2016年初三上册数学第一单元测试题及答案

合集下载

初三数学第一章试卷含答案

初三数学第一章试卷含答案

一、选择题(每题4分,共20分)1. 下列数中,不是有理数的是()A. -3.14B. 0C. √2D. 1/22. 下列各数中,绝对值最小的是()A. -2B. 0C. 2D. -33. 如果a和b是相反数,那么()A. a+b=0B. a-b=0C. ab=0D. a/b=04. 下列各数中,不是正数的是()A. 0.001B. -1/3C. 3.5D. 2.7185. 下列各数中,不是有理数的是()A. 0.333...B. 1/2C. √9D. 2.5二、填空题(每题4分,共20分)6. 有理数-5的相反数是______。

7. 有理数2/3的倒数是______。

8. 0的绝对值是______。

9. 如果|a|=5,那么a可以是______或______。

10. 有理数-7/4的绝对值是______。

三、解答题(每题10分,共30分)11. (10分)计算下列各式的值:(1)-3 + 4 - 2(2)2/5 - 1/10 + 3/2(3)-7 - (-2) + 312. (10分)判断下列各数是否为有理数,并说明理由:(1)π(2)√-1(3)0.1010010001...13. (10分)已知a和b是相反数,且|a|=5,求a和b的值。

四、应用题(每题10分,共20分)14. (10分)小明有5元,小红有8元,他们共同买了一本书,共花费了13元,求这本书的价格。

15. (10分)一个数的3倍与这个数的4倍的和是60,求这个数。

答案:一、选择题1. C2. B3. A4. B5. C二、填空题6. 57. 2/38. 09. -5,510. 7/4三、解答题11.(1)-3 + 4 - 2 = -1(2)2/5 - 1/10 + 3/2 = 1 3/10(3)-7 - (-2) + 3 = -212.(1)π不是有理数,因为它不能表示为两个整数的比。

(2)√-1不是有理数,因为它不能表示为两个整数的比。

2019精选教育16年初三数学第一章测试题(人教版上册).doc

2019精选教育16年初三数学第一章测试题(人教版上册).doc

16年初三数学第一章测试题(人教版上册)想要学习进步,就要不停地对所学的知识勤加练习,因此查字典数学网为大家整理初三数学第一章测试题,供大家参考。

一、选择题(每小题5分,共25分)1.反比例函数的图象大致是( )2.如果函数y=kx-2(k0)的图象不经过第一象限,那么函数的图象一定在A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限3. 如图,某个反比例函数的图像经过点P,则它的解析式为( )A. B.C. D.4. 某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图像应为( )5. 如果反比例函数的图像经过点(2,3),那么次函数的图像经过点( )A.(-2,3)B.(3,2)C.(3,-2)D.(-3,2)二、填空题6.已知点(1,-2)在反比例函数的图象上,则k= .7.一个图象不经过第二、四象限的反比例函数的解析式为 .8.已知反比例函数,补充一个条件:后,使得在该函数的图象所在象限内,y随x值的增大而减小.9.近视眼镜的度数y与镜片焦距x(米)成反比例.已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x 之间的函数关系式是 .10.如图,函数y=-kx(k0)与y=- 的图像交于A、B两点.过点A作AC垂直于y轴,垂足为C,则△BOC的面积为 .三、解答题(共50分)11.(8分) 一定质量的氧气,其密度(kg/m,)是它的体积v (m,)的反比例函数.当V=10m3 时甲=1.43kg/m.(1)求与v的函数关系式;(2)求当V=2m3时,氧气的密度.12.(8分)已知圆柱的侧面积是6m2,若圆柱的底面半径为x(cm),高为ycm ).(1)写出y关于x的函数解析式;(2)完成下列表格:(3)在所给的平面直角坐标系中画出y关于x的函数图像.13.(l0分)在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例.当电阻R=5欧姆时,电流 I=2安培. (l)求I与R之间的函数关系式;(2)当电流I= 0.5 安培时,求电阻R的值;(3)如果电路中用电器的可变电阻逐渐增大,那么电路中的电流将如何变化?(4)如果电路中用电器限制电流不得超过10安培,那么用电器的可变电阻应控制在什么范围内?14. (12分)某蓄水池的排水管每小时排水飞12m3, 8h可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到x(m3),那么将满池水排空所需的时间y(h)将如何变化?(3)写出y与x之间的关系式;(4)如果准备在6h内将满池水排空,那么每小时的排水量至少为多少?(5)已知排水管每小时的最大排水量为24m3,那么最少多长时间可将满池水全部排空?15.(12分) 反比例函数和一次函数y=mx+n的图象的一个交点A(-3,4),且一次函数的图像与x轴的交点到原点的距离为5.(1)分别确定反比例函数与一次函数的解析式;(2)设一次函数与反比例函数图像的另一个交点为B ,试判断AOB(点O为平面直角坐标系原点)是锐角、直角还是钝角?并简单说明理由.上文为大家整理的初三数学第一章测试题大家仔细阅读了吗?更多相关内容尽在查字典数学网。

