分式的加减法(1)练习

合集下载

分式加减法专项练习60题含答案

分式加减法专项练习60题含答案

分式加减法专项练习60题(有答案)1.2.a(a﹣1)+3.4..5. +.6..7.=_________.8..6yue289..10..11..12.13.14..15.16.(1);(2)17.18.1+ 19.﹣+20.21.+.22.23..24.,25.26.++.27.+﹣.28.29.(式中a,b,c两两不相等):30.31.(1);(2)….32.+﹣33.化简分式:.34..35.计算:﹣.36.计算:.37.计算:.38..39.计算化简:.40.计算:+++.41.计算.42.计算:.43.化简:.44..45.计算:.zuoguo46..55.化简:.47.化简:.48..49..50.计算:﹣.51.计算:.52.计算:1﹣•.53.计算:.54.化简56.先观察下列等式,然后用你发现的规律解答下列问题:由,,…(1)计算++++++=_________(n为正整数);(2)化简:+…+.57.化简:﹣.60.求和.58.请你阅读下列计算过程,再回答所提出的问题:题目计算:解:原式=(A)=(B)=a﹣3﹣6(C)=a﹣9(D)(1)上述计算过程中,从哪一步开始出现错误:_________.(2)从B到C是否正确,若不正确,错误的原因是_________.(3)请你把正确解答过程写下来.59.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.参考答案:1.原式===1+1=2.2.原式=a2﹣a+=a2﹣a+a=a2.3.==.4.原式===.5.原式=+==.6.原式===.7.==.8.原式===a﹣1.9.原式==.10.+=+=+==1.11.原式=﹣==.12.原式=﹣=﹣=.13.原式=+===14.原式=+==.15.=﹣=﹣==﹣1.16.(1)原式=;(2)原式=17.====.18.原式=1﹣====.19.原式=﹣•==.20.===0.21.原式=+==.22.原式=﹣==.23.原式=====1.24.原式====;x的取值范围是x≠﹣2且x≠1的实数.25.原式==.26.====027.原式=﹣﹣==28.=.29.原式=++=+++++=0.30.原式=+﹣==.31.(1),=,=;(2)+…+=﹣+﹣+…+﹣=﹣=.32.==﹣2 33.=(2a+1)+﹣(a﹣3)﹣﹣(3a+2)++(2a﹣2)﹣=[(2a+1)﹣(a﹣3)﹣(3a+2)+(2a﹣2)]+(﹣+﹣)=﹣+﹣=﹣=.34.原式=﹣=﹣===35.原式====﹣36.原式====37.原式==38.原式=+﹣==39.原式=++=+﹣==== 40.原式=+++=++ =++=+=+=.41.设2x2+3x=y,则原式=﹣+===.42.原式=﹣a+2=a+1﹣a+2=3.43. 原式====.44.原式===,===45.=﹣===46.=== ==47.原式=,=﹣+,=+﹣﹣++,=048.原式=2a﹣a﹣1+a+1=2a.49.原式====.50.原式====.51.原式===.52.原式=1﹣×=1﹣==﹣.53.原式=+﹣====54.原式=++=+++++=﹣+﹣+﹣=0+0+0=055.原式===156.(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)原式=﹣+…+﹣=﹣=57.原式=﹣=﹣=158.(1)A(2)不正确,不能去分母(3)原式===59.(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=60.原式=++++…+﹣=+++…+﹣=+﹣=﹣=.。

