一种脉宽调制电机驱动电路的设计
PWM驱动原理?

PWM(脉宽调制)是一种控制信号的技术,通过调整信号的脉冲宽度来实现对电路或设备的驱动。
PWM驱动常被用于直流电机驱动、LED亮度调节、音频放大器等应用中。
PWM驱动的原理如下:
1. 基本概念:PWM信号由一个固定的周期和一个可变的脉冲宽度组成。
周期表示一个完整的PWM信号循环所持续的时间,脉冲宽度则表示脉冲信号的高电平持续的时间。
2. 控制信号生成:PWM信号是由一个控制器或微控制器生成的。
控制器通过计算或根据输入的模拟信号,生成具有相应脉冲宽度的PWM信号。
3. 周期和频率:PWM信号的周期是固定的时间间隔,在设计中可以根据需要进行选择。
频率是指PWM信号每秒钟循环的次数,是周期的倒数。
4. 脉冲宽度调节:脉冲宽度决定了PWM信号的占空比,即高电平和周期之间的比例关系。
脉冲宽度决定了驱动电路的输出电平和功率。
通过调节脉冲宽度的比例可以控制输出电路的平均电压或功率。
5. 低通滤波:PWM信号在驱动输出电路中,通常通过一对开关进行控制。
由于PWM信号的高频特性,开关的开关电流会产生高频噪声。
为了去除这些噪声,通常使用低通滤波器对PWM信号进行滤波,得到平滑的模拟输出。
通过改变PWM信号的脉冲宽度,可以控制输出电路的电平或功率,实现对电路或设备的精确驱动。
PWM驱动具有高效率、精度高、响应快和容易实现的优点,在诸多应用中被广泛应用。
双闭环可逆直流脉宽调速系统设计

c o n d i t i o n ,t h e r e s u l t s i n d i c a t e t h a t t h e s t a t i c a n d d y n a mi c
1 系统原理
转速、 电流双闭环直流调速系统是 以直流电 机调 压为基 本调速方 式 , 在 电机负载扰 动或其 它干扰存在 时能表现 出良好 的静 态和动态转速 性能 , 同时由于 电流环控制及其限幅作用 , 使 电 机 在动态过 程中能在 不超载情况下满足转 速调
整 的快 速性 和 起 动 特 性 。 采 用H桥 式 电路 结 构 可
s p e c i i f c a t i o n s o f t h e s p e e d c o n t r o l s y s t e m a r e s a t i s i f e d f o r
直流电机具有较 大的起动和制动转矩 , 调速
指标能够 满足直流 电机 在工 业现场 的应 用。
关键 词: 直 流脉宽 调速
路设 计
双 闭环
直流 电动 机 电
采用H 桥为主电路的直流脉宽调制法实现 的
直 流 电机 可逆 调 速 系统 包 括 主 电路 、 驱 动 电路 、
中图分类号 : T M3 0 6 文献标 识码 : A
P WM脉冲发生电路、 信号检测电路和保护电路, 并 分别采用微处 理器和模拟 电路实现转速 和电 流的双 闭环控制 。 通过对建 立的试验 系统进行 测试 , 结果 表明该 系统能满足 各项 性能指标要 求, 安全可靠。 下面在介 绍直流脉宽调速 原理 的
电机与拖动课程设计-PWM脉宽调速系统设计报告

电机与拖动课程设计-PWM脉宽调速系统设计报告《电机与拖动》课程设计直流电机PWM脉宽调速系统设计(邓毅) 201030460405(高浩斌) 201030460407(郭剑桥) 201030460408指导教师许俊云老师学院名称工程学院专业班级10自动化4班设计提交日期2012年12月目录 (1)一、课程设计内容 (2)二、设计原理 (2)2.1系统设计原理 (2)2.2 PWM基本原理 (3)2.3 PWM调速基本原理 (3)三、方案设计与选择 (4)3.1脉宽调制电路的选择 (4)3.2驱动电路的选择 (4)四、方案具体实现 (5)4.1 设计方案 (5)4.2直流电机驱动控制总流程图 (5)4.3矩形波信号产生器 (5)4.4驱动电路 (7)4.5总电路图 (9)4.6调试数据及波形 (10)4.6.1调试数据 (10)4.6.2调试波形 (10)五、调试过程中遇到的问题及解决方案 (11)六、心得体会 (12)七、元件清单 (12)八、小组分工 (12)一、设计内容1 直流电机的调速有单象限,二象限和四象限三种工作形式。
要1 求学生选择后两种工作形式的任意一种进行设计。
2选用额定电压为220V,额定电流为1.2A的它励直流电动机(即把实验室的并励直流电动机做它励接法)作为调速对象。
