流量、压力调节阀PID单回路控制
自来水流量单回路过程控制系统

目录1 设计目的与要求 01.1 设计目的 02 自来水生产工艺 (3)2.1 生产工艺 (1)2.2 生产工艺流程图 (2)3 系统结构设计 (3)3.1 控制方案 (3)3.2 系统结构 (3)4被控变量与控制变量选择 (3)4.1被控变量选择原则 (3)4.2控制变量选择原则 (4)4.3本系统被控变量与控制变量的选择 (5)5检测环节设计 (5)5.1检测环节设计原则 (5)5.2本系统检测环节设计 (6)6执行器设计 (6)6.1执行器设计原则 (6)6.2本系统执行器设计 (7)7调节器设计 (7)7.1调节器正反作用选取 (7)7.2调节器规律的选择 (8)7.3调节器参数整定 (9)心得体会 (10)参考文献 (13)自来水厂流量控制系统的设计1 设计目的与要求1.1 设计目的如图,按照定值系统的控制要求,根据较快较稳的性能要求,采用单闭环控制结构和PID控制规律,对自来水厂用泵将水打入水槽(泵1和泵2同时用),以备下一道工艺生产需要,进行设计将流量控制在500±3立方米/小时,以满足要求。
1.2 要求完成的主要任务1、了解对象及自来水厂生产工艺2、绘制流量控制系统方案图3、确定系统所需检测元件、执行元件、调节仪表技术参数4、撰写系统调节原理及调节过程说明书2 自来水厂生产工艺2.1 生产工艺众所周知,由于自然因素和人为因素,原水里含有各种各样的杂质。
从给水处理角度考虑,这些杂质可分为悬浮物、胶体、溶解物三大类。
城市水厂净水处理的目的就是去除原水中这些会给人类健康和工业生产带来危害的悬浮物质、胶体物质、细菌及其他有害成分,使净化后的水能满足生活饮用及工业生产的需要。
市自来水总公司水厂采用常规水处理工艺,它包括混合、反应、沉淀、过滤及消毒几个过程。
(1)混凝反应处理原水经取水泵房提升后,首先经过混凝工艺处理,即:原水+ 水处理剂→混合→反应→矾花水自药剂与水均匀混合起直到大颗粒絮凝体形成为止,整个称混凝过程。
请问如何用pid控制阀门的开合度?

请问如何用pid控制阀门的开合度?过程控制的四大参数,温度、压力、流量、液位。
因此,对每种参数进行测量和调节不仅确保安全生产,还提高产品质量及经济效益。
在生产过程控制中,控制阀是很常见的控制元件。
作用是什么?由定位器发出控制信号,来改变被调参数,使被调参数控制在工艺要求范围内,从而实现生产过程自动化。
PID液位调节阀控制这个控制系统有四个环节,PID控制器、调节阀、被控对象(容器)、检测变送器(液位计),从而构成一个单回路控制系统。
其中核心环节是PID控制器,在连续时间控制系统中,PID控制器是应用最广泛的,技术也成熟。
因此,长期以来也就形成了经典的结构,参数整定方便、结构更换灵活,满足一般的控制要求是没任何问题的。
例如DCS控制系统就能够实现PID控制阀门的开合度。
上图就是用DCS组态做的一个液位单回路组态,它就是PID液位控制器。
然后再把液位变送器的模拟量输入组态做好即可。
上图中的回路1位号可以自行定义,是控制液位就是LIC后面连接数字,是温度控制就是TIC后面连接数字。
代表的是某某指示控制器,例如LIC就是液位指示控制器。
回路1输入是检测变送器的模拟量输入位号,输出位号是模拟量输出位号。
因此,只要把液位单回路组态好了,然后编译下载即可,在监控画面就能够看到组态好的操作界面。
在操作界面里面有手自动、PID、报警设置、手工置值等功能。
如果是手动控制,其实与PID没有任何关系,只有自动控制才与阀门有关。
这里关键的是PID参数整定的好坏,直接关系到被调参数是否控制在工艺要求范围内。
所以,PID参数没有整定好,投自动是无法进行的,于是不得不用手动控制阀门开合度。
