线,电流的路径总是从负载回到电源。
返回通路的阻抗越低,PCB 的电磁兼容性能越好。
由于流动在负载和电源之间的射频电流的影响,长的返回通路将在彼此之间产生射频耦合,因此返回通路应当尽可能的短,环路区域应当尽可能的小。
3.4 布线分离:布线分离的作用是将PCB 同一层内相邻线路之间的串扰和噪声耦合最小化。
所有的信号(时钟,视频,音频,复位等等)在线与线、边沿到边沿间应在空间上远离。
为了进一步的减小电磁耦合,将基准地布放在关键信号附近或之间以隔离其他信号线上产生的或信号线相互之间产生的耦合噪声。
3.5 电源线设计:根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。
同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。
3.6 抑制反射干扰与终端匹配:为了抑制出现在印制线终端的反射干扰,除了特殊需要之外,应尽可能缩短印制线的长度和采用慢速电路。
必要时可加终端匹配。
终端匹配方法比较多,常见终端匹配方法见图3所示。
根据经验,对一般速度较图2:PCB 地线分割图4:时钟信号的匹配图3:常用终端匹配方法快的TTL电路,其印制线条长于10cm以上时就应采用终端匹配措施。
匹配电阻的阻值应根据集成电路的输出驱动电流及吸收电流的最大值来决定。
时钟信号较多采用串联匹配,见图4所示。
3.7 保护与分流线路:在时钟电路中,局部去耦电容对于减少沿着电源干线的噪声传播有着非常重要的作用。
但是时钟线同样需要保护以免受其他电磁干扰源的干扰,否则,受扰时钟信号将在电路的其他地方引起问题。
设置分流和保护线路是对关键信号(比如:对在一个充满噪声的环境中的系统时钟信号)进行隔离和保护的非常有效的方法。
PCB内的分流或者保护线路是沿着关键信号的线路两边布放隔离保护线。
保护线路不仅隔离了由其他信号线上产生的耦合磁通,而且也将关键信号从与其他信号线的耦合中隔离开来。
分流线路和保护线路之间的不同之处在于分流线路不必两端端接(与地连接),但是保护线路的两端都必须连接到地。
为了进一步的减少耦合,多层PCB中的保护线路可以每隔一段就加上到地的通路。