要求带一发电机负载进行调速实验。
二、设计原理2.1.系统设计原理脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM 控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
直流电动机的转速n 和其他参量的关系可表示为a a ae U I R n C -=Φ∑ (1)式中 Ua ——电枢供电电压(V );Ia ——电枢电流(A );Ф——励磁磁通(Wb );Ra ——电枢回路总电阻(Ω);CE ——电势系数, ,p 为电磁对数,a 为电枢并联支路数,N 为导体数。
直流脉宽调速系统驱动电源设计

目录1.直流脉宽调速系统驱动电源 (1)1.1任务和意义 (1)1.2技术指标 (1)1.3设计内容 (1)2.脉宽调制技术 (1)2.1脉宽调速系统的控制电路: (2)2.2脉冲宽度调制器: (2)2.3直流脉宽调制放大器工作原理 (3)2.4脉宽调制优点 (3)2.5电路参数及选型 (4)3.直流脉宽调速实验原理 (5)3.1 SG3525A脉宽调制器控制电路简介 (5)3.2 SG3525A内部结构和工作特性 (5)3.3 IC芯片的工作 (7)3.4脉宽调速系统的开环机械特性 (7)4.主电路设计说明 (8)4.1主电路的选择 (8)4.1.1简要概述 (8)4.2设计说明 (10)5.简要概述 (11)5.1设计说明 (11)5.2.1控制电路的选择 (13)5.2.2驱动电路的选择 (14)6.调速系统各部分功能 (17)6.1 欠压锁定功能 (17)6.2系统的故障关闭功能 (17)6.3软起动功能 (17)7.仿真电路模块 (17)总结 (19)附录:主电路和控制电路 (20)1.直流脉宽调速系统驱动电源1.1任务和意义生产实习的主要任务是设计一个直流电动机的脉宽调速(直流PWM)驱动电源。
纵观运动控制的发展历史,交、直流两大电气传动并存于各个应用领域。
由于直流电机的调速性能和转矩控制性能好,20世纪30年代起就开始使用直流调速系统。
直流调速系统由最早的旋转变流机组控制,发展为用静止的晶闸管变流装置和模拟控制器实现调速,到现在由大功率开关器件组成的PWM电路实现数字化的调速,系统的快速性、可靠性、经济性不断提高,应用领域不断扩展。
尽管目前对交流系统的研究比较“热门”,但是其控制性能在某些方面还达不到直流PWM系统的水平。
直流PWM控制技术作为一门新型的控制技术,其发展潜力还是相当大的。
而且,直流PWM技术是电力电子领域广泛采用的各种PWM技术的典型应用和重要基础,掌握直流PWM技术对于学习和运用交流变频调速中SPWM技术有很大的帮助和借鉴作用。
基于MOSFET的永磁同步电动机驱动电路设计

基于MOSFET的永磁同步电动机驱动电路设计永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM)是一种被广泛应用于工业和消费电子领域的高性能电机。
为了实现对PMSM的精确控制,需要设计一种高效的驱动电路。
基于MOSFET的驱动电路是目前常见的PMSM驱动方案之一首先,需要理解MOSFET的工作原理。
MOSFET是一种三端器件,分别为栅极(Gate)、漏极(Drain)和源极(Source)。
通过控制栅极电压,可以调节MOSFET的导通和截止状态。
MOSFET在导通状态时能提供较低的导通电阻,从而能够实现高效的电机驱动。
设计基于MOSFET的PMSM驱动电路,首先需要将输入电源电压进行适当的转换和调节,以提供所需的直流电压。
通常,这可以通过使用整流和滤波电路来实现。
接下来,需要使用MOSFET来进行功率放大和开关控制。
为了实现对PMSM的正反转和调速控制,需要配备至少六个MOSFET,分别对应PMSM三相的A相、B相和C相。
这些MOSFET通常形成一个“桥”配置,通常称为功率电子桥。
在PMSM驱动过程中,需要根据电机的状态和所需的转速来控制MOSFET的开关状态。
为了精确控制,可以使用一种被称为PWM(Pulse Width Modulation,脉宽调制)技术。
PWM技术通过控制每个MOSFET的开关时间比例来实现对电机的精确控制。
最后,为了保护电机和驱动电路免受故障和过流的损害,通常还需要添加过流保护电路和温度保护电路。
