大学物理实验----弦振动驻波
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
弦振动与驻波实验报告

弦振动与驻波实验报告弦振动与驻波实验报告引言:弦振动与驻波是物理学中重要的研究领域,对于理解波动现象和振动特性有着重要的作用。
本次实验旨在通过实验观测和数据分析,探究弦振动和驻波的基本特性,并验证实验结果与理论预期的一致性。
实验装置:实验装置主要由一根细长的弦、固定装置和振动源组成。
弦通过固定装置固定在两端,振动源通过机械手柄产生横向振动,使弦发生振动。
实验过程:1. 调整弦的张力:首先,我们根据实验要求调整弦的张力,使其保持稳定。
通过调节固定装置上的螺钉,可以改变弦的张力,从而影响弦的振动频率和振幅。
2. 观察弦的振动模式:接下来,我们将振动源固定在弦的一个端点,并通过机械手柄产生横向振动。
我们观察到弦在振动过程中形成了不同的振动模式。
当振动源产生的频率与弦的固有频率相等时,弦会形成稳定的驻波。
3. 测量驻波的节点和腹点:我们使用尺子测量弦上的驻波节点和腹点的位置。
节点是弦上振动幅度为零的点,而腹点则是振动幅度最大的点。
通过测量节点和腹点的位置,我们可以计算出弦的波长和振动频率。
4. 计算波长和频率:根据实验测量的数据,我们可以利用以下公式计算弦的波长和频率:波长 = 2 * 节点间距离频率 = 振动源产生的频率实验结果与分析:通过实验观测和数据分析,我们得到了一系列关于弦振动和驻波的结果。
首先,我们发现当振动源产生的频率等于弦的固有频率时,弦会形成稳定的驻波。
这是因为当振动源频率与弦的固有频率一致时,反射波和入射波在弦上形成了干涉,导致驻波的形成。
其次,我们发现驻波的节点和腹点位置与振动源产生的频率有关。
当频率增加时,节点和腹点的位置会发生变化,波长也会相应改变。
这是因为频率的增加导致波长的缩短,从而节点和腹点的位置也会随之改变。
最后,通过计算弦的波长和频率,我们发现实验结果与理论预期相符。
这进一步验证了弦振动和驻波的基本原理和公式的准确性。
结论:通过本次实验,我们深入了解了弦振动和驻波的基本特性,并通过实验结果验证了相关理论。
弦振动与驻波实验报告

弦振动与驻波实验报告弦振动与驻波实验报告引言弦振动是物理学中一个经典的实验课题,通过实验可以观察到弦线在不同条件下的振动模式。
本实验旨在通过对弦线振动的研究,探索驻波现象的产生及其特性。
实验目的1. 理解弦振动的基本原理;2. 掌握测量弦线振动频率的方法;3. 观察驻波现象的形成和特性。
实验器材1. 弦线:长度约为2-3米,材质均匀、柔软的弦线;2. 弦线固定装置:用于固定弦线的两端,保持稳定;3. 驱动装置:用于产生弦线的振动;4. 频率计:用于测量弦线的振动频率;5. 各类测量仪器:尺子、计时器等。
实验步骤1. 将弦线固定在实验装置的两端,保持稳定;2. 调整驱动装置,使其产生合适的振动频率;3. 使用频率计测量弦线的振动频率;4. 观察弦线的振动模式,并记录下来;5. 调整驱动装置的频率,观察驻波现象的形成和特性;6. 测量不同驻波节点位置之间的距离,并计算波长。
实验结果与分析通过实验观察,我们可以看到弦线在不同频率下的振动模式。
当驱动频率与弦线固有频率相同时,弦线上形成了驻波现象。
驻波是指波动传播过程中,波峰和波谷相互叠加形成的现象。
在弦线上形成的驻波由一系列波节和波腹组成,波节为振动幅度最小的位置,波腹为振动幅度最大的位置。
在实验中,我们可以通过调整驱动频率,观察驻波现象的形成和特性。
当驱动频率与弦线固有频率相同时,弦线上形成了一个完整的驻波模式。
当驱动频率与弦线固有频率不匹配时,弦线上不会形成驻波,而是呈现出不规则的振动模式。
通过测量不同驻波节点位置之间的距离,我们可以计算出弦线的波长。
波长是指波动中一个完整波动周期所占据的距离。
根据波动理论,波长与频率之间存在着简单的关系,即波速等于波长乘以频率。
因此,通过测量波长和频率,我们可以计算出波速。
实验结论通过本次实验,我们深入了解了弦振动和驻波现象。
弦振动是一种常见的物理现象,通过调整驱动频率可以观察到不同的振动模式。
