较大功率直流电机驱动电路的设计方案
直流电机驱动与控制电路设计报告MMZ

直流电机驱动与控制电路设计报告MMZ 摘要
本文主要介绍了直流电机驱动和控制电路的设计,该电路应用于基于MMZ系列直流电机的应用。
在电源连接之后,通过控制器连接电机和接收端,在控制器中的PWM调速模式控制直流电机的转速。
通过对电路图的分析,可以知道该电路可以实现直流电机的变频控制和调速控制功能。
该电
路的优点包括低成本,高可靠性,简单的操作等。
关键词:MMZ系列直流电机,变频控制,控制器,PWM调速
1绪论
随着信息技术的发展和人们生活水平的提高,各行业对电机的要求越
来越高,直流电机的应用非常广泛。
直流电机有很多优点,首先它的功耗低,其次它的抗干扰性强,可以承受比较大的风扇或水泵负荷,同时它还
具有可调速度和方向控制的特性,这使其在工业生产中起到了重要作用。
MMZ系列直流电机是一种新型的高性能直流电机,它具有较高的功率
和较低的噪声,大大降低了系统损耗,而且还具有良好的稳定性和可靠性,所以在工业自动化控制领域有着广泛的应用。
为了使电机具有良好的方向
控制特性和速度控制的功能,必须进行变频控制和调速控制,这就要求电
机配备有电源模块、控制器模块和接收端模块。
较大功率直流电机驱动电路的设计方案

1 引言直流电机具有优良的调速特性,调速平滑、方便、调速围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。
许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。
基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。
该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。
2 H 桥功率驱动电路的设计在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。
对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。
可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。
而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。
三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速围不大,一般都是配合变压调速使用。
因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。
2.1 H 桥驱动原理要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。
当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。
图1 H 桥驱动原理电路图2.2 开关器件的选择及H 桥电路设计常用的电子开关器件有继电器,三极管, MOS 管, IGBT 等。
详解直流电机驱动电路设计

详解直流电机驱动电路设计
直流电机驱动电路设计概述
电机驱动电路是控制电机运行的电路,也称作动力源电路,它的主要
作用是提供电机所需要的适当电压和频率的电能,以控制电机的转速和转
动方向。
一般讲,电机驱动电路包括三个部分:驱动器,控制器和电源电路。
一、直流电机驱动电路的设计
1、驱动器的设计
直流电机驱动电路主要由驱动器、控制器和电源电路组成。
在这里,
驱动器主要负责将控制器的控制信号转换为适合电机工作的电流。
现在,
基于IGBT的驱动器已经成为直流电机驱动电路中的主要组成部分。
驱动
器电路很复杂,包括用于驱动电机的晶体管,用于传输控制信号的晶体管,以及调节电流的电阻等。
2、控制器的设计
控制器是电机驱动电路的核心部分,它负责接收外部输入信号,并根
据设定的参数来调整电机的转速、转向和加速等。
控制器设计非常复杂,
一般包括两个主要部分:控制电路和放大路由部分。
控制电路负责检测电
机的运行状态和外部输入,并根据这些信息来调整电机的转速。
放大部分
负责将控制电路的输出信号放大,并将其转换为能够驱动电机的标准控制
信号。
3、电源电路的设计。
较大功率直流电机驱动电路的设计方案

1 引言直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。
许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。
基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。
该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。
2 H 桥功率驱动电路的设计在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。
对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。
可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。
而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。