过流保护电路可通过监测电流并在超过阈值时切断电源来实现。
温度保护电路则可监测电机或驱动电路的温度,并在温度超过一定阈值时采取相应的保护措施,例如减小电流或关闭电源。
总之,基于MOSFET的永磁同步电动机驱动电路设计是一项复杂的工程,需要根据实际需求和电机参数进行详细的设计和计算。
正确设计的驱动电路能够确保电机的稳定运行和高性能工作。
脉宽调制(PWM)实现步进电机的细分驱动技术

脉宽调制(PWM)实现步进电机的细分驱动技术作者:时念科吴美莲来源:《硅谷》2011年第17期摘要:步进电机作为一种控制电机,其控制精度(分辨率)取决于步距角的大小,单纯地靠机械手段降低其步距角是有限的。
常采用细分驱动技术。
着重介绍脉宽调制(PWM)实现的步进电机细分驱动技术,该技术不仅可以提高步進电机的分辨率,还可以克服步进电机在低速时易出现的低频振动现象。
关键词:步进电机;步距角;矩角特性;脉宽调制(PWM);细分驱动中图分类号:TP275 文献标识码:A 文章编号:1671-7597(2011)0910039-010 前言步进电机作为控制电机,在机电一体化系统的执行装置中有独特的应用,该电机的控制精度(分辨率)取决于其步距角α的大小,步距角越小,分辨率也越高。
由于步距角α=3600/KMZ,(其中K为供电方式,三拍供电:K=1;六拍供电:K=2;M为定子相数;Z 为转子齿数)。
受机械加工技术的限制,定子的相数和转子的齿数都是有限的,所以步进电机的步距角就不可能无限小,一般为几分到几十度。
另外,步进电机在低速运转时易出现低频振动现象,其振动频率与负载情况和驱动器性能有关,共振时易造成设备损坏等严重情况,并伴有刺耳的啸叫声。
为改善步进电机的运行质量和提高分辨率,常采用在电机上加阻尼器或在驱动器上采用细分技术,本文就步进电机的细分驱动技术作简单介绍。
1 步进电机的细分驱动技术原理步进电机细分驱动控制就是通过脉宽调制(PWM),对步进电机的驱动脉冲进行细分,将一个脉冲驱动信号细分为若干个小的脉冲,这样各相绕组中电流就按设定的规律阶梯上升和下降,从而获得相电流从最小到最大的多个中间稳定状态,各相的合成磁场也就有多个稳定的中间状态,转子就按这些中间状态以微步距转动。
1.1 首先介绍步进电机的静态特性——距角特性静态特性是指步进电机绕组电流为恒定值,转子静止不转时表现出的机械特性,也叫矩——角特性。
空载时,当且仅当某相通电并保持,此时,转子相应的齿与该相定子对齐,这时转子不输出电磁转矩。
信号脉宽调制 电路

信号脉宽调制 电路
PWM电路的输出信号可以通过滤波电路进行平滑处理,得到与输入信号Vin幅度相关的 模拟信号。PWM技术在电机控制、音频放大、LED调光等领域广泛应用,可以实现高效的模 拟信号调制和控制。
需要注意的是,上述示意图中的电路仅为基本的PWM电路,实际应用中可能会有更复杂 的电路结构和控制方式,以满足具体的需求和性能要求。
信号脉宽调制 电路
信号脉宽调制(Pulse Wi来自th Modulation,PWM)是一种常用的调制技术,用于在数 字电路中模拟模拟信号。它通过改变信号的脉冲宽度来表示模拟信号的幅度。
下面是一个基本的PWM电路工作原理: 1. 工作原理:
- 输入信号Vin为模拟信号,其幅度决定了输出信号的脉冲宽度。 - 通过R1和R2,将输入信号Vin与电源电压+Vcc分压,得到一个中间电压。 - 中间电压通过C1进行滤波,得到一个平滑的直流电压。 - 输出信号Out为一个方波,其脉冲宽度由输入信号Vin决定。当输入信号Vin为高电平 时,输出信号为高电平,脉冲宽度较宽;当输入信号Vin为低电平时,输出信号为低电平,脉 冲宽度较窄。
直流脉宽(PWM)调速系统设计与研究——主电路设计课设报告

沈阳理工大学课程设计摘要调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。
目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。
早在20世纪40年代采用的是发电机-电动机系统,又称放大机控制的发电机-电动机组系统。
这种系统在40年代广泛应用,但是它的缺点是占地大,效率低,运行费用昂贵,维护不方便等,特别是至少要包含两台与被调速电机容量相同的电机。
为了克服这些缺点,50年代开始使用水银整流器作为可控变流装置。
