2023年新高考数学一卷第20题

合集下载

2023年普通高等学校招生全国统一考试新课标1卷数学参考答案

2023年普通高等学校招生全国统一考试新课标1卷数学参考答案

【分析】根据向量的坐标运算求出a b λ+a b μ+再根据向量垂直的坐标表示即可求出.【详解】因为()()1,1,1,1a b ==-所以(1,1a b λλ+=+-(1,1a b μμ+=+()()a b a b λμ+⊥+可得()()0a b a b λμ+⋅+= )()()()11110λμλμ+++--=整理得:1λμ=-.故选:D . Df x得ex>上单调递减在12e,-⎛⎫+∞⎪⎝⎭上单调递增OE AC E=∠则tan CAC1Rt ABF 中914,AF a =12cos F AF ∠=所以在12AF F △因为2223F A F B =-所以(又11F A F B ⊥所以1183F A F B c ⎛⋅= ⎝又点A 在C 上则2222254991c t a b -=所以22222225169c b c a a b -=即25整理得422550c c -)3A B +=即π4C =sin sin(B ==2222(0,2,1),(0,2,1)B C A D ∴=-=-2222B C A D ∴∥又2222B C A D ,不在同一条直线上2222B C A D ∥.(2)设(0,2,)(0P λλ则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C =--=--设平面22PA C 的法向量(,,)n x y z =22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ 2z =得3,1y x λλ=-=- (1,3,n λλ∴=--设平面222A C D 的法向量(,,m a b =则22222202m A C a c m D C a ⎧⋅=-=⎪⎨⋅=-⎪⎩1a =得1,=b c (1,1,2)m ∴=cos ,6n m n m n m⋅==化简可得2430λλ-+= 解得1λ=或3λ=(0,2,1)或(0,2,3)P0fx则(f x 时()f x 在R 上单调递减;在(),ln a -∞-上单调递减)2133a a =13()6d a +=){}n b 为等差数列13b b =+即2311)a -=1d >0n a ∴>又9999S T -50502550a a ∴-当12a d =16n p ++=本题第一问直接考查全概率公式的应用后两问的解题关键是根据题意找到递推式然1⎛⎫32.11⎛⎫。