16年初三数学第一章测试题(人教版上册)

16年初三数学第一章测试题(人教版上册)

16年初三数学第一章测试题(人教版上册)16年初三数学第一章测试题(人教版上册)想要学习进步,就要不停地对所学的知识勤加练习,因此查字典数学网为大家整理初三数学第一章测试题,供大家参考。

一、选择题(每小题5分,共25分)1.反比例函数的图象大致是( )2.如果函数y=kx-2(k0)的图象不经过第一象限,那么函数的图象一定在A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限3. 如图,某个反比例函数的图像经过点P,则它的解析式为( )A. B.C. D.4. 某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图像应为( )5. 如果反比例函数的图像经过点(2,3),那么次函数的图像经过点( )A.(-2,3)B.(3,2)C.(3,-2)D.(-3,2)二、填空题(2)当电流I= 0.5 安培时,求电阻R的值;(3)如果电路中用电器的可变电阻逐渐增大,那么电路中的电流将如何变化?(4)如果电路中用电器限制电流不得超过10安培,那么用电器的可变电阻应控制在什么范围内?14. (12分)某蓄水池的排水管每小时排水飞12m3, 8h可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到x(m3),那么将满池水排空所需的时间y(h)将如何变化?(3)写出y与x之间的关系式;(4)如果准备在6h内将满池水排空,那么每小时的排水量至少为多少?(5)已知排水管每小时的最大排水量为24m3,那么最少多长时间可将满池水全部排空?15.(12分) 反比例函数和一次函数y=mx+n的图象的一个交点A(-3,4),且一次函数的图像与x轴的交点到原点的距离为5.(1)分别确定反比例函数与一次函数的解析式;(2)设一次函数与反比例函数图像的另一个交点为B ,试判断AOB(点O为平面直角坐标系原点)是锐角、直角还是钝角?并简单说明理由.上文为大家整理的初三数学第一章测试题大家仔细阅读了吗?更多相关内容尽在查字典数学网。

九年级数学上册第一章检测题(含答案)

九年级数学上册第一章检测题(含答案)