异分母的分式加减法_例题1.doc.docx

异分母的分式加减法_例题1.doc.docx

《分式的加减法》例题精讲与同步练习【基础知识精讲】1. 分式的通分(1) 把几个异分母的分式分别化为与原来分式相等的同分母的分式叫做通分.(2) 通分的依据是分式的基本性质, 通分的关键是确定最简公分母 . 最简公分母由下面的方法确定:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积; (3) 如果分母是多项式,则首先对多项式进行因式分解 .2. 分式的加减法 (1) 同分母的分式加减法同分母的分式相加减,分母不变,把分子相加减. 即:a b a bc cc(2) 异分母的分式加减法异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 即:acadbcadbcbdbdbdbd3. 分式的混合运算分式的加、减、乘、除、乘方混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号内的,若是同级混合运算按从左到右的顺序进行 .【重点难点解析】1.重点难点分析重点 :是掌握通分的方法和分式的加减运算;难点 :是异分母的分式的加减法运算和分式的四则混合运算2. 典型例题解析.例 1通分x 1 5 xx 7 2,x2,22x 3x3x 2x 6 x解∵x 2+3x+2=(x+1)(x+2)x 2-x-6=(x-3)(x+2) 2x -2x-3=(x-3)(x+1) ∴它们的最简公分母为 (x+1)(x+2)(x-3)∴x 1 ( x 1) ( x 3) 23x 2( x 1)( x 2) (x 3)x=x 2 4x3( x 1)( x 2)( x 3)5 x (5 x) ( x1)x 2 x 6( x 3)( x 2) ( x 1)=x 26x 5( x 1)( x2) ( x3)x 7(x7) (x2)x 2 2x 3 ( x 3)( x 1) ( x 2)=x 2 5x 14(x 1)( x 2)( x 3)例 2计算 3a 2 5a 2a 2 5a 1 2a 2 2a 2 1a 2 1 1 a 2解原式 3a 2 5a2a 2 5a1 2a 22=1a 2 1a 21a 2=(3a 25a)(2a 25a1) (2a 22)a21=3a 2 5a2a 2 5a 1 2a 22a21=3a 23=3a 2 1点评 在做减法时,分避免出错,最好添上一个括号,去括号时注意变号 .例 3计算x 2x2x 2x 25x6x解原式 =x 2x1)( x2) ( x 2)( x3)(x=(x2)( x 3) x( x1)( x1)( x 2)( x 3)=x 2 x 6 x 2 x(x1)( x 2)( x 3)=2x 6(x1)( x 2)( x 3)=-2x6( x1)( x 2)( x3)例 4计算1221x 2 x 1 x 1 x 2分析此 若将 4 个分式同 通分,分子将是很复 的, 算比 麻 . 分 察其特点,把一、四和二、三两个分式分 先相加,由于分子的一次 相加后和 零,使 算 .解原式 =(x2) (x 2) 2( x 1) 2( x 1)( x 2)(x2)(x 1)( x 1)=44(x 2)( x2) ( x 1)( x 1)=4( x 1)( x1) 4(x 2)( x2)( x 2)( x2)( x 1)( x 1)=12(x2)( x 1)( x1)( x 1)例 5算x1 3( x 1)2 .x 4 x 2分析 此 如果直接通分, 运算 必十分复 , 当各分子的次数大于或等于分母的次数,可利用多 式除法,将其分离 整式部分与分式部分的和再加减会使运算 便.解原式 =(x4) 3 3( x 2) 32x 4x 2 =1+x 3(3x 3 ) +24 2=3 3x 4x2=3( x 2) 3( x 4)( x 2)( x 4)=6(x 2)( x 4)【 巧解点 】例 6算1 21 +⋯⋯ +11 2 3n(n 1)分析若先通分,再相加,可以 无从下手,但若注意到1=11 ,先分后合,将使 算容易 行.解11+⋯⋯+n(n 1) nn 111 2 2 3n(n 1)1 1 1 1 1 1 )=( )+(2 )+ ⋯⋯ +(n12 3n1=1-1n 1n=1n【 本 解答】P87A 5(5) B 3(2)算 1.(x-y+4xy)(x+y- 4xy)xyx y2.xy 2x 4 yx 2x y x y x 4y 4x2y2(x y) 24xy ( x y) 2 4 xy解 1. 原式=[ x yx ][x yx ]y y=( x y) 2 (x y)222xy x=(x+y)(x-y)=x-yy2.原式 = xy 2x 4 yx 2y 2x2y 2( x 2 y 2 )(x 2 y 2 ) x 2=xy 2x 2 y xy 2x 2 y xy( y x) x 2y2x2y2x2y2(x y)( xy)=- xyxy注: (1) 中将 x-y ,x+y 看作一个整体通分,比逐一通分 便,注意 一技巧, 算最后果不写成乘 式而是多 式(或 式)(2) 中注意运算 序(先乘除、后加减)最后 果能 分要 分,化 最 分式.【典型 点考 】例 7 算 1-(x-1 2x 2x 1 (武 中考 )x) ÷2x11 x 2解 原式 =1-(x 2x 1 ) 2· (x 1) 2x1x 2 x1=1-(x2-x+1)=-x 2+x例 8当 x=-11,求(1+25x 133 2 x 2 4x 5 2的( 天津中考 )) (1-) ÷ (x 2 3x2) x2解原式(x 1) 3 (x 5)2 (x 2)2 (x 1)2 =1)3 (x 2) 2( x 1)2 (x 5)2(x=x 1x16165当 x=-1 1时,原式 =556 1 6 55=111例 9 设 x+1=5,求 (x-1)2的值.(xx解∵x+ 1=51x11222∴ (x- x )=x +x2-2=(x+ x )-4=25-4=21例 10已知x=m (m ≠0), 求x 2xx x 22 1x 4解∵ x 2 x 11xm即 x+ 1 = 1-1= 1m从而得x mm21 1 m2m 2 2m 1x +x2=( m) -2=m 2∴x 2 = 1=14x 2 1122m 1 x x 2 1mx 2m 2=11 2m点评利用 x和 1互为倒数关系,总能建立起x求值问题简单化 .大连中考题 )的值 . ( 上海中考题 )11(x n+ 1 ) 和(x+ 1) 之间的联系,使某些x nx【同步达纲练习】一、填空题 (6 分× 7=42 分 )1. 化简 1+ 1 +1等于.x 2 x 3x2. 使代数式11 1等于 0 的 x 的值是.x21 x 1x 13. 计算 x28 2 x 7 x2x x 6的值为.x 33 x34.1x的最简公分母是.x 2 ,4 2x45.(x 2-1)(1 1 1 -1)= .x x 16.122 2 =.m 2 93 mm37. ab bc c a.ab bc ac二、计算题 (12 × 4=48 分)8. 计算bc a( a b)(b c) (b c)(c a) (c a)( ab)a ba 2b 29. 计算 1-2ba 2 4ab 4b 2 a10. 计算1 12 4 1 x1 x1 x21 x411. 已知 x=4,y=-3 ,求2xx y的值 .2y 2y 2x 2(x y)( x y)x【素质优化训练】12. 如果 abc=1 ,求证1 111(10 分)ab a 1bc b 1ac c 1【生活实际运用】某人在一环形公路上跑步,共跑两圈,第一圈的速率是 x 米 / 分钟,第二圈的速度是 y 米 / 分钟,(x > y ),则他平均一分钟跑的路程是多少?参考答案:【同步达纲练习】一、 1.112.-1 3.-3 4.2(x+2)(x-2) 5.3-x 26.07.06x2二、 8.09.-b 10.8 1a b11.71 x 8【素质优化训练】12. 左边 =11abc aabab a 1 =右边,即证。

