数据拟合实用教程
数据拟合方法(免费)

2 数据拟合方法在实验中,实验和戡测常常会产生大量的数据。
为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。
需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。
数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。
数据拟合方法求拟合函数,插值方法求插值函数。
这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。
例如,在某化学反应中,测–33显然,连续函数关系是客观存在的。
但是通过表中的数据不可能确切地得到这种关系。
何况,由于仪器和环境的影响,测量数据难免有误差。
因此只能寻求一个近拟表达式y = ϕ(t )寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。
数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ϕ作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。
数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。
拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。
而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。
则下一步是确定函数y= a + b x中系数a 和b 各等于多少?从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。
一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即a +b x k = y k如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为k k y bx a -+的差异(残差)。
第四章 数据拟合法

第四章 数据拟合法一、内容分析与教学建议本章内容是对样条函数及其理论的简单介绍,主要介绍了三次样条和B 样条。
样条插值是分段多项式插值的深化和完善,是插值方法中最重要和最常用的方法。
(一) 最小二乘法1、数值逼近的另一种重要方法——数据拟合方法,它有别于插值法的主要特点是:不要求拟合曲线过插值点。
而最小二乘法是最重要的数据拟合方法之一。
2、阐明最小二乘法的最小二乘原理,由最小二乘原理得到超定方程组(又称矛盾方程组),解得超定方程组的解,即得所求拟合曲线的方程。
3、使用最小二乘法,关键是根据已知数据点的大致走势,选好基函数,构造拟合函数。
4、建议用多媒体演示,给出大量的数据,根据所给数据的特点,选择不同的基函数,构造不同的拟合函数,用计算机现场演算,并画出拟合函数曲线及所给数据点,使学生直观地了解最小二乘法的精髓。
(二) 正交多项式1、阐明正交多项式的一般定义。
2、介绍几个常用的正交多项式:Legendre 多项式、Tchebyshev 多项式、Laguerre 多项式、Hermite 多项式,了解它们的表达式以及下列信息:Legendre 多项式在[1,1]-上关于权()1x ρ≡正交; Tchebyshev 多项式在[1,1]-上关于权()x ρ=Laguerre 多项式在[1,)-+∞上关于权()x x e ρ-=正交; Hermite 多项式在(,)-∞+∞上关于权2()x x e ρ-=正交。
(三) 最佳平方逼近1、了解最佳平方逼近及最佳平方逼近多项式的概念。
2、通过具体例子讲解如何求函数的最佳平方逼近多项式。
(四) 最佳一致逼近1、简介Bernstein 多项式的概念和性质,以及通过构造Bernstein 多项式,人们非常简洁地证明了Weierstrass 定理,并由此引如一致逼近的概念。
2、阐述最佳一致逼近及最佳一致逼近多项式的概念,重点介绍描述最佳一致逼近多项式特征的Tchebyshev 定理,并举例说明。
使用Matlab进行数据拟合的方法

使用Matlab进行数据拟合的方法概述:数据拟合是数据分析中常用的一种技术,它通过找到适合特定数据集的数学模型,在给定数据范围内预测未知变量的值。
在科学研究、工程分析和金融建模等领域,数据拟合起到了至关重要的作用。
而Matlab作为一种强大的数值计算工具,提供了丰富的函数和工具箱来实现各种数据拟合方法。
本文将介绍几种常见的使用Matlab进行数据拟合的方法。
一、线性回归线性回归是一种基本的数据拟合方法,它用于建立自变量和因变量之间的线性关系。
Matlab中可以使用`polyfit`函数来实现线性拟合。
具体步骤如下:1. 导入数据集。
首先需要将数据集导入到Matlab中,可以使用`importdata`函数读取数据文件。
2. 根据自变量和因变量拟合一条直线。
使用`polyfit`函数来进行线性拟合,返回的参数可以用于曲线预测。
3. 绘制拟合曲线。
使用`plot`函数绘制原始数据点和拟合曲线,比较其拟合效果。
二、多项式拟合多项式拟合是一种常见的非线性拟合方法,它通过拟合多项式函数来逼近原始数据集。
Matlab中使用`polyfit`函数同样可以实现多项式拟合。
具体步骤如下:1. 导入数据集。
同线性回归一样,首先需要将数据集导入到Matlab中。
2. 选择多项式次数。
根据数据集的特点和实际需求,选择适当的多项式次数。
3. 进行多项式拟合。
使用`polyfit`函数,并指定多项式次数,得到拟合参数。
4. 绘制拟合曲线。
使用`plot`函数绘制原始数据点和拟合曲线。
三、非线性拟合有时候,数据集并不能通过线性或多项式函数来准确拟合。
这时,需要使用非线性拟合方法,通过拟合非线性方程来逼近原始数据。
Matlab中提供了`lsqcurvefit`函数来实现非线性拟合。
具体步骤如下:1. 导入数据集。
同样,首先需要将数据集导入到Matlab中。
2. 定义非线性方程。
根据数据集的特点和实际需求,定义适当的非线性方程。
使用MATLAB进行数据拟合的步骤与技巧