第一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(内江中考)下列命题中,真命题是( C )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(西宁中考)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( D )A.5 B.4 C.342D.343.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( C) A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD,第2题图) ,第4题图) ,第5题图),第6题图)4.如图,两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中,不一定成立的是( D )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°5.(衡阳中考)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N 的坐标分别是( A )A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4) 6.(陕西中考)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于点M′、N′,则图中的全等三角形共有( C )A.2对B.3对C.4对D.5对7.(广东中考)如图,正方形ABCD的面积为1,则以相邻两边中点连接EF为边的正方形EFGH的周长为( B )A. 2 B.2 2 C.2+1 D.22+18.(葫芦岛中考)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( D )A.103B.4 C.4.5 D.5,第7题图) ,第8题图) ,第9题图) ,第10题图)9.(广州中考)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( A )A. 2 B.2 C. 6 D.2 210.(宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A )A.4.8 B.5 C.6 D.7.2二、填空题(每小题3分,共18分)11.(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为__33__.12.(青岛中考)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为__32__度.,第11题图) ,第12题图) ,第14题图) ,第16题图)13.(兰州中考)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB ⊥OC;④AB=AD,且AC=BD.其中正确的序号是__①③④__.14.(江西中考)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF 的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为__26__.15.(哈尔滨中考)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为__5.5或0.5__.16.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长C n=__2n+1__.三、解答题(共72分)17.(6分)已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F是OD的中点.求证:BE=CF.证明:易证△OBE≌△OCF(SAS),∴BE=CF18.(7分)如图,菱形ABCD中,E是对角线AC上一点.(1)求证:△ABE≌△ADE;(2)若AB=AE,∠BAE=36°,求∠CDE的度数.(1)证明:易证△ABE≌△ADE(SAS);(2)解:∵AB =AE ,∠BAE =36°,∴∠AEB =∠ABE =180°-∠BAE2=72°,∵△ABE ≌△ADE ,∴∠AED =∠AEB =72°, ∵四边形ABCD 是菱形,∴AB ∥CD , ∴∠DCA =∠BAE =36°,∴∠CDE =∠AED -∠DCA =72°-36°=36°19.(7分)(贺州中考)如图,在四边形ABCD 中,AB =AD ,BD 平分∠ABC ,AC ⊥BD ,垂足为点O. (1)求证:四边形ABCD 是菱形;(2)若CD =3,BD =25,求四边形ABCD 的面积.(1)证明:易证△AOD ≌△COB(ASA ),∴AO =OC ,∵AC ⊥BD ,∴四边形ABCD 是菱形(2)解:∵四边形ABCD 是菱形,∴OD =12BD =5,∴OC =CD 2-OD 2=2,∴AC =2OC =4,∴S菱形ABCD=12AC ·BD =4 5 20.(7分)(上海中考)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC.(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD DE =DE EA =EC,∴△ADE ≌△CDE ,∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE=∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形21.(7分)(遵义中考)如图,矩形ABCD 中,延长AB 至E ,延长CD 至F ,BE =DF ,连接EF ,与BC 、AD 分别相交于P 、Q 两点.(1)求证:CP =AQ ;(2)若BP =1,PQ =22,∠AEF =45°,求矩形ABCD 的面积.(1)证明:易证△CFP≌△AEQ(ASA),∴CP=AQ(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=2BP=2,∴EQ=PE+PQ=2+22=32,∴AQ=AE=3,∴AB=AE-BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB·AD=2×4=822.(8分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=40°,求当∠EBA为多少度时,四边形BFDE是正方形.(1)证明:易证△BAE≌△BCF(SAS)(2)解:若∠ABC=40°,则当∠EBA=25°时,四边形BFDE是正方形.理由如下:∵四边形ABCD是菱∠ABC=20°,∵AE=CF,∴OE=OF,∴四边形BFDE是平行四形,∴AC⊥BD,OA=OC,OB=OD,∠ABO=12边形,又∵AC⊥BD,∴四边形BFDE是菱形,∵∠EBA=25°,∴∠OBE=25°+20°=45°,∴△OBE是等腰直角三角形,∴OB=OE,∴BD=EF,∴菱形BFDE是正方形23.(8分)(云南中考)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=1AB=AE,Rt△ACD中,DF=21AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF 2是菱形(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49①,∵AD ⊥EF 于O ,∴Rt △AOE 中,AO 2+EO 2=AE 2,∴(12y)2+(12x)2=32,即x 2+y 2=36②,把②代入①,可得2xy =13,∴xy =132,∴菱形AEDF 的面积S =12xy =13424.(10分)(开江县期末)如图,已知正方形ABCD ,点E 是BC 上一点,以AE 为边作正方形AEFG. (1)求证:△ADG ≌△ABE ; (2)求证:∠FCN =45°;(3)请问在AB 边上是否存在一点Q ,使得四边形DQEF 是平行四边形?若存在,请证明;若不存在,请说明理由.证明:(1)∵四边形ABCD 和四边形AEFG 是正方形, ∴DA =BA ,EA =GA ,∴∠BAD =∠EAG =90°, ∴∠DAG =∠BAE ,∴△ADG ≌△ABE(2)过F 作BN 的垂线,设垂足为H ,∵∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠BAE =∠HEF ,∵AE =EF ,∴△ABE ≌△EHF ,∴AB =EH ,BE =FH ,∴AB =BC =EH ,∴BE +EC =EC +CH ,∴CH =BE =FH ,∴∠FCN =45°(3)在AB 上取AQ =BE ,连接QD ,∵AB =AD ,∴△DAQ ≌△ABE , ∵△ABE ≌△EHF ,∴△DAQ ≌△ABE ≌△ADG ,∴∠GAD =∠ADQ ,∴AG 、QD 平行且相等,又∵AG 、EF 平行且相等,∴QD 、EF 平行且相等,∴四边形DQEF 是平行四边形.∴在AB 边上存在一点Q ,使得四边形DQEF 是平行四边形25.(12分)(1)如图1,正方形ABCD 中,点P 为线段BC 上一个动点,若线段MN 垂直AP 于点E ,交线段AB 于M ,交线段CD 于N ,证明:AP =MN ;(2)如图2,正方形ABCD 中,点P 为线段BC 上一动点,若线段MN 垂直平分线段AP ,分别交AB 、AP 、BD 、DC 于点M 、E 、F 、N.求证:EF =ME +FN ;(3)若正方形ABCD 的边长为2,求线段EF 的最大值与最小值.(1)证明:过B 点作BH ∥MN 交CD 于H ,∵BM ∥NH ,BH ∥MN ,∴四边形MBHN 为平行四边形.∴BH =MN.∵MN ⊥AP ,∴∠BAP +∠ABH =90°.又∵∠ABH +∠CBH =90°,∴∠BAP =∠CBH.在△ABP 与△BCH 中,⎩⎪⎨⎪⎧∠BAP =∠CBHAB =BC∠ABP =∠BCH∴△ABP ≌△BCH.∴AP =BH.∴AP =MN (2)连接FA ,FP ,FC.∵正方形ABCD 是轴对称图形,F 为对角线BD 上一点,∴FA =FC.又∵FE 垂直平分AP ,∴FA =FP.∴FP =FC.∴∠FPC =∠FCP.∵∠FAB =∠FCP ,∴∠FAB =∠FPC.又∵∠FPC +∠FPB =180°,∴∠FAB +∠FPB =180°.∴∠ABC +∠AFP =180°.∴∠AFP =90°.∴FE =12AP.又∵AP =MN ,∴ME +EF+FN =AP.∴EF =ME +FN(3)由(2)有EF =12MN ,∵AC ,BD 是正方形的对角线,∴BD =2 2.当点P 和点B 重合时,EF 最小=12MN=12AB =1.当点P 和点C 重合时,EF 最大=12MN =12BD = 2。

