排阻色谱法剖析

合集下载

分子排阻色谱法

分子排阻色谱法

校正原理
用已知相对分子质量的单分散标准聚合物做一条 淋洗体积或淋洗时间和相对分子量对应关系曲线,称 为“校正曲线”。聚合物中几乎找不到单分散的标准 样,一般用窄分布的试样代替。在相同的测试条件下, 做一系列的GPC标准谱图,以重均分子量的对数值 (lgM)对保留时间(t)作图,所得曲线即为“校正曲线”。 通过校正曲线,就能从GPC谱图上计算各种所需相对 分子量与相对分子量分布的信息。
测定多糖分子量及其分布
分离原理
凝胶渗透色谱 Gel Permeation Chromatography GPC 也称体积排阻色谱 Size Exclusion Chromatography SEC
让被测量的高聚物溶液通过一根内装不同孔径的色谱柱,柱中可供分子通行 的路径有颗粒间的间隙(较大)和颗粒内的微孔(较小)。当聚合物溶液流经色 谱柱时,大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒 之间,所以在洗脱时移动的速度较快(即保留时间短);小分子物质除了可在凝 胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔,洗脱时移动的速度要慢得多 (即保留时间长)。经过一定长度的色谱柱,分子根据相对分子大小被分开,这 种现象叫分子筛效应。 分子筛效应。 分子筛效应
谢谢
பைடு நூலகம்
色谱柱
各种色谱柱的孔隙大小分布有一定范围,有最大 极限和最小极限。分子直径比凝胶最大孔隙直径大的, 就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。 两种全排阻的分子即使大小不同,也不能有分离效果。 直径比凝胶最小孔直径小的分子能进入凝胶的全部孔 隙。如果两种分子都能全部进入凝胶孔隙,即使它们 的大小有差别,也不会有好的分离效果。因此,色谱 柱有一定的使用范围。
测定方法
直接法:在测定淋出液浓度的同时,测定其粘 度或光散射,从而求出其分子量。 间接法:用一组分子量不等的、单分散的试样 为标准样品,分别测定它们的淋出体积(保留 时间),建立保留时间与分子量二者之间的关 系,从而求出其分子量。