三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。
因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。
2.1 H 桥驱动原理要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。
当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。
图1 H 桥驱动原理电路图2.2 开关器件的选择及H 桥电路设计常用的电子开关器件有继电器,三极管, MOS 管, IGBT 等。
基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计一、本文概述随着现代电子技术的飞速发展,直流电机因其优良的控制性能和简单的结构设计,在工业自动化、精密仪器和消费电子等领域得到了广泛应用。
传统的直流电机驱动控制电路存在功耗大、效率低、响应速度慢等问题,难以满足当前对高性能电机控制系统的需求。
研究新型的直流电机驱动控制电路具有重要意义。
本文主要聚焦于基于场效应管的直流电机驱动控制电路设计。
场效应管(FET)作为一种高效、快速的电子器件,在电机驱动领域具有独特的优势。
本文将首先介绍场效应管的基本原理和特性,以及其在直流电机驱动控制中的应用优势。
接着,本文将详细阐述一种基于场效应管的直流电机驱动控制电路的设计方法,包括电路的拓扑结构、工作原理以及关键参数的设计与优化。
本文的研究重点在于如何通过优化电路设计,提高直流电机驱动控制系统的性能,包括降低功耗、提高效率、加快响应速度等。
本文还将探讨电路设计中可能遇到的问题和挑战,并提出相应的解决策略。
总体而言,本文旨在为直流电机驱动控制电路的设计提供一种新的思路和方法,以推动电机控制技术在现代工业和电子领域的应用与发展。
二、场效应管基础知识场效应管(FieldEffect Transistor,简称FET)是一种利用电场效应来控制电流流动的半导体器件。
它具有三个引脚:源极(Source)、栅极(Gate)和漏极(Drain)。
场效应管的主要类型包括结型场效应管(JFET)和金属氧化物半导体场效应管(MOSFET)。
在直流电机驱动控制电路中,MOSFET因其高输入阻抗、低导通电阻和高开关速度等特点而得到广泛应用。
场效应管的工作原理基于电场效应。
在MOSFET中,当在栅极和源极之间施加一个电压时,会在栅极和硅基片之间形成一个电场。
这个电场会影响硅基片中的电荷分布,从而控制源极和漏极之间的电流流动。
当栅极电压达到一定阈值时,MOSFET开始导通,电流可以在源极和漏极之间流动。
场效应管的特性参数对其在电路中的应用至关重要。
绞车模拟器,关于直流电机驱动电路的设计

摘要本文主要是对绞车模拟器的研究。
其研究意义就是实现绞车控制,对航空吊放声纳,舰船拖曳声纳的施放深度,施放速度进行调控。
对声纳的释放和回收起到很大作用。
主要思想是通过C8051F040芯片进行控制,采集到的信号由LM298N 进行处理,通过利用直流电机和旋转编码器[1],模拟绞车转动,并模拟绞车各个开关量,给控制系统提供速度反馈信号以及绞车状态信号。
从而实现绞车的正转,反转,急停,控制绞车转速。
系统由电压控制,直流电机驱动电路,光耦隔离电路,绞控盒,旋转编码器组成。
利用PWM脉宽调制控制原理控制直流电机的方法,闭环控制原理来控制电路的输入输出和转速控制。
最后对C8051F020的初始化编程和程序调制,讨论了在调试程序中遇到的问题,完成了整个电路的最终调试。
达到了毕业设计任务书的要求。
关键词:C8051F020 ,绞车,PWM脉宽调制,直流电机驱动ABSTRACTThis paper is the winch controller. Significance of their research is to realize the winch control, air sonar, ship towed sonar depth cast, cast speed control. The release and recovery of sonar played a significant role. The main idea is to control through the C8051F040 chip, the signal collected by the LM298N processing, through the use of DC motors and rotary encoders, analog winch rotation, and various analog switch winch, to the control system to provide speed feedback signals and status signals the winch. In order to achieve the winch forward, reverse, stop, control winch speed. System consists of voltage control, DC motor drive circuit, opto isolation circuit, control box cutter, rotary encoder components. Using pulse width modulation PWM control of DC motor control