九年级数学上册第一单元练习题精选含答案

九年级数学上册第一单元练习题精选含答案

九年级数学上册第一单元练习题精选初中九年级数学上册的第一单元通常涉及二次根式、一元二次方程等核心内容。

以下是根据这些知识点设计的一些练习题及其答案:一、二次根式1. 化简二次根式化简:√32答案:2. 二次根式的乘除计算:√12×√27÷√3答案:false二、一元二次方程3. 一元二次方程的定义写出一个一元二次方程的一般形式,并指出它的二次项系数、一次项系数和常数项。

答案:一般形式:ax2+bx+c=0其中,a是二次项系数,b是一次项系数,c是常数项。

4. 解一元二次方程解方程:x2−4x+4=0答案:false5. 应用题某果园有苹果树和梨树共120棵,其中苹果树的数量是梨树的2倍。

问果园里有多少棵苹果树?答案:设梨树有x棵,则苹果树有2x棵。

根据题意,得方程:x+2x=120false所以,苹果树有2×40=80棵。

三、综合练习6. 综合应用已知关于x的一元二次方程x2−(2k+1)x+4(k−1。

2)=0(1) 若方程有两个不相等的实数根,求k的取值范围。

(2) 若方程的两个实数根的积等于-2,求k的值。

答案:(1) 方程有两个不相等的实数根,则判别式Δ>0。

false由于Δ>0,但(2k−3)2总是非负的,所以只需考虑等号不成立的情况,即k≠3。

2但此处题目要求两个不相等的实数根,实际上由于Δ是一个完全平方,它总是非负的,且当k=32时,方程有两个相等的实数根。

因此,对于Δ>0的情况,所有实数k都满足条件(除了使Δ=0的k=32)。

但更严谨的说法是,由于题目没有限制k的取值范围(如整数、有理数等),我们通常认为k可以是任意实数且k≠32以保证有两个不相等的实数根。

然而,在常规数学问题中,如果没有特别说明,我们通常不会如此严格地限制k的取值,因此可以简化为k为任意实数。

但在此处,为了与题目要求的“两个不相等的实数根”严格对应,我们保留k≠32的说明。

初三数学第一章测试题(含答案)