高效体积排阻色谱

高效体积排阻色谱

高效体积排阻色谱高效体积排阻色谱是一种高效的液相色谱技术,可用于分离和富集混合物中目标化合物,通常用于生物分子的分离和纯化。

与其他色谱技术相比,高效体积排阻色谱拥有更高的分离功率和更短的分离时间。

本文将对高效体积排阻色谱技术的原理、仪器配置和应用进行介绍。

1. 原理高效体积排阻色谱技术是一种基于体积排阻机理的分离方法。

这种方法基于生物分子(例如蛋白质、核酸)与分离柱中填充的亲水基聚合物的相互作用。

当生物分子进入分离柱后,会与填充材料的极性相互作用并被减速。

这种作用是随着生物分子的分子量增加而增加。

因此,在分离柱中,具有不同分子量的混合物组分可以分离出来。

分离柱内填充的聚合物是高分子橡胶,通常是依赖于水相流动的层层化聚合物,如纤维蛋白、聚磺酸等。

填充材料的孔径大小可以控制生物分子离子的进入和排除,这也是高效体积排阻色谱方法的另一种分离机制。

2. 仪器配置高效体积排阻色谱的仪器配置很简单。

通常涉及液相色谱装置及连接的检测装置。

液相色谱装置由一台高压泵、一个样品自动进样器、一台分离柱和一个植入器组成。

高压泵以恒定的流速输送流体,样品自动进样器将要分离和富集的混合物样品注入流体。

分离柱中填充的聚合物分离混合物,分离的样品通过植入器并进入检测装置进行检测。

检测装置通常是紫外线检测器,可检测生物分子的吸收波长。

3. 应用高效体积排阻色谱技术主要用于生物分子(例如蛋白质、核酸)的分离和富集。

这项技术可用于研究生物化学、制药、食品科学和环境检测中。

例如,生物化学研究人员可以使用此技术纯化、富集和识别目标蛋白质,并了解其结构和功能。

制药应用中高效体积排阻色谱可用于制备药物和疫苗。

食品科学和环境检测方面,高效体积排阻色谱可用于检测食品和水中的有害物质和环境污染。

总结一下,高效体积排阻色谱技术是其它色谱技术的高效液相色谱技术。

该技术的原理是基于生物分子与聚合物的相互作用,以及孔径大小控制生物分子的进入和排除作为分离机制。

尺寸排阻色谱法

尺寸排阻色谱法
从大分子蛋白质中除去氨基酸各种型号葡聚糖凝胶均可使用但最好选用交联度大的g25或g50因为这样易于装柱且流速快可缩短分离时间如果想把氨基酸收集于一较小体积内并与大分子蛋白质完全分离最好选用交联度小的凝胶如g10g15这样可以避免由于吸附作用而是氨基酸扩散
尺寸排阻色谱法
尺寸排阻色谱法是20世纪60年代发展起来的一种色谱分离
分子量小的组分,可渗入凝胶颗粒内的孔隙中。因此在流完自 由空间和全部凝胶颗粒的内空隙之后,才从柱的下端流出。 介于大小分子之间的组分,只能进入一部分颗粒内较大的孔隙, 淋洗时此组分是流过全部自由空间加上它能进入的颗粒内孔隙, 才从柱的下端流出。 在这一色谱柱的淋洗过程中,大分子的流程短,移动速度快, 先流出色谱柱;小分子的流程长,移动速度慢,后流出色柱;而 中等分子居两者之间。这种现象叫分子筛效应。 各种凝胶的空隙大小分布有一个范围。分子直径比最大空隙直 径大的这种分子就全部被排阻在凝胶颗粒以外,叫做全排除,两 种或两种以上的这样的分子不能达到分离效果。直径比最小孔隙 直径的分子能进入凝胶颗粒的全部孔隙,如果这样的两种或两种 以上的分子也不能达到分离效果。
2.分级分离 当被分离的物质之间分子量比较接近时,根据其分配系数的 分布和凝胶的工作范围,把某一分子量范围内的组分分离出 来,称作分级分离。分级分离的分辨率比组别分离高,但流 出曲线之间容易重叠。例如,将纤维素部分水解,然后用葡 聚糖凝胶G-25可以分离出1~6个葡萄糖单位纤维素糊精的低 聚糖,它们的分子量范围从180~990,恰在葡聚糖G-25的工 作范围(100~5000)内。 分级分离常用于分子量的测定。根据分离要求选择凝胶。这 种分离要使物质完全分离是比较困难的。

谢谢!
3.亲脂性有机化合物的分离 可选用亲脂性凝胶,如黄酮、蒽醌、色素等分离可选用葡 聚糖凝胶LH-20。 在选用凝胶型号时,如果几种型号都可使用,根据具体情 况考虑: 从大分子蛋白质中除去氨基酸,各种型号葡聚糖凝胶均可使 用,但最好选用交联度大的G-25或G-50,因为这样易于装柱 且流速快,可缩短分离时间,如果想把氨基酸收集于一较小 体积内,并与大分子蛋白质完全分离,最好选用交联度小的 凝胶,如G-10、G-15,这样可以避免由于吸附作用而是氨基 酸扩散。由此可见,从大分子物质中除去小分子物质时,在 适宜的型号中选择交联度大的为好。反之,欲使小分子物质 浓缩并与大分子物质分离,则在适宜范围内选用交联度小的 型号为好。