PID控制过程,就是现场的液位变送器不断的给PID控制器反馈信号,然后根据工艺要求的值与反馈过来的值做差,差值大于零它就发出控制指令使调节阀开合度大点,差值小于零它就发出控制指令使调节阀开合度小点。
因此,能否使液位控制精准,不光是PID控制器的功劳,还离不开检测变送器的功劳,现场液位变送器测量不准那么自动控制肯定也不精准。
过程控制工程复习题(智能11级)

《过程控制复习》(智能11级用)1、过程控制统所涉及的被控量通常有哪些?温度、压力、流量、液位2、为什么说过程参数的控制一般属于慢过程?试与运动控制相比较。
过程控制具有大惯性、大滞后等特性3、过程控制系统从广义上可以分为哪两大部分?单变量和多变量4、过程控制中的被控过程通常为慢变过程的原因是什么?大惯性和大滞后的特性5、什么是仪表的引用误差?仪表精度是如何定义的?引用相对误差是指绝对误差与仪表量程之比的百分数仪表精度是指引用相对误差的最大值6、校验仪表时确定仪表的精度等级与根据工艺要求选择仪表的精度等级有什么不同?选择仪表时,仪表精度应小于或等于最大引用相对误差鉴定仪表时,仪表精度应大于或等于最大引用相对误差7、有一台压力表,其测量范围为0~10MPa,经校验得出下列数据:(1)求出该压力表的变差;变差=(0.12/10)*100%=1.2%(2)问该压力表是否符合1.0级精度?精度=(0.06/10)*100%=0.6%<1%故符合1.0级精度8、过程检测仪表零点迁移和零点调整的异同点是什么?零点调整和零点迁移均是使输出信号的下限值y与测量范围的下限值x相对应零点调整是沿着y轴上下调整;零点迁移是沿着x轴左右调整9、过程控制系统中,哪些仪表、装置通常安装在设备现场?那些可以安装在控制柜中?若两者相距较远,电气信号应采用什么形式?指示仪表一般安装在设备现场;控制仪表一般安装在控制柜中若相距较远,则电气信号一般采用直流电流信号10、什么是热电偶的热电特性?热电偶的热电势由哪两部分组成?热电效应是指两种不同材料的导体组成闭合回路,只要其两个连接点温度不同,则回路中会产生热电动势热电偶的热电势由接触电动势和温差电动势组成11、现用一支镍铬-铜镍热电偶测某换热器内的温度,其冷端温度为30℃,显示仪表的机械零位在0℃时,这时指示值为400℃,则认为换热器内的温度为430℃对不对?为什么?正确值为多少度?不对,只要冷端温度相同,不影响温度的显示正确值为400℃12、热电偶在使用中采用补偿导线的原因是什么?应注意什么问题?热电偶的长度有限,其冷端易受环境温度的影响而变化,为使热电偶冷端温度保持恒定,用与热电偶在一定温度范围内具有相同热电性能的廉价金属将热电偶的冷端延伸出来应注意补偿导线的型号和极性,补偿导线与热电偶的连接点温度应相同13、热电偶在使用中需要进行冷端温度补偿的原因是什么?常用的方法有哪些?热电偶的热电动势不仅与热端温度有关,还与冷端温度有关,只有冷端温度恒定,热电动势才能正确反映热端温度的数值,故需进行冷端温度补偿常用方法有:补偿电桥法和计算校正法14、热电阻与热电偶相比有哪些优缺点?热电阻可测量低温,而热电偶不能,且热电阻不需要进行冷端补偿热电阻不适合测量较高温度15、试画出用几个热电偶、一个转换开关、一个显示仪表组成的多点温度测量线路原理图,要求具有冷锻温度自动补偿功能。
PID电动压力调节阀控制系统设计

PID电动压力调节阀控制系统设计PID电动压力调整阀掌握系统设计一般一般的电动调整阀、气动调整阀则需要配套(气动配定位器)、压力变送器、PID调整仪一套组合来调整掌握管道或储罐所需要压力值。
原理是压力变送器将压力信号转换为识别的电流信号,依据压力转换的电流信号来掌握气动、电动压力调整阀的开度大小,进而掌握压力。
电动调整阀由电动执行器与调整阀阀体两部分组成,通过接收自动化掌握系统的信号来驱动阀门,转变阀芯和阀座之间的截面积大小掌握,管道介质的流量、温度、压力等工艺参数,来实现远程自动掌握。