提高解析几何数学运算能力的策略——以20_23年高考全国乙卷理数第20题为例

提高解析几何数学运算能力的策略——以20_23年高考全国乙卷理数第20题为例

提高解析几何数学运算能力的策略——以2023年高考全国乙卷理数第20题为例ʏ河南省郑州市第一〇一中学 冯连福解析几何数学运算能力是指在明晰运算对象(直线㊁圆㊁圆锥曲线等)的基础上,依据运算法则解决数学问题的能力㊂同学们在解析几何数学运算中存在的诸多问题,要通过数学运算专项训练,培养良好的数学运算习惯,增强数学运算的信心,提高数学运算的正确率,达到 敢计算 愿计算 会计算 的效果㊂下面以2023年高考全国乙卷理数第20题为例,说明提高解析几何数学运算能力的策略㊂题目:已知椭圆C :y2a 2+x 2b 2=1(a >b >0)的离心率为53,点A (-2,0)在椭圆C 上㊂(1)求椭圆C 的标准方程;(2)过点(-2,3)的直线交椭圆C 于P ,Q 两点,直线A P ,A Q 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点㊂解析:(1)由题意得b =2,c a =53㊂又a 2=b 2+c 2,解得a =3,b =2㊂椭圆C 的标准方程为y 29+x 24=1㊂(2)求解定点问题的常用方法是先猜后证㊂若直线P Q 的斜率趋于零,则点M ㊁N 趋于点(0,3),故MN 中点过定点(0,3),下面证明这个结论㊂策略一 点斜式正设㊂先用点斜式设出直线P Q ,再将直线方程与椭圆方程联立㊂设直线P Q 的方程为y =k (x +2)+3,即y =k x +2k +3,设P (x 1,y 1),Q (x 2,y 2),M (0,y M ),N (0,y N )㊂联立y =k x +2k +3,9x 2+4y 2-36=0,得(9+4k 2)x 2+(16k 2+24k )x +(16k 2+48k )=0㊂因此,x 1+x 2=-16k 2+24k4k 2+9,x 1x 2=16k 2+48k9+4k2㊂易知直线A P 的方程为y =y 1x 1+2(x +2),令x =0,则M 0,2y 1x 1+2㊂同理可得,N 0,2y2x 2+2 ㊂设MN 的中点为0,y M+yN2 ㊂所以y M +y N 2=y 1x 1+2+y 2x 2+2=(k x 1+2k +3)(x 2+2)+(k x 2+2k +3)(x 1+2)(x 1+2)(x 2+2)=2k x 1x 2+(4k +3)(x 1+x 2)+8k +12x 1x 2+2(x 1+x 2)+4=3㊂MN 的中点是定点(0,3)㊂策略二 点斜式反设㊂先用点斜式反设直线P Q ,再将直线方程与椭圆方程联立,此策略计算量较策略一少一些㊂设直线P Q 的方程为x +2=k (y -3),P (x 1,y 1),Q (x 2,y 2),M (0,y M ),N (0,y N )㊂联立x +2=k (y -3),y 29+x 24=1,得(9k 2+4)y 2-18(3k +2)k y +81k 2+108k =0㊂因此,y 1+y 2=18k (3k +2)9k 2+4,y 1㊃y 2=81k 2+108k9k 2+4㊂因为直线A P 的方程为y =y 1x 1+2(x +2),所以y M =2y 1x 1+2㊂同理,y N =2y 2x 2+2㊂故y M +y N2=y 1x 1+2+y 2x 2+2=y 1k (y 1-3)+y 2k (y 2-3)=1k ㊃y 1y 1-3+y 2y 2-3=1k ㊃2y 1y 2-3(y 1+y 2)y 1y 2-3(y 1+y 2)+9=1k ㊃54㊃(3k 2+4k )-3㊃18k ㊃(3k +2)27(3k 2+4k )-3㊃18k ㊃(3k +2)+9(9k 2+4)=1k ㊃108k36=3㊂故MN 的中点是定点(0,3)㊂策略三 斜截式正设㊂先用斜截式设出直线P Q ,再将直线方程与椭圆方程联立,利用韦达定理写出表达式,最后代入m =2k +3化简㊂此策略数学运算量较前两种少㊂设直线P Q 的方程为y =k x +m ,设P (x 1,y 1),Q (x 2,y 2),M (0,y M ),N (0,y N )㊂因为P Q 过(-2,3),所以m =2k +3㊂联立y =k x +m ,4y 2+9x 2-36=0,得(4k 2+9)x 2+8k m x +4m 2-36=0㊂故x 1+x 2=-8k m 4k 2+9,x 1x 2=4m 2-364k 2+9㊂则y M +y N2=y 1x 1+2+y 2x 2+2=2k x 1x 2+(2k +m )(x 1+x 2)+4mx 1x 2+2(x 1+x 2)+4㊂(思路一)直接代入韦达定理因此,y M +y N2=2k x 1x 2+(2k +m )(x 1+x 2)+8k +12x 1x 2+2(x 1+x 2)+4=2k (4m 2-36)+(2k +m )(-8k m )+4m (4k 2+9)4m 2-36+2(-8k m )+4(4k 2+9)=8k m 2-72k -16k 2m -8k m 2+16m k 2+36m4m 2-16k m +16k2=36(m -2k )4(m -2k )2=9m -2k =3㊂所以MN 的中点是定点(0,3)㊂(思路二)先分离常数再代入韦达定理,计算量会少一些㊂因此,y M +y N2=2k x 1x 2+(2k +m )(x 1+x 2)+4mx 1x 2+2(x 1+x 2)+4=2k +3(x 1+x 2)+12x 1x 2+2(x 1+x 2)+4=3㊂所以MN 的中点是定点(0,3)㊂策略四 斜截式反设㊂先用斜截式仅设出直线P Q ,再将直线方程与椭圆方程联立㊂设P Q :x =m y +n ,P (x 1,y 1),Q (x 2,y 2)㊂因P Q 过(-2,3),故3m +n =-2,即b +2=-3m ㊂联立x =m y +n ,4y 2+9x 2-36=0,得4y 2+9(m y +n )2-36=0㊂则(4+9m 2)y 2+18m n y +9(n 2-4)=0㊂因此,y 1+y 2=-18m n 9m 2+4,y 1y 2=9(n 2-4)9m 2+4㊂其中Δ=(18m n )2-4(4+9m 2)㊃9(n 2-4)>0,则9m 2-n 2+4>0㊂由于A P :y =y 1x 1+2(x +2),故可得点M 0,2y 1x 1+2㊂同理可得,点N 0,2y 2x 2+2㊂故MN 中点的纵坐标为:y 1x 1+2+y 2x 2+2=y 1m y 1+n +2+y 2m y 2+n +2=y 1m (y 1-3)+y 2m (y 2-3)=2y 1y 2-3(y 1+y 2)m [y 1+y 2-3(y 1+y 2)+9]=1m ㊃2㊃9(n 2-4)+3㊃18m n9(n 2-4)+3㊃18m n +9(9m 2+4)=1m ㊃2(n 2-4)+6m n(3m +n )2=n 2-4+3m n2m=n (n +3m )-42m =3㊂故MN 的中点是定点(0,3)㊂策略五 点斜式正设+斜率同构㊂先对直线A P ㊁A Q 方程的点斜式正设,再与椭圆方程联立,求点P ,Q 坐标,最后斜率同构㊂设A P :y =k 1(x +2),A Q :y =k 2(x +2),设P (x P ,y P ),Q (x Q ,y Q )㊂设P Q :y -3=k (x +2)㊂联立y =k 1(x +2),y 29+x 24=1,得4k 21(x +2)2+9x 2=36㊂即(4k 21+9)x 2+16k 21x +16k 21-36=0㊂所以x A x P =16k 21-364k 21+9㊂由于x A =-2,故x P =18-8k 214k 21+9,y P =k 1(x P +2)=36k 14k 21+9㊂因为点P 在直线y -3=k (x +2)上,所以36k 14k 21+9-3=k ㊃364k 21+9㊂整理得12k 21-36k 1+36k +27=0㊂同理,12k 22-36k 2+36k +27=0㊂故k 1㊁k 2是12x 2-36x +36k +27=0的解,则k 1+k 2=3㊂因为M (0,2k 1),N (0,2k 2),所以MN 的中点是(0,k 1+k 2)㊂故MN 的中点是定点(0,3)㊂策略六 斜截式反设+斜率同构㊂先对直线A P ㊁A Q 方程的斜截式反设,再求点P ,Q 坐标㊂设B (-2,3),由B ,P ,Q 三点共线,得到1m 1+1m 2=3㊂设A P :x =m 1y -2,A Q :x =m 2y -2,P (x P ,y P ),Q (x Q ,y Q )㊂联立x =m 1y -2,y 29+x 24=1,得(4+9m 21)y 2-36m 1y =0㊂所以y A +y P =36m 14+9m21,解得y P =36m 14+9m 21,x P =m 1y P -2=18m 21-84+9m 21㊂P 点坐标为18m 21-84+9m 21,36m 14+9m 21㊂同理,Q 点坐标为18m 22-84+9m 22,36m 24+9m 22㊂因为B ,P ,Q 三点共线,所以y P -3x P +2=y Q -3x Q +2,代入化简得1m 1+1m 2=3㊂因为M 0,2m 1 ,N 0,2m 2,所以MN 的中点为定点(0,3)㊂策略七 点斜式正设+齐次化法㊂先用点斜式正设直线A P ㊁A Q 的方程,求出MN 中点坐标,联想齐次化㊂齐次化解题的要点是消常数项㊂设P (x 1,y 1),Q (x 2,y 2)㊂则直线A P 的方程为y =y 1x 1+2(x +2),故M 0,2y 1x 1+2㊂同理可得,N 0,2y 2x 2+2㊂则MN 的中点为0,y 1x 1+2+y 2x 2+2㊂下面求y 1x 1+2+y 2x 2+2,联想齐次化㊂设直线P Q 的方程为m (x +2)+n y =1㊂因P Q 过(-2,3),故3n =1㊂联立m (x +2)+n y =1,9x 2+4y 2=36,得:9[(x +2)-2]2+4y 2=36㊂即(9-36m )(x +2)2-36n (x +2)y +4y 2=0,4y x +22-36n yx +2+9-36m =0㊂所以y 1x 1+2+y 2x 2+2=9n =3㊂故MN 的中点是定点(0,3)㊂策略八 坐标轴平移+齐次化法+一般式㊂由于MN 