荧光检测尺寸排阻色谱fsec_概述说明以及解释

荧光检测尺寸排阻色谱fsec_概述说明以及解释

荧光检测尺寸排阻色谱fsec 概述说明以及解释1. 引言1.1 概述在生物分析和医药领域中,荧光检测尺寸排阻色谱(fsec)是一种重要的分析技术。

该技术结合了荧光检测技术原理、尺寸排阻色谱原理和fsec技术,具有高灵敏度、高分辨率和广泛的应用范围等优势。

本文将对这一领域的研究进行概述,并探讨其在生物分析和医药领域中的应用、发展前景以及面临的挑战与解决方案。

1.2 文章结构本文共分为五个部分。

首先是引言部分,介绍文章的背景和目的。

其次是荧光检测尺寸排阻色谱fsec的概述部分,包括荧光检测技术原理、尺寸排阻色谱原理和fsec技术简介。

第三部分详细介绍了fsec在生物分析中的应用,包括蛋白质、DNA/RNA和细胞领域中的研究进展。

第四部分探讨了fsec在医药领域的发展前景和挑战,包括其在新药研发和药物筛选中的应用前景以及面临的挑战和解决方案。

最后,在结论部分对全文进行总结。

1.3 目的本文旨在综述荧光检测尺寸排阻色谱fsec的概念、原理、应用、发展前景和挑战,以促进该技术在生物分析和医药领域的应用和推广。

通过全面了解fsec技术,我们将能够更好地利用该技术来进行蛋白质、DNA/RNA和细胞等生物分析,并预测其在新药研发和药物筛选中的潜在作用。

最后,我们希望为fsec技术的进一步改进和应用提供思路,并寻求解决当前所面临挑战的有效途径。

2. 荧光检测尺寸排阻色谱fsec 概述:荧光检测尺寸排阻色谱(Fluorescence Size Exclusion Chromatography,简称fsec)是一种基于荧光检测技术和尺寸排阻色谱原理的分析方法。

该方法结合了荧光分析的高灵敏度和尺寸排阻色谱的高分辨率,广泛应用于生物分析领域。

2.1 荧光检测技术原理:荧光检测技术利用物质在激发后产生的特定波长的荧光信号来进行分析。

当样品中的目标物质受到激发时,会发生能级跃迁并产生荧光。

通过检测样品所发出的荧光强度和波长,可以获得有关目标物质的信息。

GPC系统介绍和谱图解析

GPC系统介绍和谱图解析
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 Minutes
0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 Minutes
山东圣泉化工股份有限公司 2007年10月
1.凝胶色谱概述
• 凝胶色谱法(GPC)又称之为体积排阻色谱法 (SEC)。它是液相色谱中的一种,但与其他液 相色谱的分离机理不同,是基于试样分子的尺寸 和形状不同来实现分离的。
• 凝胶色谱技术是上世纪末发展起来的一种快速而 又简单的分离分析技术,由于其对高分子 物质有 很高的分离效果。目前已经在高分子化学、分子 生物学、医学等有关领域的科学实验研究和工业 生产得到广泛采用。
小分子物质除了可在凝胶颗粒间隙中扩散外还可以进入凝胶颗粒的微孔中即进入凝胶相内在向前移动的过程中从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒如此不断地进入和扩散小分子物质的前进速度落后于大分子物质从而使样品中分子大的先流出色谱柱中等分子的后流出分子最小的最后流出得到了最终的凝胶色谱图
凝胶色谱系统介绍和谱图解析
部分添加剂的定量,这大 大提高了凝胶色谱在酚醛 树脂分析中的定性定量能 力。
0.40
• 相同物质在不同波长下色
0.ห้องสมุดไป่ตู้0
谱图明显不同
0.20
• 左图为PF-1350分子量和
0.10
水杨酸在不同波长下的检
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 Minutes

分子排阻色谱法(测定多糖分子量及其分布)--梁翠荣(精)

分子排阻色谱法(测定多糖分子量及其分布)--梁翠荣(精)

色谱柱
各种色谱柱的孔隙大小分布有一定范围,有最大 极限和最小极限。分子直径比凝胶最大孔隙直径大的, 就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。 两种全排阻的分子即使大小不同,也不能有分离效果。 直径比凝胶最小孔直径小的分子能进入凝胶的全部孔 隙。如果两种分子都能全部进入凝胶孔隙,即使它们 的大小有差别,也不会有好的分离效果。因此,色谱 柱有一定的使用范围。
测定方法

直接法:在测定淋出液浓度的同时,测定其粘 度或光散射,从而求出其分子量。 间接法:用一组分子量不等的、单分散的试样 为标准样品,分别测定它们的淋出体积(保留 时间),建立保留时间与分子量二者之间的关 系,从而求出其分子量。

间接法
右旋糖酐分子量对照品( 供右旋糖酐分子量测定用 中检所)
右旋糖酐分子量D1 M 2500 ; 右旋糖酐分子量D2 M 4600 ; 右旋糖酐分子量D3 M 7100; 右旋糖酐分子量D4 M 10000; 右旋糖酐分子量D5 M 21400;右旋糖酐分子量D6 M 41100 ; 右旋糖酐分子量D7 M 84400; 右旋糖酐分子量D8 M 133800; 右旋糖酐分子量D0 M 180; 右旋糖酐分子量D2000 M 2000000