theory approach, closed-loop control principles to control the input and output circuit and speed control.Finally, the initial programming and procedures C8051F020 modulation, discussed the problems encountered in the debugger, complete the final commissioning of the entire circuit. Mission statement to the graduation requirements of the task.KEY WORDS: C8051F020, winch, PWM pulse width modulation, DC motor drive目录摘要 (I)ABSTRACT (II)第1章概论 (1)第2章基础知识概述 (2)2.1 C8051F040单片机 (2)2.1.1 C8051F040简介 (2)2.1.2 C8051F040特性 (2)2.1.3 C8041F040引脚及功能 (3)2.1.4 C8051F040工作特性 (4)2.1.5 C8051存储器操作命令代码及其含义 (6)2.2 L298N电机驱动芯片 (8)2.2.1 简介 (8)2.2.2L298N工作原理 (9)2.3 6N137光耦隔离 (10)2.3.1简介 (10)2.3.2 6n137原理 (11)2.4 小结 (12)第3章电路设计 (13)3.1 设计技术指标 (13)3.2 总体电路框图 (13)3.3部分电路设计 (14)3.3.1C8051F040信号输入输出 (14)3.3.2直流电机控制电路 (14)3.3.3旋转编码器 (16)3.4 总体电路设计 (18)3.5 小结 (19)第4章软件设计 (20)4.1 Keil软件 (20)4.2程序流程框图 (21)4.3 C8051F040初始化 (21)4.4 PWM脉宽调制和PCA计数 (22)4.5 主函数与主程序 (23)4.6 调试结果 (28)4.7小结 (30)参考文献 (31)致谢 (32)毕业设计小结 (33)附录 (34)第1章概论随着我国国防科技的发展,航海事业正迅猛进步,在水下声纳方面的研究过程中.航空吊放声纳还有舰船拖曳声纳越来越重要。
直流电机控制电路设计

直流电机控制电路设计1.电阻控制电路:电阻控制电路是最简单的直流电机控制电路。
通过在直流电机的电源电路中串接一个可调节的电阻,可以改变电机的供电电压,从而控制电机的转速。
这种方法简单易行,但效率低下,能耗较大。
2.利用PWM信号控制电机速度:PWM(脉宽调制)信号是一种控制电子设备的常用方法。
在直流电机控制中,可以通过改变PWM信号的脉宽来控制电机的转速。
脉宽越宽,电机供电时间越长,转速越快;脉宽越窄,电机供电时间越短,转速越慢。
通过控制PWM信号的频率,可以实现更精确的速度控制。
3.使用驱动器芯片控制电机:驱动器芯片是一种专门用于控制电机的集成电路。
它提供了多种控制电机速度和方向的功能。
通过输入控制信号,驱动器芯片可以精确地控制电机的转速和转向。
驱动器芯片通常由功率放大器、逻辑电路和电源电路组成。
4.使用微控制器控制电机:微控制器是一种具有处理能力的单片机,可以通过编程设置来控制电机的运动。
通过连接微控制器和电机驱动电路,可以实现对电机转速、方向等参数的精确控制。
微控制器不仅能实现速度控制,还可以实现与其他设备的通信和协调工作。
在直流电机控制电路设计中1.电机的功率需求和特性:根据电机的功率需求,选择适当的电源和电源电压。
同时,需要了解电机的特性,如额定电流、额定电压等参数。
2.控制方法选择:根据实际应用需求,选择合适的控制方法。
比如,需要精确的速度控制可以选择PWM控制;需要简单控制可以选择电阻控制。
3.控制电路的稳定性和可靠性:设计的电路应具有良好的稳定性和可靠性,避免由于电路设计不合理导致的电机运动异常或损坏。
4.电路的成本和尺寸:根据实际应用需求和预算,选择合适的电路设计方案。
有时需要考虑电路尺寸的限制,如嵌入式设备中需要小巧的电路。
总之,直流电机控制电路设计需要根据具体应用需求选择合适的控制方法,并考虑电机的功率需求、特性、稳定性、可靠性、成本和尺寸等因素。
通过合理的设计和调试,可以实现对直流电机运动的精确控制。
IR2101半桥驱动案例

IR2101半桥驱动案例案例背景:假设我们有一个电压为12V,电流为10A的直流电机,我们需要设计一套半桥驱动电路来控制电机的运动。
为了提高系统的性能和效率,我们选择使用IR2101作为驱动器。
方案设计:1.电源电压选择:由于电机电压为12V,我们可以使用一个12V电源来为半桥驱动电路供电。
在实际设计过程中,我们需要考虑电源的质量和稳定性,以确保半桥驱动器正常工作。
2.半桥电路设计:半桥电路是由N沟MOS管和P沟MOS管组成,其作用是控制电机的正反转。
在设计过程中,需要根据电机的工作电压和电流来选择合适的MOS 管。
3.IR2101参数选择:4.电路连接和布局:将电源、半桥电路和IR2101进行连接,进行布局时需要考虑信号传输的稳定性和抗干扰能力。
5.控制信号生成:案例实施:1.根据电机的工作电压和电流选择合适的MOS管。
假设我们选择N沟MOS管的额定电流为20A,满足电机电流为10A的需求。