这种系统缺点也很明显,主要是污染环境,危害人体健康。
50年代末晶闸管出现,晶闸管变流技术日益成熟,使直流调速系统更加完善。
晶闸管-电动机调速系统已经成为当今主要的直流调速系统,广泛应用于世界各国。
近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。
直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。
不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、高智能化特点。
同时直流电机的低速特性,大大优于交流鼠笼式异步电机,为直流调速系统展现了无限前景。
单闭环直流调速系统对于运行性能要求很高的机床还存在着很多不足,快速性还不够好。
而基于电流和转速的双闭环直流调速系统静动态特性都很理想。
关键字:调速系统直流调速器晶闸管晶闸管-电动机调速系统沈阳理工大学课程设计目录1 绪论 (1)1.1 背景 (1)1.2 直流调速系统的方案设计 (1)1.2.1 设计已知参数 (1)1.2.2 设计指标 (2)1.2.3 现行方案的讨论与比较 (2)1.2.4 选择PWM控制系统的理由 (2)1.2.5 选择IGBT的H桥型主电路的理由 (3)1.2.6 采用转速电流双闭环的理由 (3)2 直流脉宽调速系统主电路设计 (4)2.1 主电路结构设计 (4)2.1.1 PWM变换器介绍 (4)2.1.2 泵升电路 (7)2.2 参数设计 (7)2.2.1 IGBT管的参数 (7)2.2.2 缓冲电路参数 (8)2.2.3 泵升电路参数 (8)3 直流脉宽调速系统控制电路设计 (9)3.1 PWM信号发生器 (9)3.2 转速、电流双闭环设计 (9)3.2.1 电流调节器设计 (10)3.2.2 转速调节器设计 (13)4 系统调试 (17)4.1 系统结构框图 (17)4.2 系统单元调试 (17)4.2.1 基本调速 (17)4.2.2 转速反馈调节器、电流反馈调节器的整定 (18)4.3 实验结果 (18)4.3.1 开环机械特性测试 (18)4.3.2 闭环系统调试及闭环静特性测定 (19)5 总结 (20)参考文献 (21)附录A (22)A.1 晶闸管直流调速系统参数和环节特性的测定 (22)A.2 双闭环可逆直流脉宽调速系统性能测试 (26)沈阳理工大学课程设计1 绪论背景在现代科学技术革命过程中,电气自动化在20世纪的后四十年曾进行了两次重大的技术更新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目一种脉宽调制电机驱动电路的设计系别:电子电气工程系姓名:周爱爱学号: 200995014081 班级: 09级电气3班2012年 6 月24日题目三:一种脉宽调制电机驱动电路的设计目的:1.实现对电气控制、电机拖动、变流技术等课程内容的应用;2.掌握利用集成PWM芯片、H桥芯片快速搭建电机驱动电路的方法。
课程设计任务:1.利用集成PWM芯片(SG3525)、H桥芯片(LMD18200)快速搭建电机驱动电路;实现较好性能开环控制。
2.SG3525产生PWM波,送给LMD18200,由18200驱动电机运转。
充分利用两芯片的保护功能实现相关保护。
3.选作部分:用MCU作为控制单元实现参数给定、修改,信息显示,数据处理,给电机引入测速发电机或光电编码盘实现闭环控制。
(MCU与后级芯片要用光耦隔离)4.最后要给出驱动电路对应的电机容量。
5.电路图要求用软件Protel99绘制,一种脉宽调制电机驱动电路的设计1 引言直流伺服电动机因调速性能好、起动转矩大,故在工农业生产、国防装备、科学研究以及第三产业中都有大量的应用,在自动控制系统中常用来作执行元件或信号元件,用于传递和变换信号。
直流伺服电动机的驱动电路可以采用分离器件来搭建,这种方法容易造成研制周期加长、电路体积增大、结构复杂以及可靠性下降等问题。
为了提高驱动电路的可靠性和稳定性,有必要选择一种新的驱动方式,以达到减小电路体积以及提高电路选用美国国家半导体公司(NS)生产的专门用于运动控制的LMD18200T智能功率集成电路就是一种很好的解决方案。