4-20mA之间不同的信号数值对应不同的调整阀信号开度,依据自己的工况介质选择适用的流量系数,就可以算出调整阀每个开度所对应的流量、压力值,从而达到调整阀对工况介质的调整要求。
PID电动压力调整阀掌握系统设计产品特点:a.智能型调整阀易维护、电气接线便利。
b.牢靠;非侵入式设计。
c.液晶显示、中英文操作界面。
d.体积小、重量轻、低噪音。
e.傻瓜式"向导"设置功能、调试简洁。
f.线性光电隔离技术,掌握信号,调整信号带隔离互不影响。
g.自动/手动间无扰切换,执行机构产生故障时报警并自动切断电机电源。
重新上电方可恢复工作。
PID电动压力调整阀掌握系统设计产品应用:智能电动调整阀结构紧凑、重量轻、体积小。
它采纳直流无刷电机以及齿轮箱减速,具有噪声低。
后还采纳电动里面的霍尔传感器来检测位置,寿命长,简化了机械结构。
电气掌握部分采纳模块化设计,由驱动单元、掌握单、液晶显示单元,非侵入式的触摸按键单组成,具有操作简洁,接线便利。
转矩掌握以及行程限位都通电子电路来实现,从而实现无需开盖调试。
智能型调整阀应用于如发电、化工、石油、冶金、轻工、锅炉、城市供水、智能大厦等工业过程自动化系统中。
PID电动压力调整阀掌握系统设计根据下面步骤开头操作。
一、使用蒸汽场合时的操作:1、拧紧注液口螺钉。
2、缓慢开启调整阀前后截止阀。
过程控制思考题(填空简答)

1、列举4种以上热工参数答:温度、压力、流量、液位、成分、物性2、单回路控制系统方框图(构成)3、工业生产对过程控制的要求(简答)答:安全性:确保生产过程中人身与设备安全,保护或减少生产过程对环境的影响。
稳定性:具有抑制外部干扰、保持生产过程长期稳定运行的能力。
经济性:实现效益最大化或成本最小化。
4、过程控制系统的组成 (广义和常规定义)答: 广义对象:检测元件、变送器、执行器和被控对象5.控变量/受控变量/过程变量(Controlled Variable - CV , Process Variable - PV )、设定值/给定值 (Setpoint - SP, Setpoint Value - SV )、操纵变量/操作变(ManipulatedVariable, MV)扰动/扰动变量 (DisturbanceVariable ,DV)控制器G c (s )执行器G v (s)控制通道G p (s)测量变送G m (s )设定值y sp 偏差 e +_控制变量u 操纵变量q 被控变量y 测量值y m 扰动 D 干扰通道G D (s )++被控对象测量/测量信号 (Measurement )控制/控制信号/控制变量(Control Variable )6、干扰和扰动的概念答:干扰(扰动):除操纵变量以外,作用于对象并能引起被控变量变化的因素,称为干扰或扰动。
7、过程控制系统按结构如何分类(画出结构图)答:反馈控制系统前馈控制系统前馈-反馈控制系统7、按设定值如何分类答:定值控制系统:设定值固定不变或在规定的小范围内变化随动控制系统:设定值随时间任意变化程序控制系统:设定值按预定的时间程序变化,也称为顺序控制系统8、过程控制单项性能指标有哪些?分别表征什么特性(会算)答:最大偏差和超调量(准确性指标)、衰减比(稳定性指标)、余差(准确性指标)、过渡时间(快速性指标)、振荡周期或频率(快速性指标)9、数学模型要素答:输出量和输入量10、有自衡过程和无自衡过程(含传递函数)答:当原来处于平衡状态的过程出现干扰时,其输出量在无人或无控制装置的干预下,能够自动恢复到原来或新的平衡状态,则称该过程具有自衡特性,否则,该过程则被认为无自衡特性。
PID回路整定详细说明