2.根据IR2101的参数表选择合适的IR2101型号。
假设我们选择IR2101S,其工作电源电压范围为10V-20V,满足12V电源的需求。
3.根据电路连接和布局的要求,进行布线设计。
将电源、半桥电路和IR2101进行连接,保证信号的传输稳定性和抗干扰能力。
4.生成驱动信号。
控制信号由一个PWM信号和一个逻辑信号组成,可以使用微控制器来生成。
根据电机的工作速度和转向生成相应的控制信号。
5.连接电机并进行测试。
将电机连接到半桥驱动电路上,接入电源,通过控制信号来控制电机的运动。
进行测试,验证系统的性能和功能是否满足需求。
总结:通过这个案例,我们了解了IR2101半桥驱动器的应用,重点介绍了设计过程中的关键要点,包括电源电压选择、半桥电路设计、IR2101参数选择、电路连接和布局以及控制信号生成。
通过正确选择和设计,可以实现高效、稳定和可靠的半桥驱动系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。
许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。
基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。
该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。
2 H 桥功率驱动电路的设计在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。
对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。
可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。
而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。
三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。
因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。
2.1 H 桥驱动原理要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。
当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。
图1 H 桥驱动原理电路图2.2 开关器件的选择及H 桥电路设计常用的电子开关器件有继电器,三极管, MOS 管, IGBT 等。
普通继电器属机械器件,开关次数有限,开关速度比较慢。
而且继电器内部为感性负载,对电路的干扰比较大。
但继电器可以把控制部分与被控制部分分开,实现由小信号控制大信号,高压控制中经常会用到继电器。
三极管属于电流驱动型器件,设基极电流为IB, 集电极电流为IC, 三极管的放大系数为β,如果, IB*β>=IC, 则三极管处于饱和状态,可以当作开关使用。
要使三极管处于开关状态, IB= IC/β,三极管驱动管的电流跟三极管输出端的电流成正比,如果三极管输出端电流比较大,对三极管驱动端的要求也比较高。
MOS 管属于电压驱动型器件,对于NMOS 来说,只要栅极电压高于源极电压即可实现NMOS 的饱和导通,MOS 管开启与关断的能量损失仅是对栅极和源极之间的寄生电容的充放电,对MOS管驱动端要求不高。
同时MOS 端可以做到很大的电流输出,因此一般用于需要大电流的场所。
IGBT 则是结合了三极管和MOS 管的优点制造的器件,一般用于200V 以上的情况。
在本设计中,电机工作电流为3.8A, 工作电压24V, 电机驱动的控制端为51 系列单片机,最大灌电流为30mA. 因此采用MOS管作为H桥的开关器件。
MOS管又有NMOS和PMOS 之分,两种管子的制造工艺不同,控制方法也不同。
NMOS 导通要求栅极电压大于源极电压(10V-15V),而PMOS 的导通要求栅极电压小于源极电压(10V-15V)。
在本设计中,采用24V 单电源供电,采用NMOS 管的通断控制的接线如图2 所示,只要G 极电压在10-15V 的范围内, NMOS 即可饱和导通, G 极电压为0 时, NMOS 管关断。
图2 NMOS 接线图采用PMOS 管实现通断控制时,其接线如图3 所示, G 极电压等于电源电压VCC 时PMOS 关断。
图3 PMOS 接线图10V15V 时,要使PMOS 导通则G 极电压为VCC-15V. PMOS 的导通与关断,是在电源电压VCC 与VCC-15V 之间切换,当电源电压VCC 较大时控制不方便。
比较图2 图3 可知:NMOS位于负载的下方,而PMOS 位于负载的上方,用NMOS 和PMOS, 替换掉图1 中的开关,就可以组成由MOS 管组成的H 桥,如图4 所示。
图4 PMOS 和NMOS 管构成的H 桥Q1 和Q4 导通,电机沿一个方向旋转, Q2 和Q3 导通电机沿另一个方向旋转。
在本系统中,电机的工作电压为24V, 即电源电压为24V, 则要控制H 桥的上管(PMOS)导通和关断的电压分别为24V-15V=9V 和24V, 而对于下管(NMOS)来说,导通与关断电压分别为15V 和0V, 要想同时打开与关断上、下两管,所用的控制电路比较复杂。
而且,相同工艺做出的PMOS 要比NMOS 的工作电流小, PMOS 的成本高。
分别用PMOS 和NMOS 做上管与下管,电路的对称性不好。