驻波现象是波动传播中的一个重要现象,通过波节和波腹的叠加形成。
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
大学物理驻波实验报告

大学物理驻波实验报告一、实验目的1、观察弦线上驻波的形成,了解驻波的特点和规律。
2、测量弦线振动的频率、波长和波速,验证驻波的相关理论。
3、掌握利用驻波测量物理量的实验方法和数据处理技巧。
二、实验原理当两列振幅相同、频率相同、传播方向相反的简谐波在同一直线上相向传播时,叠加形成驻波。
驻波的表达式为:$y = 2A \sin(kx) \cos(\omega t)$其中,$A$ 为振幅,$k =\frac{2\pi}{\lambda}$为波数,$\lambda$ 为波长,$\omega = 2\pi f$ 为角频率,$f$ 为频率。
在弦线上形成驻波时,弦线的两端为波节,弦线上的张力$T$、线密度$\mu$ 与波速$v$ 之间的关系为:$v =\sqrt{\frac{T}{\mu}}$。
又因为$v =\lambda f$ ,所以可以通过测量弦线的张力、线密度、振动频率和波长来研究驻波的特性。
三、实验仪器弦音计、砝码、米尺、电子天平、信号发生器等。
四、实验步骤1、安装实验仪器将弦线的一端固定在弦音计的可移动刀口上,另一端通过砝码盘悬挂一定质量的砝码,以提供弦线的张力。
调整弦音计的位置,使弦线处于水平状态。
2、测量弦线的线密度用电子天平测量弦线的质量$m$,用米尺测量弦线的长度$L$,则弦线的线密度$\mu =\frac{m}{L}$。
3、调节信号发生器的频率打开信号发生器,调节输出频率,使弦线产生振动。
观察弦线上的振动情况,当出现稳定的驻波时,记录此时信号发生器的频率$f$ 。
4、测量驻波的波长通过移动弦音计的可移动刀口,改变弦线的长度,使弦线上出现不同阶数的驻波。
记录相邻两个波节之间的距离,即为半波长$\frac{\lambda}{2}$。
测量多个数据,计算波长的平均值。
5、改变弦线的张力在砝码盘中增加或减少砝码,改变弦线的张力,重复步骤 3 和 4,测量不同张力下的频率和波长。
五、实验数据记录与处理1、弦线的线密度测量弦线质量$m =_____$ g,弦线长度$L =_____$ m,弦线的线密度$\mu =\frac{m}{L} =_____$ kg/m。
弦振动和驻波试验

弦振动和驻波实验【实验目的】1、观察固定均匀弦振动传播时形成的驻波波形;2、测量均匀弦线上横波的传播速度及均匀弦线的线密度。
【实验器材】XZD Y-B型固定均匀弦振动仪、磁铁、钩码、滑轮、电子天平等。
【实验原理】驻波是一种波的叠加现象,它广泛存在于各种振动现象中。
本实验通过通有交流电的铜导线在磁场中的振动,观察弦振动驻波的形成,验证横波的波长与弦线中的张力平方根成正比,与线密度的平方根成反比,并利用弦线上产生的驻波,测出驻波的波长。
横波沿弦线传播时,在维持弦线张力不变的情况下,横波的传播速度v与张力T及弦线的线密度(即单位长度的质量)之间的关系为:v . T(1)。
设弦线的振动频率为f,横波在弦线上传播的波长为,则根据v f,有(2)。
根据式(2)可知,若弦线的振动频率f和线密度一定,则波长与张力T的平方根成正比。
如图所示,弦线的一端通过劈尖A,另一端跨过劈尖B后通过滑轮挂钩码,当铜导线振动时,振动频率为交流电的频率。
随着振动产生向右传播的横波,此波由A点传到B点时发生反射。
由于前进波和反射波的振幅相同、频率相同、振动方向相同,但传播方向相反,所以可互相干涉形成驻波。
在驻波中,弦上各点的振幅出现周期性的变化, 有些点振幅最大,称为波腹;有些点振幅为零,称为波节。
两相邻波腹(或波节)之间的距离等于形成驻波的相干波波长的一半。
当弦的长度L(A、B两劈尖之间的距离)恰为半波长()的整数倍时产生共振。
此时驻波的振2幅最大且稳定,因此均匀弦振动产生驻波的条件为:L n㊁(n 1,2,3……)(3),式中n为半波数。
可见,由驻波的半波长的波段数n和弦长L ,即可求出波长,则丄(n 1,2, 3……)(4)。