谢谢
测定方法


色谱条件与系统适用性试验 TSK G PWXL柱 柱温35℃ 进样量20μl 流动相:0.71%硫酸钠溶液(内含0.02%叠氮化钠) 0.5ml/min 取葡萄糖和葡聚糖2000,分别加流动相制成10mg/ml 的溶液,进样,测得保 留时间tT和t0,对照品溶液和供试品溶液的保留时间均应在tT和t0之间,理论板 数按葡萄糖峰计算不小于5000。 对照品溶液:取右旋糖酐分子量对照品(中检所) 适量,分别加流动相制成 10mg/ml 的溶液,室温放置过夜。 供试品溶液: 取供试品适量,加流动相制成10mg/ml 的溶液,室温放置过夜。 测定法:取对照品溶液,进样,用GPC软件计算回归方程。取供试品溶液, 同法测定,用GPC软件算出供试品的重均分子量及分子量分布。

色谱分析第六章凝胶色谱法

色谱分析第六章凝胶色谱法

第六章空间排阻色谱法第七章第一节概述一、定义空间排阻色谱法又名尺寸排阻色谱法(SEC)也叫凝胶色谱法,是按分子大小顺序进行分离的一种色谱方法。

它是六十年代初发展起来的一种快速而又简单的分离分析技术,由于设备简单、操作方便、不需要有机溶剂、对高分子物质有很高的分离效果,被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。

空间排阻色谱法固定相为化学惰性多孔物质——凝胶。

二、基本原理分子筛效应:凝胶色谱的原理为分子筛效应,即凝胶具有区分分子大小不同的物质的能力。

在凝胶色谱中,作为固定相的凝胶是一种不带电荷的具有三维空间网状结构的基质,每个颗粒的细微结构如同一个筛子,所有筛孔的直径是一致的。

凝胶的这种结构使得小分子可在筛孔中自由地扩散、渗透,而大分子则被排阻于颗粒之外,如此起到筛分大小分子的作用。

当含有大小分子的混合物样品加入到层析柱中后,这些物质随洗脱液的流动而向前移动;相对分子质量大小不同的物质受阻滞的程度不同。

相对分子质量大的物质沿凝胶颗粒间的孔隙随洗脱液移动,流程短,移动速度快,先流出层析柱;相对分子质量小的物质可通过凝胶网孔进入颗粒内部,然后再扩散出来,故流程长,移动速度慢,后流出层析柱。

样品中分子大小不同的物质如此逐渐分离。

其分离过程如下: 1、混合物上柱; 2、洗脱开始,小分子扩散进入凝胶颗粒内,大分子则被排阻于凝胶颗粒之外;3、小分子被滞留,大分子向下移动,大小分子开始分开;4、大小分子完全分开;5、大分子行程较短,已洗出层析柱,小分子尚在行进中。

三、特点:1、设备简单、操作方便、周期短、样品回收率高;2、层析后,无需对凝胶进行再生处理,减少了工作量;3、凝胶是一种不带电荷的惰性载体,与溶质不发生化学反应,分离效果好,重复性高;4、洗脱条件温和,一般采用低离子强度(0.01mol/L)的洗脱剂,有些情况下甚至可以用水,所以不易使有效成分失活变性。

凝胶色谱的缺点:1、分辨率不高,分离操作较慢 2、分离时必须严格控制流速 3、样品黏度不宜过高 4、存在非特异性吸附现象应用: 1、分子的组别分离、分级分离及制备; 2、测定生物大分子的相对分子质量;3、高效率样品脱盐,一次脱盐达95%以上;4、去除热源物质;5、吸水,分批法浓缩样品;6、更换样品缓冲液。

排阻色谱法

排阻色谱法

排阻色谱法一、分离原理排阻色谱法(SEC)亦称空间排阻色谱或凝胶渗透色谱法。

是一种根据试样分子的尺寸进行分离的色谱技术。

排阻色谱的分离机理是立体排阻,样品组分与固定相之间不存在相互作用的现象。

色谱柱的填料是凝胶,它是一种表面惰性,含有许多不同尺寸的孔穴或立体网状物质。

凝胶的孔穴大小与被分离的试样大小相当。

仅允许直径小于孔开度的组分分子进入,这些孔对于流动相分子来说是相当大的,以致流动相分子可以自由地扩散出人。

对不同大小的组分分子,可分别渗入到凝胶孔内的不同深度,大个的组分分子可以渗入到凝胶的大孔内,但进不了小孔,甚至于完全被排斥。

小个的组分分子,大孔小孔都可以渗进去,甚至进入很深,一时不易洗脱出来。

因此,大的组分分子在色谱柱中停留时间较短,很快被洗出,它的洗脱体积(即保留时间)很小。

小的组分分子在色谱柱中停留时间较长,洗脱体积卿保留时间)较大,直到所有孔内的最小分子到达柱出口,这种按分子大小而分离的洗脱过程才告完成。

因为分子尺寸一般随分子量的增加而增大,所以根据分子量表达分子尺寸比较方便。

将因分子过大而不能部分地进入某一给走固定相孔内的最小的样品粒子的分子量,定义为该固定相的排阻极限。

如图13-10中A点所相应的相对分子质量(这里,相对分子质量相当于),凡是比A点相应的相对分子质量大的分子,均被排斥于所有的胶孔之外,因而它们将以一个单一的谱带C出现,在保留体积V0时一起被洗脱。