使用MATLAB进行数据拟合的步骤与技巧概述:数据拟合是一种重要的数学方法,用于确定给定数据集的数学模型,并使用所选模型来预测未知数据点的值。
MATLAB是一种广泛用于科学和工程领域的高级计算机语言和数值计算环境。
它提供了强大的工具和函数,可用于数据处理和拟合。
本文将介绍使用MATLAB进行数据拟合的基本步骤,并分享一些技巧和注意事项。
数据拟合步骤:1. 数据导入和可视化:首先,将数据导入MATLAB环境中。
可以从文件、数据库或其他源获取数据,并使用MATLAB的数据导入工具将其加载到工作空间中。
然后,使用plot函数将数据绘制为散点图,以获得对数据的初步了解。
2. 选择拟合模型:根据数据的特点和目标,选择适当的拟合模型。
主要有线性拟合、多项式拟合和非线性拟合等。
线性拟合适用于大多数简单数据集,多项式拟合可用于具有曲线特征的数据集,非线性拟合则可以更精确地拟合复杂数据。
3. 创建拟合函数:在MATLAB中,可以使用fittype函数创建自定义的拟合函数。
该函数定义了拟合模型的形式,并且需要选择适当的方程类型和参数。
可以根据所选模型的特性和拟合需求,添加必要的参数和约束。
4. 拟合数据:使用cfit函数对数据进行拟合。
cfit函数接受拟合函数、数据和初始参数值作为输入,并根据最小二乘拟合准则计算出最优拟合参数。
可以通过调用fit函数,使用最小二乘法或其他拟合算法,拟合数据。
拟合结果将生成一个代表最佳拟合曲线的对象。
5. 可视化拟合结果:为了更好地评估拟合结果,使用plot函数在原始数据图上叠加绘制拟合曲线。
比较拟合曲线与实际数据的吻合程度,考虑调整模型或拟合算法以获得更好的拟合效果。
6. 评估拟合效果:使用MATLAB提供的工具和函数评估拟合结果的质量。
例如,可以使用拟合对象的自由度调整的R方值(Adjusted R-squared)来度量模型拟合优度。
除了R方值,还可以计算均方根误差(RMSE)等指标来评估拟合效果。
如何用excel来做线性拟合

如何用excel来做线性拟合
1. 打开Excel表格,将需要进行线性拟合的数据输入到表格中。
2. 选中数据区域,点击“插入”选项卡中的“散点图”按钮,选择一个散点图类型。
3. 在图表上右键单击数据系列,选择“添加趋势线”。
4. 在弹出的“添加趋势线”对话框中,选择“线性趋势线”,勾选“显示方程式”和“显示R²值”,然后点击“确定”。
5. Excel会自动在图表上绘制一条直线,并在图表上方显示方程式和R²值。
6. 可以使用这个方程式来预测其他数据点的值。
注意:在进行线性拟合之前,需要确保数据点之间存在一定的线性关系。
如果数据点之间没有明显的线性关系,则线性拟合可能不准确。
使用Matlab进行数据拟合的基本步骤