由于上述问题,在构建H 桥的时候仅采用NMOS 作为功率开关器件。
用NMOS 搭建出的H 桥如图5 所示:图5 NMOS 管构成的H 桥图5NMOS 管组成的H 桥中,首先分析由Q1 和Q4 组成的通路,当Q1 和Q4 关断时,A 点的电位处于"悬浮"状态(不确定电位为多少)(Q2 和Q3 也关断)。
在打开Q4 之前,先打开Q1, 给Q1 的G 极15V 的电压,由于A 点"悬浮"状态,则A 点可以是任何电平,这样可能导致Q1 打开失败;在打开Q4 之后,尝试打开Q1, 在Q1 打开之前, A 点为低电位,给Q1 的G 极加上15V 电压, Q1 打开,由于Q1 饱和导通, A 点的电平等于电源电压(本系统中电源电压为24V),此时Q1 的G 极电压小于Q1 的S 极电压, Q1 关断, Q1 打开失败。
Q2 和Q3 的情况与Q1 和Q4 相似。
要打开由NMOS 构成的H 桥的上管,必须处理好A 点(也就是上管的S 极)"悬浮"的问题。
由于NMOS的S 极一般接地,被称为"浮地". 要使上管NMOS 打开,必须使上管的G 极相对于浮地有10-15V 的电压差,这就需要采用升压电路。
2.3 H 桥控制器在H桥的驱动中,除了考虑上管的升压电路外,还要考虑到在H桥同臂的上管和下管(如图5 中的Q1 和Q3)不能同时导通。
如果上管和下管同时导通,相当于从电源到地短路,可能会烧毁MOS 管或电源,即使很短时间的短路现象也会造成MOS的发热。
在功率控制中一般采用在两次状态转变中插入"死区"的方法来防止瞬时的短路。
在选择H 桥控制器的时候最好满足上述两种逻辑条件,又用足够大的驱动电流来驱动NMOS。
本系统中采用IR2103 作为NMOS 控制器, IR2103 内部集成升压电路,外部仅需要一个自举电容和一个自举二极管即可完成自举升压。
IR2103 内部集成死区升成器,可以在每次状态转换时插入"死区", 同时可以保证上、下两管的状态相反。
IR2103 和NMOS 组成的H 桥半桥电路如下图6 所示:图6 IR2103 和NMOS 管构成的H 桥半桥电路由IR2103 的应用手册中得知自举电容选择取决于以下几个因素:1. 要求增强 MGT 的门电压, 2. 用于高端驱动电路的 IQBS –静态电流, 3. 电平转换器的内部电流, 4. MGT-栅-源正向漏电流, 5. 自举电容漏电流。
其中因素 5 仅与自举电容是电解电容时有关,如果采用其他类型的电容,则可以忽略。
最小自举电容值可以通过以下公式(1)计算得到:其中: Qg = 高端 FET 的门电荷, f = 工作频率, ICbs (leak) =自举电容漏电流,Iqbs (max) = 最大 VBS 静态电流,VCC = 逻辑电路部分的电压源, Vf = 自举二极管的正向压降, VLS = 低端 FET 或者负载上的压降, VMin = VB 与VS 之间的最小电压, Qls = 每个周期的电平转换所需要的电荷(对于 500V/600V MGD 来说,通常为 5nC, 而1200 V MGD 为 20 nC。
图中D1 为自举二极管, C4 为自举电容。
并不是电容的值越大就越好,电容的取值和IR2103 的工作频率密切相关,电容取值越大工作频率越低。
电容的漏电流对系统的性能有很大影响。
自举二极管要承受系统所有的电压,自举二极管的前向压降也影响着自举电容的选择,同时自举二极管的开关速度也直接影响系统的工作频率,一般选用超快恢复二极管。
由示波器获得自举电路升压波形如下图7 所示:图7 自举电路升压波形图中B部分为自举升压后VB端的电压,图中A部分是由于在上管关断的过程中,由于下管中的寄生二极管,会产后续流,使VS 端产生负电压,从而使电容过充。
要削弱电容的过充可采用0.47uF 以上的自举电容,同时可以在地与VS 端加入续流二极管。
如下图所示:图8 在IR2103 中加入续流二极管电路。
图中D2即为续流二极管,续流二极管采用普通二极管即可,但VS电压恢复越快,自举电容过充现象越不明显,本系统采用1N4148 作为续流二极管。
由于驱动器和MOSFET栅极之间的引线、地回路的引线等所产生的电感,以及IC 和FET 内部的寄生电感,在开启时会在MOSFET栅极出现振铃,一方面增加MOSFET的开关损耗,同时EMC 方面不好控制。
在MOSFET的栅极和驱动IC 的输出之间串联一个电阻(如图9 中B 所示)。
这个电阻称为"栅极电阻", 其作用是调节MOSFET的开关速度,减少栅极出现的振铃现象,减小EMI, 也可以对栅极电容充放电起限流作用。
该电阻的引入减慢了MOS 管的开关速度,但却能减少EMI, 使栅极稳定。
图9 消除振铃电路。
MOS 管的关断时间要比开启时间慢(开启充电,关断放电),因此就要改变MOS 管的关断速度,可以在栅极电阻上反向并联一个二极管(如图9 中A 所示),当MOS 管关断时,二极管导通,将栅极电阻短路从而减少放电时间。
由于VS 端可能出现负电压,在VS 端串入一个合适的电阻,可以在产生负电压时起到限流作用,针对负载电机为感性器件,在H 桥的输出端并一个小电容,并在局部供电部分加一个去藕电容十分必要。
其电路如下图所示:图10 限流去耦电路。
图中C7 为局部去藕电容,可以取100uF, C6 为输出电容,根据负载取值。
由于采用电容式自举电路,电容在工作的过程中会自行放电,所以PWM波的占空比接近100%但不能达到100%. 但这不影响电机的正常工作,因为电机本身固有的特性,电机有一个较小的饱和区,即或占空比增大,其转速也不会有明显的变化。