很明显,V0 是柱中凝胶颗粒之间的体积。

随固定相不同,排阻极限范围约在 400至60 X 106之间。

将能够完全进入固定格最小孔内的最大的样品粒子的相对分子质量定义为填料的渗透极限。

如图14-10中B点所相应的相对分子质量(这里相对分子质量为)。

凡是比B点相应的相对分子质量小的分子都可以完全渗入凝胶孔穴中。

同理这些化合物也将以一个单一谱带F在保留体积Vt被洗脱。

可以预料,相对分子质量介于上述两个极限之间的化合物,将根据它们的分子尺寸,进入一部分孔隙,而不能进入另一部分孔隙,其结果使这些化合物按相对分子质量降低的次序被洗脱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(溶胀处理平衡后重量 干燥重量) 溶胀率 100% 干燥重量
(4)凝胶粒径:
一般为球形,其粒径大小对分离度有重要影响。粒径越小, 分离效率越高。软凝胶粒径较大,一般为50~150m,硬凝胶粒 径较小,一般为5~50m。
(5)床体积(bed volume) 即1g干燥凝胶溶胀后所占的体积。
交联度大的孔隙小,吸液膨胀也少,可用于小分子物质 的分离。交联度小的孔隙大,吸液膨胀也大,适用于大分子 物质的分离。
(二)聚丙烯酰胺凝胶
聚丙烯酰胺凝胶是一种人工合成凝胶,是以丙烯酰 胺为单位,由甲叉双丙烯酰胺交联成的,干燥粉碎或加 工成形制成粒状。适合蛋白和多糖的纯化。
(三)琼脂糖凝胶
琼脂糖凝胶依靠糖链之间的次级链如氢键来维持网 状结构。一般情况下,它的结构是稳定的,可以在许多 条件下使用(如水,pH4-9范围内的盐溶液)。琼脂糖凝 胶在40℃以上开始融化,也不能高压消毒,可用化学灭 菌法处理。它的优点是分子量的适用范围宽。
2、按化学性质分为有机凝胶(均匀凝胶、半均匀凝胶、 非均匀凝胶);无机凝胶(非均匀凝胶)。
四、凝胶过滤介质
常用的是葡聚糖、聚丙烯酰胺、琼脂糖以及亲脂性凝胶。
(一)葡聚糖凝胶
葡聚糖凝胶是常用凝胶,由葡聚糖和交联剂甘油 通过醚桥相互交联而形成的多孔性网状结构。
葡聚糖凝胶的立体网状结构
由于分子内含有大量羟基而具有极性,在水和其他极性 溶剂如乙二醇、二甲亚砜等中溶胀成凝胶颗粒,因醚键的不 活泼性,故具有较高的稳定性。
(四)亲脂性凝胶
亲脂性凝胶用于一些难溶于水或有一定程度亲脂性的样品。 1、聚苯乙烯凝胶:应用范围广,由苯乙烯和二乙烯苯聚合 而成。机械性能好,孔隙分布比较宽,多应用于合成高分子 材料的分离和分析。 2、葡聚糖凝胶LH-20:是葡聚糖凝胶G-25分子中引入羟丙基 以代替羟基的氢,成醚键结合状态,因而具备了一定的亲脂 性,适用于分离黄酮、色素等有机物。 3、无机凝胶:无机凝胶分为多孔性硅胶和多孔性玻璃,机 械性能好,选择性高。但其吸附性较大,处理极性大的样品 需注意。
凝胶渗透色谱法-GPC
二、基本原理
(一) 分子筛效应
凝胶本身具有三维网状结构,大分子在通过这种网状结构 上的孔隙时被排阻,小分子通过时被滞留。分子量大小不同的 多种成份在通过凝胶床时,按照分子量大小“排队”,凝胶表 现分子筛效应。
(二)排阻色谱不适用范围
1、分子直径比最大孔隙直径大的分子全部被排阻在凝 胶颗粒以外,叫做全排除,两种或两种以上的这样的 分子不能达到分离效果。
(6)孔隙体积(void volume) 指层析柱中凝胶之间孔隙的体积,即V0值。孔隙体积 可用相对分子质量大于排阻极限的溶质测定。
凝胶的选择
良好的凝胶过滤介质应满足如下要求:
(1)亲水性高,表面惰性,即介质与溶质之间不发生任 何化学或物理相互作用;
(2)稳定性强,在较宽的pH和离子强度范围以及化学试 剂中保持稳定,使用寿命长; (3)具有一定的孔径分布范围; (4)机械强度高,允许较高的操作压力。
六、应 用
(大分子)分子量的测定 (大分子)分子量分布的测定
3、流速
流速是影响分离的重要因素。一般流速低,分离效果好。 如流速在小于0.1ml/min时,蛋白质的分离度好;在 0.51.0ml/min时,对于7.5mm直径的柱子,分离效率较高。
4、样品容量
进样体积和样品浓度将明显影响到分离度。高浓度、小 体积对分离有利。合适的蛋白质样品浓度范围一般在0.010.5%,样品体积是柱体积的1-3%。
五、影响分离特性的因素
1、填料
分离度和蛋白质的分离范围以及最小分子量之比 是选择填料要考虑的首要问题。
目前TSK系列凝胶柱被认为是最好的蛋白质分离柱, 其特点是分离度高和吸附性小。
2、柱长
排阻色谱的分离度与柱长的平方根成正比,一般柱长 60-120cm对于蛋白质的分离比较理想,而30cm的柱子多 用于快速分离。
多肽、蛋白质、核酸、多糖等
常用凝胶
葡萄糖系列 条件温和,产品回收率近100%, 易实施循环操作,提高产品纯 度,分析速度快,精度高,分 离机理简单,操作参数少。
优点
操作简便,进样量小,重现性 好,自动化程度高
缺点
质脆易碎,柱子装填不紧,柱 效低。
选择性低,料液处理量小,洗 脱后产品被稀释
三、固定相与流动相
流动相的选择
☺ 必须能溶解样品,与凝胶本身非常相似,这样才能润湿凝
胶。
☺ 溶剂的粘度要小,因为高粘度溶剂限制分子扩散作用。
☺ 常用的流动相有四氢呋喃、甲苯、氯仿、二甲基酸胺和水
等。
固定相——凝胶:一种经过交联而具有立体网状结构的 多聚体,含有大量液体(一般是水),柔软而富于弹性。 分类:
1、按机械强度可分为软性、半刚性和刚性凝胶三类。
排阻色谱法
一、简