分式加减法练习题

分式加减法练习题

分式的加减法分式的加减法:(1)23+34=34⨯+ 34⨯= (2)abab 610-= (3)1a +1b =ab +ab= (4)b a 21+21ab= 因为最简公分母是___________,所以b a 21+21ab = =_____________________=_____________________=_____________________-.提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab,它们的最简公分母是(5)y x -1+yx +1 因为最简公分母是___________,所以y x -1+y x +1 =(6)1()x x y -+yx +1 因为最简公分母是___________,所以1()x x y -+yx +1 =练习A : (1)a a 21+= (2)bc a c -= (3)a c b a c b ++- (4)ba b b a a +++=(5)ab b b a a -+-= (6)x x -++1111 =(7)231x +x43; 因为最简公分母是_____,所以231x +x43 =2134x ⨯+34x=+=(8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此221y x -+xy x +21 =1()x y++1x =+(9)231x +xy125; 因为最简公分母是___________ =(10)24ab a b -;B 组(1)xy y x xy y x 2)(2-++)(; (2)xyy x xy y x 22)()(--+(3)x x +21+x x -21. 最简公分母是__________ =(4)1624432---x x (5)aa a +--22214;(6)224-++a a (7)112---x x x .(8)323111x x x x⋅⎪⎭⎫ ⎝⎛+-;(9)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121.(10)林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能像往常一样到达学校(11)周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的多少倍。

初二分式的加减乘除的练习题

初二分式的加减乘除的练习题

初二分式的加减乘除的练习题分式加减乘除的练习题1. 加法(1)计算:⅔ + ⅛解析:首先需要找到两个分数的最小公倍数,即6。

然后将两个分数的分子乘以相应的倍数,得到:4/6 + 1/6 = 5/6。

答案:⅔ + ⅛ = 5/6(2)计算:7/10 + 3/5解析:将两个分数转化为相同的分母,得到:7/10 + 6/10 = 13/10。

由于13/10是一个假分数,需要将其化简为带分数形式,即整数部分加上真分数:13/10 = 1 3/10。

答案:7/10 + 3/5 = 1 3/102. 减法(1)计算:2/5 - 1/10解析:将两个分数转化为相同的分母,得到:4/10 - 1/10 = 3/10。