仪表控制说明及PID整定方法化工乙烯仪表-李恒超主要内容一、仪表控制说明1、单回路控制说明2、复杂控制说明二、PID整定方法1、PID整定方法2、PID整定举例三、自动控制回路参数波动原因分析1、工艺操作系统引起参数波动分析2、仪表和调节阀的特性引起参数波动分析3、机泵控制的波动原因分析主要内容一、仪表控制说明1、单回路控制说明1.1 单回路的结构与组成1.2 明确自动控制的目的1.3 被控变量的选择1.4 控制变量的选择1.5 控制质量1.6 滞后1.7 举例与仿真1.8PID的正反作用2、复杂控制说明2.1 前馈控制2.2 串级控制2.3 均匀控制2.4 分程控制2.5 比值控制2.6 选择控制2.7 三冲量控制2.8 耦合控制二、PID整定方法1、PID整定说明1.1 PID回路阶跃响应性能指标1.2PID设置面板1.3 PID参数功能1.3.1 增益K作用对调节过程的影响1.3.2 积分作用对调节过程的影响1.3.3 微分调节D说明1.4 PID参数的整定1.4.1 测试阶跃响应法1.4.2 PID参数的整定步骤说明1.4.3 PID参数整定经验说明1.4.4 PID参数整定方法二2、PID整定举例2.1 PID参数的形象说明2.2 PID参数仿真曲线举例说明2.3 PID整定参数举例分析说明2.4 PID参数整定总结三、自动控制回路参数波动原因分析1、工艺操作系统引起参数波动分析1.1 精馏塔的典型控制1.2 反应器的控制2、仪表和调节阀的特性引起参数波动分析2.1 流量计的量程比、流速,对测量的影响2.2 调节阀的流量特性和可调比2.3 提高调节阀使用寿命的常见方法3、机泵控制的波动原因分析3.1 对离心泵的控制3.2 对计量泵的控制3.3 对变频泵的控制一、仪表控制说明\1.单回路控制说明1.1 单回路的结构与组成由一个被控对象、一个测量变送器、一个控制器和一个执行机构(控制阀)所组成的闭环控制系统。
常规仪表控制回路的组成

SX 1SX 46 47 48 49
I P
+
-
13 14 5
1 2
6
7 8
∙ ∙ ∙ ∙
1 4 2 5 6
L1 L2
B1-1A
去联锁
B1-8 2PX-12 调节阀 气源
B1-5
2PX-9
压力控制回路仪表接线图
2019/2/14
20
C1温变 1SX 9 10 6 3 B1-4
TV101-7 TV101-8
SP+
e
PVe
调节器
p
执行器
q
被控对象
测量元件 (变送器)
P7
2019/2/14
5
被控对象: 自动控制系统中,需要调节工艺参数的生产设备或设备的 有关部分,简称对象。如石化生产中,各种塔类、反应 器热交换器、泵与压缩机及各种容器、储罐等都是常见 的调节对象。 测量与变送: 测量元件是用来感受工艺参数变化的测量仪表。变送器是 与测量元件配合,将被测变量转变为一个信号送到调节 器去。 调节器: 能将变送器来的测量信号与给定值(工艺要求的)相比较, 按照设定好的运算规律,输出一个信号给执行机构进行 调节。
调节器上通过对三个参数(比例度δ、积分时间TI、微 分时间TD)的设置改变控制规律以及控制作用的强弱。 (1)若TI为∞,TD为0,积分项和微分项都不起作用, 则为纯比例控制。 (2)若TD为0,微分项不起作用,则为比例积分控制。 (3)若TI为∞,积分项不起作用,则为比例微分控制。
2019/2/14
9 10
1 2 8 1PX2
44 45
7 1PX1
∙ ∙ ∙ ∙
B1-3 2PX-5
温度控制回路仪表接线图
单回路控制

控制器正反作用的判定