初三数学第一章测试题(含答案)

初三数学第一章测试题(含答案)一、选择题(每小题2分,共30分)1. 设 a+b=5,a-b=3,那么a和b的值分别是多少?A. a=4, b=1B. a=3, b=-2C. a=2, b=3D. a=1, b=4 (答案:A)2. 已知正方形面积为36平方厘米,那么正方形的边长是多少?A. 4厘米B. 6厘米C. 9厘米D. 12厘米 (答案:C)3. 一架飞机从A地出发,每小时飞行400千米,飞了2个小时后到达B地,B地与A地相距多少千米?A. 400千米B. 600千米C. 800千米D. 1000千米 (答案:B)4. 有一个长为8厘米的木棍,现需切割成5段,每段长为多少厘米?A. 1厘米B. 2厘米C. 4厘米D. 8厘米 (答案:C)5. 如果80%的学生喜欢数学,且班级共有40名学生,那么班级有多少名学生喜欢数学?A. 8名学生B. 16名学生C. 32名学生D. 64名学生 (答案:B)二、填空题(每空2分,共20分)1. 已知一个数字是3的倍数,则这个数字最小是___。

答案:32. 圆的半径与直径的关系是___。

答案:半径与直径的关系是直径的两倍。

3. 在一部小说中,第一天读了全书的1/4,第二天读了余下的3/4中的一半,剩下的20页需要第三天才能读完,这本小说共有___页。

答案:80页4. 一年有___个月。

答案:12个月5. 设正方形的边长为x,那么它的周长是___。

答案:4x三、解答题(每题10分,共30分)1. 请用代数解方程:已知一个数的五倍减去2等于13,求这个数。

答案:令这个数为x,则方程为5x - 2 = 13,解得 x = 3。

2. 一个数的1/5等于15,这个数是多少?答案:令这个数为x,则方程为x/5 = 15,解得 x = 75。

3. 请用文字说明如何计算一个长方体的体积。

答案:长方体的体积可以通过将长、宽、高相乘来计算,公式为 V = 长 * 宽 * 高。

人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(有答案解析)(1)