(一)定义:排阻色谱法(size exclusion chromatography, SEC)是一种根据试样分子的尺寸进行分离的色谱技术。又称 为凝胶色谱法、分子排阻色谱法、尺寸排阻色谱法等,是液 相色谱的一种。
一般用于分离水溶性的大分子,凝 胶的代表是葡萄糖系列,洗脱溶剂 主要是水。 (二)分类: 主要用于有机溶剂中可溶的高聚物相对分子质量 分布分析及分离,常用的凝胶为交联聚苯乙烯凝 凝胶过滤色谱法-GFC胶,洗脱溶剂为四氢呋喃等有机溶剂。
凝胶特性参数
(1)排阻极限(exclusion limit): 指不能扩散到凝胶网络内部的最小分子的相对分子质量。
(2)分级范围(fractionation range): 即能为凝胶阻滞并且相互之间可以得到分离的溶质 的相对分子质量范围。
(3)溶胀率:
某些市售的干燥凝胶颗粒(如Sephadex G系列),使用前要 用水溶液进行溶胀处理,溶胀后每克干凝胶所吸收的水分的百分 率称为溶胀率,即

2、直径比最小孔隙直径小的分子能全部进入凝胶颗粒 内部,这样的两种或两种以上的分子也不能达到分离 效果。
两种排阻色谱类型比较
凝胶渗透色谱(GPC)
流动相 采用水溶液或缓冲液作为流动 相
凝胶过滤色谱(GFC)
采用有机溶剂作为流动相
常用分析物质
分析高聚物的摩尔质量,如: 聚乙烯、聚氯乙烯等 交联聚苯乙烯凝胶
相关文档
最新文档