LMD18200T是一种体积小、驱动能力强、内部集成了多种保护电路、单片即可实现电机全桥驱动的集成功率放大器,故可有效减少系统发生故障的可能性,显著提高系统的可靠性,充分体现了集成功率放大器外围电路简单、性能稳定可靠、控制功能全面的优点。
随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。
SG3525是用于驱动N沟道功率MOSFET。
其产品一推出就受到广泛好评。
SG3525系列PWM控制器分军品、工业品、民品三个等级。
本文对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行了介绍。
2 智能功率集成电路LMD18200T性能简介LMD18200T是NS公司生产的专门用于直流电动机运动控制的智能功率集成电路。
它将4个DMOS管构成的H桥及其控制逻辑电路封装在一个ll引脚的芯片中。
它的工作电压高达55 v;连续工作电流3 A,峰值电流高达6 A;每个开关器件的导通电阻典型值为0.3欧姆;输入信号兼容TTL和CMOS信号;具有温度报警、过热以及负载短路保护能力。
2.1 引脚定义各功能的功能如下:表一LMD18200逻辑真值表入,5脚接至逻辑高电平。
50%占空比PWM 信号对应于零驱动,平均负载电流为零。
大于50%占空比PWM信号对应于正向电流,负载电流从OUTPUT1流向OUTPUT2。
小于50%占空比PWM 信号对应于反向电流,负载电流从OUTPUT2流向OUTPUT1.Vs POWER SUPPLY和GROUNDING 直流电源的正、负输入端。
CURRENT SENSE OUTPUT 电流检测输出端。
每输出l A电流,引脚8输出377的采样电流。
2.2 工作原理LMD18200T的内部功能框图如图所示。
LMD18200T内部集成了4个DMOS管,组成了一个标准的H桥驱动电路。
H桥高侧DMOS功率器件要求其栅极驱动电压大于电源正极约8V以上才能导通。
为此该集成电路设置了内部充电泵电路,它由一个300 kHz振荡器控制,充电泵电容被充电至14 V左右。
此栅极驱动电压上升时间典型值为20us,适用于工作频率1 kHz左右的情况。
如果要求更高的工作频率,需要外接白举电容。
推荐用两个10nF的电容器分别接于引脚1、2和引脚10、11之间,是栅极驱动电压上升时间在100 ns以下,允许开关频率高达500 kHz。
引脚2、10接直流电动机的电枢两端,正转时电流的方向应该从引脚2到引脚10;反转时电流的方向应该是从引脚10到引脚2。
电流检测引脚8可以外接一个对地电阻,通过此电阻来检测输出电流的情况。
内部保护电路设置的过电流阈值是10 A,当超过该值时会自动封锁输出,并周期性地自动恢复输出。
如果过电流持续时间过长,过热保护将关闭整个输出。
过热信号可以通过引脚9输出,当结温达到145℃时引脚9有输出信号⋯。
2.2 LMD18200的应用电路该电路是一个单极性驱动直流电机闭环控制电路。
PWM信号由5脚输入,转向信号由3脚输入。
PWM的占空比决定转速,方向信号决定转向;增量式编码器反馈电机位置MCU通过其输出的A、B两项信号获得转速和转向信息,从而形成闭环控制。
3 PWM控制芯片SG3525功能简介SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。
3.1 SG3525引脚功能及特点简介其原理图如图4.13下:1.Inv.input(引脚1):误差放大器反向输入端。
在闭环系统中,该引脚接反馈信号。
在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。
2.Noninv.input(引脚2):误差放大器同向输入端。
在闭环系统和开环系统中,该端接给定信号。
根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。
3.Sync(引脚3):振荡器外接同步信号输入端。
该端接外部同步脉冲信号可实现与外电路同步。
4.OSC.Output(引脚4):振荡器输出端。
5.CT(引脚5):振荡器定时电容接入端。
6.RT(引脚6):振荡器定时电阻接入端。
7.Discharge(引脚7):振荡器放电端。
该端与引脚5之间外接一只放电电阻,构成放电回路。
8.Soft-Start(引脚8):软启动电容接入端。
该端通常接一只5 的软启动电容。