3、对于测量元件及变送器,其作用方向一般都是“正”的。 4、 对于执行器,它的作用方向取决于是气开阀还是气关阀 (注意不要与执行机构和控制阀的“正作用”及“反作用” 混淆)。执行器的气开或气关型式主要应从工艺安全角度来 确定。气动薄膜调节阀可分为气关(NO或FO)和气开(NC 或FC)两种型式。有信号压力时阀关、无信号压力时阀开的 为气关式。反之,为气开式。气开阀是“正”方向。气关阀 是“反”方向。 5、对于被控对象的作用方向。当操纵变量增加时,被控变量也 增加的对象属于“正作用”的。反之,属于“反作用”的。 6、控制器的作用方向要根据对象及执行器的作用方向来确定, 以使整个控制系统构成负反馈的闭环系统。
控制器正反作用的判定
扰动 Qi(t) 设定值 hsp + _ 偏差 e(t) 液体贮罐 干扰 通道
-
液位 控制器
控制信号 u(t)
+
出水 控制阀
操纵变量 Qo(t)
-
控制 通道 +
+
被控变量 h(t)
测量值 hm(t)
+
液位传感 测量变送器
举例:假设液位出水控制阀为气开。则KV为正,过程对象KP 为负,液位测量单元为正,要使KC*KV*KP*KT=正,则必须 KC= 负。所以液位控制器为正作用。
1 .2
T p 1 K p
控制器正反作用的判断
控制器的偏差正反作用选择 1、控制器正负偏差的规定 控制理论上以及仪表制造厂家规定: 正偏差:测量-给定=偏差 负偏差:给定-测量 2、正反作用规定:正作用:偏差增加,控制器输出增加(Z m-Sp)↑→Pc↑ 反作用:偏差增加控制输出减少(Zm-Sp)↑→Pc↓
PID三个基本参数kp 、ki 、kd 对PID控制作用和影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验名称。
流量、压力调节阀PID单回路控制
二、试验设备。
电磁流量计(给水流量)、电动调节阀(阀位反馈和调动阀控制)、压力变送器(给水压力)三、实验目的。
1)、熟悉电磁流量计的结构及其安装方法。
2)、熟悉单回路流量PID控制系统的硬件配置。
3)、比较电磁流量计和涡轮流量计的不同之处。
4)、根据实验数据,比较流量PID控制和液位PID控制。
四、实验步骤。
流量调节阀控制流程图如图2.5.1所示。
步骤:水介质由泵P102从水箱V104中加压获得压头,经由流量计FT-102、调节阀FV-101进入水箱V103,通过手阀QV-116回流至水箱V104而形成水循环;其中,给水流量由FT-102测得。
本例为定值自动调节系统,FV-101为操纵变量,FT-102
为被控变量,采用PID调节来完成。
压力调节阀控制流程图如图2.7.1所示
步骤:水介质由泵P102从水箱V104中加压获得压头,经由调节阀FV-101进入水箱V103,通过手阀QV-116回流至水箱V104而形成水循环;其中,给水压力由PT-101测得。
本例为定值自动调节系统,FV-101为操纵变量,PT-101为被控变量,采用PID调节来完成。
五、实验要求。
1、
流程图界面要求
1)测试要求的组态流程图界面(要求复显),如上图2.5.2所示。
2)其他要求:
设备、管路从图库中选,管路中流体流动具有动画效果;流程图界面中可包含实时曲线窗口,历史记录、操作记录、报表界面可从流程图界面调出。
2、实时曲线要求
引入调节器PV、MV、SP三个变量;
三条曲线颜色便于区分,对应变量名标示清楚;
时间轴跨度两分钟,采样周期不大于两秒;
振荡时的幅值便于分析过渡过程。
3、操作记录要求
引入流量计流量高、低限实时报警记录,记录中显示报警时间、报警限值(可自定)、报警值及报警的具体描述。
4、历史记录要求
引入调节器PV、MV、SP三个变量;调用历史趋势曲线控件进行绘制;时间轴、数值轴的设置便于分析历史趋势。
5、报表要求
实习设计一个报表:实验开始后,每20分钟记录一组数据,包括调节器MV、PV、SP三个变量。
六、实验报告的要求。
(1)分析P调节器控制时,不同P值下的阶跃响应曲线,给出一条满意的过渡过程曲线。
(2)分析PI调节器控制时,不同P和Ti值时的阶跃响应曲线,给出一条满意的过渡过程曲线。