人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(有答案解析)(1)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2± B .2- C .2 D .4 2.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-3.27742322x -±+⨯⨯=⨯是下列哪个一元二次方程的根( ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+= 4.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k ≥-4C .k>-4且k≠0D .k>-4 5.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b 6.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 7.方程(2)2x x x -=-的解是( ) A .2 B .2-,1 C .1- D .2,1- 8.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长 D .线段DF 的长9.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=10.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x 11.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人 12.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x += B .24410x x -+= C .210x x ++= D .210x x +-= 二、填空题13.已知12,x x 是一元二次方程21402x mx m -+-=的两个实数根且12111x x +=,则m 的值为______.14.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.15.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.16.某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.17.方程2350x x -=的一次项系数是______.18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.19.当m =___________时,方程(2150m m x mx --+=是一元二次方程.20.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.三、解答题21.解方程:2250x x +-=.22.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.23.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.24.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.25.解方程:(1)2237x x +=;(2)x(2x+5)=2x+5.26.解方程:212270x x -+=【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键. 2.C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解. 3.C解析:C【分析】根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为722x -±=⨯,符合题意;D 、22730x x -+=的解为x =故选:C .【点睛】 本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 4.B解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14, ∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.C解析:C【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b 的值即可得到a 、b 的关系式 .【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.6.A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.7.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.B解析:B【分析】根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,BD =∴a ,解方程2240x ax +-=得x a =±=- ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.9.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 10.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.11.B解析:B【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得.【详解】设参加活动的同学有x 人,由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去),即参加活动的同学有7人,故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.12.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.二、填空题13.-8【分析】先利用根与系数的关系得到再把变形为从而代入得到方程解之即可【详解】解:∵是一元二次方程的两个实数根∴∵∴即解得:m=-8故答案为:-8【点睛】本题考查了根与系数的关系根据根与系数的关系找解析:-8【分析】先利用根与系数的关系得到12x x m +=,12142x x m ⋅=-,再把12111x x +=变形为1212x x x x +=,从而代入得到方程,解之即可.【详解】解:∵12,x x 是一元二次方程21402x mx m -+-=的两个实数根,∴12x x m +=,12142x x m ⋅=-, ∵12111x x +=, ∴1212x x x x +=,即142m m =-, 解得:m=-8,故答案为:-8.【点睛】 本题考查了根与系数的关系,根据根与系数的关系,找出12x x m +=,12142x x m ⋅=-是解题的关键. 14.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法 解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解. 15.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程.16.3【分析】设共有个班级参加比赛根据共有45场比赛列出方程求出方程的解即可得到结果【详解】解:设共有个班级参加比赛根据题意得:整理得:即解得:或(舍去)则共有3个班级球队参加比赛故答案为:3【点睛】此 解析:3.【分析】设共有x 个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.【详解】解:设共有x 个班级参加比赛, 根据题意得:(1)62x x -=, 整理得:260x x --=,即(3)(2)0x x -+=, 解得:3x =或2x =-(舍去).则共有3个班级球队参加比赛.故答案为:3.【点睛】此题考查了一元二次方程的应用,解题的关键是找出等量关系“需安排6场比赛”. 17.-5【分析】根据一元二次方程的一般形式解答【详解】解:方程的一次项是其系数是故答案是:【点睛】本题考查一元二次方程的一般式解题的关键是掌握一次项系数的定义解析:-5【分析】根据一元二次方程的一般形式解答.【详解】解:方程2350x x -=的一次项是5x -,其系数是5-.故答案是:5-.【点睛】本题考查一元二次方程的一般式,解题的关键是掌握一次项系数的定义.18.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答.【详解】∵(2150m m x mx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.20.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算.三、解答题21.1211x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键. 22.(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.23.(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --= 2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.24.(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键. 25.(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.。

九年级上册数学第一单元测试卷【含答案】

九年级上册数学第一单元测试卷【含答案】

九年级上册数学第一单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 2x + 13. 已知一组数据:2, 5, 7, 10, 12,这组数据的中位数是()A. 5B. 7C. 10D. 24. 在直角坐标系中,点(3, 4)关于x轴的对称点是()A. (3, -4)B. (-3, 4)C. (4, 3)D. (-3, -4)5. 若两个角互为补角,且其中一个角为60度,则另一个角为()A. 30度B. 90度C. 120度D. 180度二、判断题(每题1分,共5分)6. 任何两个锐角的和一定是钝角。

()7. 一组数据的平均数总是大于等于它的中位数。

()8. 两条平行线的同位角相等。

()9. 任何正方形的对角线都相等。

()10. 一元二次方程的解可以是两个相等的实数根。

()三、填空题(每题1分,共5分)11. 若一个三角形的两边长分别为3cm和4cm,且这两边的夹角为90度,则第三边的长为____cm。

12. 函数y = 2x + 1的图像是一条____。

13. 若一个数的平方根是9,则这个数是____。

14. 在直角坐标系中,点(0, b)在____轴上。

15. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为____cm。

四、简答题(每题2分,共10分)16. 简述正比例函数的定义。

17. 解释什么是等腰三角形,并给出一个等腰三角形的例子。

18. 描述一次函数图像的特点。

19. 什么是中位数?如何计算一组数据的中位数?20. 解释补角的概念,并给出一个例子。

五、应用题(每题2分,共10分)21. 一个长方形的周长为18cm,长为7cm,求宽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年初三上册数学第一单元测试题及答