使用Matlab进行数据拟合的基本步骤数据拟合是数据分析的一项重要任务,在科学研究和工程实践中广泛应用。
Matlab是一款强大的数学软件,提供了丰富的数据分析和拟合工具,使得数据拟合变得简单高效。
本文将介绍使用Matlab进行数据拟合的基本步骤,并结合实例进行说明。
第一步:导入数据数据拟合的第一步是导入待处理的数据。
Matlab提供了多种导入数据的方法,例如可以通过读取文本文件、Excel表格或者直接在Matlab命令行中输入数据。
这些方法可以根据实际情况选择使用。
假设我们有一组实验数据,包括自变量x和因变量y,首先需要将这些数据导入Matlab环境中。
第二步:可视化数据在进行数据拟合之前,通常需要先对数据进行可视化,以便对数据的分布和特征有一个直观的了解。
Matlab提供了灵活的绘图工具,可以通过简单的命令绘制各种类型的图形。
例如,可以使用scatter函数绘制散点图,或者plot函数绘制曲线图。
通过观察数据的分布情况,可以选择合适的拟合函数。
第三步:选择拟合函数数据拟合的核心是选择合适的拟合函数。
拟合函数的选择需要根据数据的特点和研究目的来确定。
Matlab提供了丰富的内置拟合函数,如多项式拟合、指数拟合、正弦拟合等。
此外,还可以自定义拟合函数,根据具体需求编写代码实现。
假设我们的数据呈现线性关系,可以选择使用最小二乘法进行线性拟合。
Matlab提供了polyfit函数用于多项式拟合。
通过指定拟合阶数,可以得到最佳拟合曲线的系数。
第四步:进行拟合拟合函数确定后,我们可以使用Matlab的拟合函数对数据进行拟合。
以线性拟合为例,可以使用polyval函数计算拟合曲线上各点的纵坐标值。
通过对比拟合曲线和原始数据,可以得到拟合的效果,并对拟合的可靠性进行评估。
第五步:评估拟合效果评估拟合效果是数据拟合的重要一环。
Matlab提供了各种评估指标和图形展示工具,帮助我们判断拟合效果的好坏。
常见的评估指标包括拟合优度R-squared、均方差MSE等。
数据拟合实用教程

练习:
1. 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y 3.1 3.27 3.81 4.5 5.18 6 7.05 8.56 9.69 11.25 13.17 求用三次多项式进行拟合的曲线方程.
2. 已知观测数据点如表所示
x 1.6 2.7 1.3 4.1 3.6 2.3 0.6 4.9 3 2.4 y 17.7 49 13.1 189.4 110.8 34.5 4 409.1 65 36.9 求a, b, c的值, 使得曲线 f(x)=aex+bsin x+c lnx 与已知数据 点在最小二乘意义上充分接近.
求三个参数 a, b, c的值, 使得曲线 f(x)=aex+bx2+cx3 与 已知数据点在最小二乘意义上充分接近.
编写下面的程序调用拟合函数.
xdata=0:0.1:1; ydata=[3.1,3.27,3.81,4.5,5.18,6,7.05,8.56,9.69,11.25,13.17]; x0=[0,0,0]; [x,resnorm]=lsqcurvefit(@nihehanshu,x0,xdata,ydata)
y1=exp(8.3009)*x.*exp( -494.5209*x)
plot(x,w,'*',x,y1,'r-')
已知应力-应变关系可以用一条指数曲线来描述, 即假设
k1 e k2
式中, 表示应力, 单位是 N/m2; 表示应变.
令
z ln
,
a0
k2,
a1
ln k1,
则
z a0 a1
k1 e k2
式中, 表示应力, 单位是 N/m2; 表示应变.
origin数据拟合步骤 -回复