pensation(引脚9):PWM比较器补偿信号输入端。
在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。
10.Shutdown(引脚10):外部关断信号输入端。
该端接高电平时控制器输出被禁止。
该端可与保护电路相连,以实现故障保护。
11.Output A(引脚11):输出端A。
引脚11和引脚14是两路互补输出端。
12.Ground(引脚12):信号地。
13.Vc(引脚13):输出级偏置电压接入端。
14.Output B(引脚14):输出端B。
引脚14和引脚11是两路互补输出端。
15.Vcc(引脚15):偏置电源接入端。
16.Vref(引脚16):基准电源输出端。
该端可输出一温度稳定性极好的基准电压。
特点如下:(1)工作电压范围宽:8—35V。
(2)5.1(1 1.0%)V微调基准电源。
(3)振荡器工作频率范围宽:100Hz—400KHz.(4)具有振荡器外部同步功能。
(5)死区时间可调。
(6)内置软启动电路。
(7)具有输入欠电压锁定功能。
(8)具有PWM琐存功能,禁止多脉冲。
(9)逐个脉冲关断。
(10)双路输出(灌电流/拉电流):mA(峰值)。
3.2 SG3525的工作原理SG3525 内置了5.1V精密基准电源,微调至1.0%,在误差放大器共模输入电压范围内,无须外接分压电组。
SG3525还增加了同步功能,可以工作在主从模式,也可以与外部系统时钟信号同步,为设计提供了极大的灵活性。
在CT引脚和Discharge引脚之间加入一个电阻就可以实现对死区时间的调节功能。
由于SG3525内部集成了软启动电路,因此只需要一个外接定时电容。
输入S G 3 5 2 5 的误差信号经过误差放大器放大后,与其内部振荡器产生的锯齿波进行比较,比较器输出的脉宽信号再经分相器分成两路互不重叠的A,B两相脉宽信号,山具有图腾柱结构的输出端1 1 和1 4 脚输出,见图由图可知,锯齿波的高低电位分别为3 . 3 V和0 . 9 V,故控制电路送给S G 3 5 2 5的控制电压信号应在0.9 V 至3 . 3 V之间变化,如果控制信号小于0 . 9 V,则控制效果和0 . 9 V相同;同样地,如果控制信号大于3 . 3 V,则和3 . 3 V的控制效果相同。
控制信号在0 . 9 V - 3 . 3 V之问变化时,控制信号越大,则输出的脉宽越宽。
SG3525的软启动接入端(引脚8)上通常接一个5 的软启动电容。
上电过程中,由于电容两端的电压不能突变,因此与软启动电容接入端相连的PWM比较器反向输入端处于低电平,PWM比较器输出高电平。
此时,PWM琐存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。
只有软启动电容充电至其上的电压使引脚8处于高电平时,SG3525才开始工作。
由于实际中,基准电压通常是接在误差放大器的同相输入端上,而输出电压的采样电压则加在误差放大器的反相输入端上。
当输出电压因输入电压的升高或负载的变化而升高时,误差放大器的输出将减小,这将导致PWM比较器输出为正的时间变长,PWM琐存器输出高电平的时间也变长,因此输出晶体管的导通时间将最终变短,从而使输出电压回落到额定值,实现了稳态。
反之亦然。
外接关断信号对输出级和软启动电路都起作用。
当Shutdown(引脚10)上的信号为高电平时,PWM琐存器将立即动作,禁止SG3525的输出,同时,软启动电容将开始放电。
如果该高电平持续,软启动电容将充分放电,直到关断信号结束,才重新进入软启动过程。
注意,Shutdown引脚不能悬空,应通过接地电阻可靠接地,以防止外部干扰信号耦合而影响SG3525的正常工作。
欠电压锁定功能同样作用于输出级和软启动电路。
如果输入电压过低,在SG3525的输出被关断同时,软启动电容将开始放电。
此外,SG3525还具有以下功能,即无论因为什么原因造成PWM脉冲中止,输出都将被中止,直到下一个时钟信号到来,PWM琐存器才被复位。
4 光电隔离器4.1 光电隔离器的概述光电隔离器(optical coupler,英文缩写为OC)亦称光耦合器,简称光耦。
光耦合器以光为媒介传输电信号。
它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。
目前它已成为种类最多、用途最广的光电器件之一。