由公式(2)和(4)可得弦线的线密度丄匚(5)。
n 4L f【实验内容】1、打开电源,启动弦振动仪,观察均匀弦振动传播时形成的驻波波形。
2、测定弦线的线密度:选取频率f 100Hz,张力T由40 g钩码挂在弦线的一端产生。
大学物理实验讲义-弦振动与驻波研究

大学物理实验讲义-弦振动与驻波研究弦振动与驻波研究【实验目的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张力的关系; 3.学习对数作图和最小二乘法进行数据处理。
【实验原理】在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程:2222x yT t y ∂∂=∂∂μ(1)式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。
将(1)式与典型的波动方程22222x y V t y ∂∂=∂∂相比较,即可得到波的传播速度: μTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张力及线密度之间的关系为:μλTf1=(2)为了用实验证明公式(2)成立,将该式两边取对数,得:11lg lg lg lg 22T f λμ=-- (3)固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作lg λ-lg T 图,若得一直线,计算其斜率值(如为21),则证明了λ∝21T的关系成立。
弦线上的波长可利用驻波原理测量。
当两个振幅和频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。
在弦线上出现许多静止点,称为驻波的波节。
相邻两波节间的距离为半个波长。
【实验仪器】1、可调频率数显机械振动源;2、振动簧片;3、弦线(铜丝);4、可动刀片支架;5、可动刀口支架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌9123456781011图1 实验装置示意图图2 可调频率数显机械振动源面板图 (1、电源开关 2、频率调节 3、复位键 4、幅度调节 5、频率指示)实验装置如图1所示,金属弦线的一端系在能作水平方向振动的可调频率数显机械振动弦线上驻波实验仪电 源ON复位 幅度 调节上海复旦天欣科教仪器有限公司频率调节H Z1 2 3 45FD-SWE-II源的振簧片上,频率变化范围从0-200Hz 连续可调,频率最小变化量为0.01Hz ,弦线一端通过定滑轮⑦悬挂一砝码盘⑧;在振动装置(振动簧片)的附近有可动刀片支架④,在实验装置上还有一个可沿弦线方向左右移动并撑住弦线的可动刀口⑤。
大学物理实验弦线上的驻波

大
(4)每增加 20 克砝码重复上述步骤,记录砝码质量和半波长的个数。直至线端总重量 (5)将波长 、张力 T 及弦线的线密度 (由实验室给出)值代入(2-4)式,计算频
学
20
(4)改变砝码质量,使弦线上形成明显(即振幅最大)而稳定(即振幅不随时间改变)
的驻波。每增加 20 克砝码,重复上述步骤,观察弦线上的驻波的波节数,并观察驻波波节 数的增减。 2. 测定电动音叉的频率
11 级
砝码托 40 克,若无砝码托则加两只 20 克砝码)接上电源,使音叉振动大小合适,能看到稳
验
中 心
数据表格
1. 观察驻波现象并加以描述:_____________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ _____________________________________________________________________。
仅
供
结果的平均值。由此计算出在弦线上传播波的波长 。 W 等于 100 克为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦振动驻波的研究
【实验目的】
1.观察弦振动时驻波的形成;
2.验证弦振动时驻波波长与张力的关系; 3.验证弦线波传播规律ρ