origin数据拟合步骤-回复数据拟合是统计学中的一项重要任务,它涉及将收集到的数据与数学模型进行比较和匹配,以得出模型中的参数估计。
这个过程通常包括以下步骤:1. 数据收集和预处理首先,我们需要收集与所需模型相关的数据。
这可能涉及到实地调查、实验室测试或从已有数据库中提取数据。
然后,我们需要对数据进行预处理,包括删除异常值、填补缺失值和进行数据归一化等操作,以减小数据的误差和噪音。
2. 选择合适的模型在选择模型时,我们需要考虑数据的特点和实际问题。
如果数据呈现线性关系,我们可以选择线性回归模型;如果数据呈现指数关系,我们可以选择指数拟合模型等等。
此外,我们还可以根据数据分布的特点,选择合适的概率分布模型进行拟合。
3. 模型参数估计模型参数估计是数据拟合的核心步骤,它通过最大似然估计、最小二乘法或贝叶斯估计等方法,对模型中的未知参数进行估计。
最大似然估计是一种常用的参数估计方法,它通过使得数据出现的概率最大来确定参数的值。
最小二乘法则是一种通过最小化实际观测值与模型估计值之间的差距来估计参数的方法。
4. 模型拟合和评估在估计出模型的参数后,我们将模型应用到数据集中,并计算模型的拟合优度。
常见的拟合优度指标包括均方差(Mean Square Error, MSE)、决定系数(Coefficient of Determination, R²)等。
这些指标可以帮助我们评估模型的拟合程度和预测能力。
5. 模型验证和调整为了进一步验证模型的有效性,我们可以利用交叉验证等技术,将数据集划分为训练集和测试集。
然后,我们可以将模型应用到训练集中,评估其预测能力,并根据结果进行调整和改进。
此外,我们还可以通过引入正则化项或进行模型选择来提高模型的泛化能力。
6. 解释和应用模型最后,我们可以利用拟合好的模型进行数据解释和应用。
通过对模型参数的解释,我们可以了解不同因素对结果的影响程度。
此外,我们还可以利用模型进行预测、决策和优化等操作,帮助我们解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k1 e k2
式中, 表示应力, 单位是 N/m2; 表示应变.
已知应力-应变关系可以用一条指数曲线来描述, 即假设
k1 e k2
式中, 表示应力, 单位是 N/m2; 表示应变.
解 选取指数函数作拟合时, 在拟合前需作变量代换,
化为 k1, k2 的线性函数.
于0 k2 -494.5209, a1 ln k1 8.3009,
于是
k1 4.0275 103 , k2 494.5209
拟合曲线为: 4.0275103 e -494.5209
在实际应用中常见的拟合曲线有:
直线 y a0 x a1
多项式 y a0 xn a1 xn1 L an 一般 n=2, 3, 不宜过高.
例1 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y -0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.3 11.2
分别用3次和6次多项式曲线拟合这些数据点.
编写Matlab程序如下:
x=0:0.1:1 y=[-0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.3,11.2] plot(x,y,'k.','markersize',25) axis([0 1.3 -2 16]) p3=polyfit(x,y,3) p6=polyfit(x,y,6)
y1=-0.3012*t+29.3804 plot(t, y1), hold off
例2 用切削机床进行金属品加工时, 为了适当地调整 机床, 需要测定刀具的磨损速度. 在一定的时间测量刀 具的厚度, 得数据如表所示:
切削时间 t/h 0 1 2 3 4 5 6 7 8 刀具厚度 y/cm 30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0
/ N / m2 1.55
2.47
2. 93
3. 03
2.89
500106 1000106 1500106 2000106 2375106
/ / N / m2 3.103103 2.465103 1.953103 1.517103 1.219103
已知应力-应变关系可以用一条指数曲线来描述, 即假设
切削时间 t/h 9 10 11 12 13 14 15 16 刀具厚度 y/cm 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0
拟合曲线为: y=-0.3012t+29.3804
例3 一个15.4cm×30.48cm的混凝土柱在加压实验中的 应力-应变关系测试点的数据如表所示
y1=exp(8.3009)*x.*exp( -494.5209*x)
plot(x,w,'*',x,y1,'r-')
已知应力-应变关系可以用一条指数曲线来描述, 即假设
k1 e k2
式中, 表示应力, 单位是 N/m2; 表示应变.
令
z ln
,
a0
k2,
a1
ln k1,
则
z a0 a1
x=0:0.1:1 y=[-0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.3,11.2] plot(x,y,'k.','markersize',25) axis([0 1.3 -2 16]) p3=polyfit(x,y,3) p6=polyfit(x,y,6)
t=0:0.1:1.2 s=polyval(p3,t) s1=polyval(p6,t) hold on plot(t,s,'r-','linewidth',2) plot(t,s,'b--','linewidth',2) grid
例2 用切削机床进行金属品加工时, 为了适当地调整 机床, 需要测定刀具的磨损速度. 在一定的时间测量刀 具的厚度, 得数据如表所示:
解: 描出散点图, 在命令窗口输入:
t=[0:1:16] y=[30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0] plot(t,y,'*')
解: 描出散点图, 在命令窗口输入:
令
z ln
,
a0
k2,
a1
ln k1
即
z a0 a1
在命令窗口输入:
x=[500*1.0e-6 1000*1.0e-6 1500*1.0e-6 2000*1.0e-6 2375*1.0e-6] y=[3.103*1.0e+3 2.465*1.0e+3 1.953*1.0e+3 1.517*1.0e+3 1.219*1.0e+3] z=log(y) a=polyfit(x,z,1) k1=exp(8.3009) w=[1.55 2.47 2.93 3.03 2.89] plot(x,w,'*')
切削时间 t/h 0 1 2 3 4 5 6 7 8 刀具厚度 y/cm 30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0
切削时间 t/h 9 10 11 12 13 14 15 16 刀具厚度 y/cm 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0
t=[0:1:16] y=[30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0] plot(t,y,'*')
a=polyfit(t,y,1)
a= -0.3012 29.3804
hold on
用Matlab进行数据拟合
1. 多项式曲线拟合: polyfit.
p=polyfit(x,y,m) 其中, x, y为已知数据点向量, 分别表示横,纵坐 标, m为拟合多项式的次数, 结果返回m次拟合 多项式系数, 从高次到低次存放在向量p中.
y0=polyval(p,x0) 可求得多项式在x0处的值y0.