一、选择题
1、已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是
A.20或16B.20C.16D.以上答案均不对
2、2011江西7.如图,在下列条件中,不能证明△ABD≌△ACD的是). =DC,AB=ACB.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD
D.∠B=∠C,BD=DC
3、已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为
A、45°
B、75°
C、45°或75°
D、60°
4、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,
若BF=AC,则ABC的大小是
A、40°
B、45°
C、50°
D、60°
5、在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位
置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的
A、三边中线的交点
B、三条角平分线的交点
C、三边上高的交点
D、三边中垂线的交点
6、如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为() A.B.C.D.1
二、填空题
7、如图,在中,点是上一点,
,,则度.
8、如图,在△ABC中,AB=AC,∠A=36°,
AB的垂直平分线交AC点E,垂足为点D,连接BE,则∠EBC的度数为.
9、如图,有一底角为35°的等腰三角形纸片,
现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形
和四边形两部分,则四边形中,最大角的度数是

10.用反证法证明“三角形中至少有一个角不小于60°时,第一步为假设“”
11、如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′
的面积是.
12、如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF 的平分线交于点E,则∠AEC=
13、如图,长方体的长为5,宽为5,高为8,一只蚂蚁如果要沿着长方体的表面从点A爬到对面的点B,需要爬行的最短距离是
14、如图,矩形OABC的顶点O为坐标原点,A在X轴正半轴上,且OA=10,AB=4,P为OA的中点,D在BC上,⊿OPD是一边长为5的等腰三角形,则点D的坐标为
三、本大题共4小题,每题6分,共24分
15、如图5,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:BC=AD;
△OAB是等腰三角形.
【答案】证明:∵AC⊥BC,BD⊥AD
∴∠D=∠
在Rt△ACB和Rt△BDA中,AB=BA,AC=BD,
∴△ACB≌△BDA
∴BC=AD
由△ACB≌△BDA得∠CAB=∠DBA
∴△OAB是等腰三角形.
16、如图,在△ABC中,AB=AC,∠ABC=72°.
用直尺和圆规作∠ABC的平分线BD交AC于点D;
在中作出∠ABC的平分线BD后,求∠BDC的度数.
解:
①一点B为圆心,以任意长长为半径画弧,分别交AB、BC于点E、F;
②分别以点E、F为圆心,以大于EF为半径画圆,两圆相较于点G,连接BG角AAC于点D即可.。

2分
∵在△ABC中,AB=AC,∠ABC=72°,
∴∠A=180°﹣2∠ABC=180°﹣144°=36°,。

3分
∵AD是∠ABC的平分线,
∴∠ABD=∠ABC=×72°=36°,。

4分
∵∠BDC是△ABD的外角,
∴∠BDC=∠A+∠ABD=36°+36°=72°。

6分.
17、如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB 于E,D为垂足,连结EC.
求∠ECD的度数;
若CE=5,求BC长.
解法一:∵DE垂直平分AC,∴CE=AE,∠ECD=∠A=36°.
解法二:∵DE垂直平分AC,∴AD=CD,∠ADE=∠CDE=90°,
又∵DE=DE,∴△ADE≌△CDE,∠ECD=∠A=36°.
解法一:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,
∵∠ECD=36°,
∴∠BCE=∠ACB-∠ECD=36°,
∠BEC=72°=∠B,
∴BC=EC=5.
解法二:∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∴∠BEC=∠A+∠ECD=72°,
∴∠BEC=∠B,
∴BC=EC=5.
18、阅读下题及其证明
过程:已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
证明:在△AEB和△AEC中,
∴△AEB≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
问:上面证明过程是否正确?若正确,请写出每一步推理根据;
若不正确,请指出错在哪一步?并写出你认为正确的推理过程。

四、本大题共两小题,每小题8分,共16分
19、如图,把矩形纸片沿折叠,使点落在边上的点处,点落在点处;求证:;
设,试猜想之间的一种关系,并给予证明.
20在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同
一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.
请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.
题设:;结论:(均填写序号)
证明:
五、本大题共两小题,每小题9分,共18分
21、如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.猜想AC与BD的位置关系,并证明你的结论;
求线段BD的长.
22、如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
六、本大题共两小题,每小题10分,共20分
23、如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=
15°,E为AD延长线上的一点,且CE=CA.
求证:DE平分∠BDC;
若点M在DE上,且DC=DM,
求证:ME=BD.
24、如图,已知中,厘米,厘米,点为的中点.
如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?
若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?。

相关文档
最新文档