T
V =
,λ⋅=f V 。
【实验仪器】
本实验用产生稳定驻波的实验装置产生驻波(如图1所示)。
波源A 是由电力驱动的电动音叉,能够产生机械波。
B 是一个定滑轮,称为节点。
从音叉A 的端部引出一根弦线穿过B 点后弯折,弦线的另一端悬挂一重物M 。
重物产生的重力就是加在弦线上的张力。
【实验原理】
1. 求弦线线密度的原理
机械波在介质中的传播速度与介质本身的物理属性有关系。
当一列横波沿弦线传播时,若维持张力T 不变,则横波的传播速度v 与弦线上的张力T 及弦线的线密度ρ的关系为
ρ
T
v =。
若弦线的振动频率为f ,横波在弦线上传播的波长为λ,
则ρ
λT
f v =
⋅=,即ρ
λT
f
1=
,
若f 、ρ固定,则 λ∝T 。
精确测定λ和T ,作λ~T 图线,若其为一过原点的直线,则上述观点得到验证。
若知道f ,T ,λ则可求出弦线的线密度。
2. 用驻波法求波长的原理
从波源A 发出的机械波沿着弦线向前传播。
机械波传播到节点B 后即被反射,反射回来的机械波仍然沿弦线传播。
发射波(波1)与反射波(波2)在C 点相遇,如图2。
波1比波
图1 驻波发生装置
源A 的相位延迟了πλϕ21⋅=
x。
波2比波源A 的相位延迟了ππλ
ϕ+⋅-=222x
L 。
其中2ϕ里面附加的相位π是由于在节点B 的位置处,波是由波疏介质(弦线)入射到波密介质(金属定滑轮),因此产生半波损失,产生π的相位突变。
波1和波2在C 点处的相位差ππλ
ϕϕϕ+⋅-=
-=∆22212x
L c 。
对于C 点来说,两
列波的相位差恒定。
且两列波是从同一个波源发出的,故频率相同,振幅相同,满足机械波波的相干条件(频率相同,振幅相近,相位差恒定),会产生波的干涉现象。
图2 驻波原理
当波源到节点的距离为半波长的整数倍的时候,即2λ
⋅=m L ,m 为整数,在C 点处相
遇的两束波的相位差为πλ
ππππλλϕ22222⋅-+=+⋅-=
∆x
m x
m c 。
根据干涉原理,当相位差为奇数个π时,干涉相消,合振幅最小(为0),即波节;当相
位差为偶数个π时,干涉相长,合振幅最大(为单个波振幅的两倍),即波腹。
计算相位差如下: (p 为整数)
当2λ⋅=p x ,ππππλ
λ
λϕ+-=+⋅-=
∆)(22p m p m c ,合振幅最小,波节。
当42λλ+⋅=p x ,πππλ
λ
λλϕ)(2221
p m p m c -=+⋅--=∆,合振幅最大,波腹。
由上述推到,可以知在波源(x =0)和节点(x=L )位置处都肯定是波节。
相邻的两个波节之间的距离为半个波长。
因此可以由驻波的方法求出机械波的波长来。
【实验内容及步骤】
(一)观察驻波的形成并测定不同张力下的波长,计算线密度ρ 。
1.接通电源使音叉正常振动后,固定一个张力T i ,仔细调节弦长l i ,使弦上形成n i 个波段稳
定的驻波,记下i T ,i l 和i n ,填入表格1,由 i
i i n l 2
=λ 计算出i λ,由i
i i
i n l T f
2
1==
ρ
λ 2
2
)
(4f l T n i i i i =
ρ ,计算线密度的平均值ρ 。
2.以T 为横坐标,λ为纵坐标,作λ~T 图线。
由T f
ρ
λ1=
验证其线性关系。
并
由斜率ρ
f
k 1
=
求出2
)
(1kf =
ρ。
由于弦线的密度是定值,所以两个不同的公式求出
的ρ值应非常接近。
(二)验证弦线波传播规律ρ
T
V =
,λ⋅=f V 。
当弦线上形成n 个波段稳定的驻波时,测出任意n 个波段的相应长度l ,将数据填入表格2,并作数据和误差处理。
(1V -----理论值, 2V ----实验值。
)
【数据表格及数据处理】
1. 求弦线的线密度
2. 作图法求线密度
由表格1中的数据作λ~T 图线,并作线性回归,求出斜率k ,由ρ
f
k 1
=
求出弦线的线
密度2
2)
(1kf =
ρ= (kg/m ),代入表格2中计算。
3. 验证弦线波传播规律
表格2 =
f(Hz)
【思考题】
在此实验中,线端所悬砝码摆动时对实验有什么影响?。