答案:2/5 - 1/10 = 3/10(2)计算:5/6 - 1/3解析:首先需要找到两个分数的最小公倍数,即6。

然后将两个分数的分子乘以相应的倍数,得到:5/6 - 2/6 = 3/6。

由于3/6可以化简为1/2,答案可以写为带分数形式:1/2 = 0 1/2。

答案:5/6 - 1/3 = 0 1/23. 乘法(1)计算:2/3 × 5/8解析:将两个分数的分子相乘,分母相乘,得到:2/3 × 5/8 = 10/24。

由于10/24可以化简为5/12,答案可以写为带分数形式:5/12 = 0 5/12。

答案:2/3 × 5/8 = 0 5/12(2)计算:3/4 × 3/5解析:将两个分数的分子相乘,分母相乘,得到:3/4 ×3/5 = 9/20。

答案:3/4 × 3/5 = 9/204. 除法(1)计算:7/8 ÷ 1/4解析:将除数(被除数的倒数)乘以分子的倒数,得到:7/8 × 4/1= 28/8。

由于28/8可以化简为7/2,答案可以写为带分数形式:7/2 = 31/2。

答案:7/8 ÷ 1/4 = 3 1/2(2)计算:2/3 ÷ 4/5解析:将除数(被除数的倒数)乘以分子的倒数,得到:2/3 × 5/4 = 10/12。

5.3分式的加减法(1)

5.3分式的加减法(1)

2
能力提升
1、计算
b 2a c bc a bc ba c bc a
能力提升
课堂小结
1、同分母分式的加减法的法则 2、分式运算的结果通常要化成最简分式或整式. 3、学会类比的数学方法.
课后作业
见学案 必做:A组;选做:B组
第五章 分式与分式方程
5.3 分式的加减法(1)
授课 毛小富
温故知新
1.同分母分数加减法的法则是什么? 如 : ? 5 5 1 2 ? 2.你认为 a a 3.猜一猜, 同分母的分式应该如何加减?
【同分母的分数加减法的法则】 同分母的分数相加减, 分母不变,分子相加减.
1
2
【同分母的分式加减法的法则】 同分母的分式相加减,
x2 4 (2) ? x2 x2
☆注意: 1.分子是多项式时要添括号. 2.分式加减计算的结果必须是最简分式或整式.
合作探究
下面的两个计算有什么共同特征?
x y + =? 1 x y yx a 1 2a =? 2 a 1 1 a
2
如何才能使分母转化为相同的分母?
训练内化
a b (1) a b a b 1 1 ( 2) 2 (a b) (b a ) 2 2a a b a 2b ( 3) 2a b b 2a 2a b
训练内化
3、先化简,再求值:
x 2x x ( ) ,其中x= 7 1 x 3 x 3 x 3
分母不变,分子相加减. 同分母分式加减法法则 与同分母分数加减法的法则类似
认识法则
【同分母的分式加减法的法则】 同分母的分式相加减, 分母不变,分子相加减.
把这一法则用符号表示为:

分式加减法练习题 答案

分式加减法练习题 答案

分式加减法练习题答案分式加减法练习题答案分式加减法是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。

掌握分式加减法的方法和技巧,不仅可以帮助我们解决实际问题,还可以提高我们的逻辑思维和数学能力。

下面我将给大家提供一些分式加减法的练习题及其答案,希望能对大家的学习有所帮助。

1. 计算下列分式的和:1/2 + 3/4答案:我们可以先找到两个分式的公共分母,这里是4。

然后将分子相加,得到5/4。

2. 计算下列分式的差:5/6 - 1/3答案:同样,我们需要找到两个分式的公共分母,这里是6。

然后将分子相减,得到2/6。

最后,我们可以将2/6化简为1/3。

3. 计算下列分式的和:2/5 + 3/10答案:这里的两个分式的分母已经相同了,所以我们只需要将分子相加,得到5/10。

然后,我们可以将5/10化简为1/2。

4. 计算下列分式的差:3/4 - 1/8答案:同样,这里的两个分式的分母已经相同了。

我们将分子相减,得到5/8。

5. 计算下列分式的和:2/3 + 1/6答案:这里的两个分式的分母不同,我们需要找到它们的最小公倍数。

这里的最小公倍数是6。

然后,我们将分子相加,得到4/6。

最后,我们可以将4/6化简为2/3。

6. 计算下列分式的差:7/8 - 1/4答案:同样,这里的两个分式的分母不同,我们需要找到它们的最小公倍数。

这里的最小公倍数是8。

然后,我们将分子相减,得到6/8。

最后,我们可以将6/8化简为3/4。

通过以上的练习题,我们可以看到分式加减法的基本原则就是找到公共分母,然后将分子进行相加或相减。

如果分母已经相同,我们只需要对分子进行运算即可。

如果分母不同,我们需要找到它们的最小公倍数,然后进行运算。

最后,我们可以将分式化简为最简形式,即分子和分母没有公约数。

分式加减法是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。

无论是在购物时计算折扣,还是在烹饪时调整食材的比例,我们都需要用到分式加减法。

分式的加减法练习题

分式的加减法练习题

分式的加减法练习题分式的加减法练习题分式是数学中的一个重要概念,在我们的日常生活中也经常会用到。

它可以帮助我们解决一些实际问题,比如分配资源、计算比例等等。

在学习分式的过程中,掌握分式的加减法是非常关键的一步。

本文将通过一些练习题来帮助大家巩固和提高对分式加减法的理解和运用能力。

1. 加法练习题(1) 计算:1/3 + 2/5 = ?解答:首先需要找到这两个分式的公共分母,即3和5的最小公倍数,为15。

然后,将两个分式的分母都改为15,得到1/3 = 5/15,2/5 = 6/15。

最后,将分子相加,得到答案为11/15。

(2) 计算:2/7 + 3/8 = ?解答:同样地,我们需要找到这两个分式的公共分母,即7和8的最小公倍数,为56。

然后,将两个分式的分母都改为56,得到2/7 = 16/56,3/8 = 21/56。

最后,将分子相加,得到答案为37/56。

2. 减法练习题(1) 计算:2/3 - 1/4 = ?解答:同样地,我们需要找到这两个分式的公共分母,即3和4的最小公倍数,为12。

然后,将两个分式的分母都改为12,得到2/3 = 8/12,1/4 = 3/12。

最后,将分子相减,得到答案为5/12。

(2) 计算:5/6 - 2/9 = ?解答:同样地,我们需要找到这两个分式的公共分母,即6和9的最小公倍数,为18。

然后,将两个分式的分母都改为18,得到5/6 = 15/18,2/9 = 4/18。

最后,将分子相减,得到答案为11/18。

通过以上的练习题,我们可以发现,分式的加减法实际上就是将分子相加或相减,而分母保持不变。

所以,只需要找到公共分母,将分子进行相应的运算即可。

当然,有时候需要进行分数的化简,比如将11/18化简为5/9,这需要我们熟练掌握分数化简的方法。

除了加减法,我们还可以进行分式的乘法和除法运算。

分式的乘法就是将两个分式的分子相乘,分母相乘,得到的结果即为乘法的结果。

分式的加减练习题

分式的加减练习题

分式的加减习题精选(一)一、判断题··二、选择题三、填空题9.10.11.12.四、计算题13.14.15.16.分式的加减 习题精选(二)1.1+--b b a等于 ( )A.b b b a -+-2 B.b b b a ++-2 C.b b b a +--2 D.b b b a ---2 2.⎪⎪⎭⎫⎝⎛-÷y x x 11等于 ( )A.y x y x -2 B.x y y x -2C.xy x -2 D.2x xy -3.m n m n m n -+-22等于 ( ) A.m+n B.m-n C.-m+n D.-m-n4.计算)6(246612--+--a a a a a ,其结果等于 ( ) A.)6(210--a a B.)6(210--a a C.a a 24- D.a a 24+5.如果x y <<-1,那么2211++-++x y x y 的值 ()A.大于零 B.等于零C.小于零 D.以上都有可能6.计算:1213223-+----x x x x x 7.计算:22229631y xy x y x y x y x +--÷---8.计算: 1596234122--÷⎪⎪⎭⎫ ⎝⎛+---+-+y y y y y y y y9.计算: ⎪⎭⎫⎝⎛-++÷⎥⎦⎤⎢⎣⎡--+1111)1(1)1(122x x x x 10.计算:2343223811113a a a a a a a a +++÷⎪⎭⎫ ⎝⎛+-+--+11.已知⎩⎨⎧=-=+42112y x y x ,求分式⎪⎪⎭⎫ ⎝⎛--++-++÷+-2222332222y x yx y x y xy x y xy x x 的值.12.计算:x x x x -----52335175 13.计算:y x z zy z x y z x z y x y x -++---+++-+14.计算: 1123-+-+x x x x15.已知0132=++x x ,求441x x +的值.16.已知x x xx x -=+--2222313,求x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222的值. 分式的加减 习题精选(三)一、选择题:1.分式的值为( )A .B .C .D .2.分式、、的最简公分母是( ) A .B .C .D .3.分式的值为( )A .B .C .D .以上都不对4.把分式、、通分后,各分式的分子之和为( )A .B .C .D .5.若的值为,则的值为()A.B.C.D.6.已知为整数,且为整数,则符合条件的有()A.2个B.3个C.4个D.5个二、填空题:1.式子的最简公分母是___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档