中点的纵坐标与斜率有关,为简化计算,自然联想到以点A 为坐标系原点建立坐标系㊂将椭圆向右平移2个单位,即以A 为原点建立平面直角坐标系,则平移后椭圆C 方程为y 29+(x -2)24=1,即9x 2+4y 2-36x =0㊂设P (x 1,y 1),Q (x 2,y 2)㊂则直线A P 的方程为y =y 1x 1㊃x ,可得M 2,2y 1x 1㊂同理可得,N 2,2y 2x 2㊂故y M +y N 2=y 1x 1+y 2x 2㊂所以MN 的中点是2,y 1x 1+y 2x 2㊂下面求y 1x 1+y 2x 2㊂设P Q :m x +n y =1㊂因为直线P Q 过点(0,3),所以3n =1㊂联立m x +n y =1,9x 2-36x +4y 2=0,得9x 2-36x (m x +n y )+4y 2=0㊂整理得(9-36m )x 2-36n x y +4y 2=0㊂则4yx2-36n y x+(9-36m )=0㊂故y 1x 1+y 2x 2=9n =3,即平移后MN 的中点为(2,3)㊂故平移前MN 的中点为定点(0,3)㊂策略九 二次曲线系㊂此题是定点定值问题,背景是极点极线问题,故可用二次曲线系㊂设直线A P 的方程为x =m y -2,即x -m y +2=0㊂直线A Q 的方程为x =n y -2,即x -n y +2=0㊂直线P Q 的方程为y -3=k (x +2),即k x -y +2k +3=0㊂点A 处切线方程为x =-2,即x +2=0㊂设M (0,y M ),N (0,y N )㊂令x =0,则y M =2m ,y N =2n㊂M N 的中点为0,1m +1n ,即0,m +n m n㊂下面求m +nm n㊂过A ,B ,C 三点的二次曲线系方程为:(x -m y +2)(x -n y +2)+λ(x +2)㊃(k x -y +3+2k )=μy 29+x 24-1㊂对比两边展开式系数得:x 2项系数,1+λk =14μ;①y 2项系数,m n =19μ;②x y 项系数,-m -n -λ=0;③常数项,4+2λ(3+2k )=-μ㊂④由④得1+λk =-32λ-14μ㊂代入①式得μ=-3λ㊂由③得m +n =-λ㊂则m +n m n =-λ19μ=-λ19(-3λ)=3㊂故MN 的中点为定点(0,3)㊂策略十 斜率同构㊂先由点斜式正设A P ㊁A Q ㊁P Q 的方程,再联立求点P ㊁Q 坐标,最后将两点坐标代入椭圆方程,利用同构求出k 1+k 2值,即求出中点坐标㊂设直线A P 的方程为y =k 1(x +2),则点M 的坐标为(0,2k 1)㊂设直线A Q 的方程为y =k 2(x +2),则点N 的坐标为(0,2k 2)㊂则MN 的中点为(0,k 1+k 2)㊂下面求k 1+k 2的值㊂设直线P Q 的方程为y =k (x +2)+3㊂将直线A P 与直线P Q 联立,求点P 坐标㊂由y =k (x +2)+3,y =k 1(x +2),得:P3k 1-k -2,3k 1k 1-k㊂同理可得,点Q的坐标为3k 2-k -2,3k 2k 2-k㊂因为点P 在椭圆9x 2+4y 2=36上,所以93k 1-k -22+43k 1k 1-k2=36㊂即99(k 1-k )2-12k 1-k +4+36k 21(k 1-k )2=36,也即4k 21-12k 1+12k +9=0㊂同理,点Q 在椭圆9x 2+4y 2=36上,可得4k 22-12k 2+12k +9=0㊂所以k 1㊁k 2是方程4x 2-12x +12k +9=0的解㊂故k 1+k 2=124=3㊂所以MN 的中点为定点(0,3)㊂以上为常用解题策略,请同学们仔细领会㊁认真钻研,对于不同的情景选择合适的策略,提高自己的解析几何数学运算能力㊂注:本文系2023年度河南省基础教育教学研究项目 基于核心素养的高中生解析几何数学运算能力测评与对策研究 (立项编号J C J Y C 2303010018)研究成果㊂(责任编辑 徐利杰)。

2023年全国高考数学新课标1卷第20题解答

2023年全国高考数学新课标1卷第20题解答

2023年全国高考数学新课标1卷第20题解答2023年全国高考数学新课标1卷第20题要求解决一个与函数有关的问题。

下面将逐步解答这道题目,希望能帮助大家更好地理解题目要求和解题方法。

题目描述:已知函数$f(x)=x^3-3x^2-9x+5$,则曲线$y=f(x)$在点$(1,2)$处的切线方程是________。

解题步骤:1. 首先,根据题目给出的函数$f(x)$,我们需要求出曲线$y=f(x)$在点$(1,2)$处的切线方程。

要求切线方程,我们需要先求出曲线的斜率。

2. 曲线的斜率可以通过求函数$f(x)$的导数来得到。

导数的定义是函数在某一点的切线的斜率。

我们可以利用导数的定义求出函数$f(x)$的导数。

3. 对于函数$f(x)=x^3-3x^2-9x+5$,我们需要对每一项分别求导数。

根据求导法则,我们可以得到:$f'(x)=3x^2-6x-9$。

4. 然后,我们将点$(1,2)$的横坐标代入函数$f'(x)$,得到切线的斜率。

代入得到:$f'(1)=3(1)^2-6(1)-9=-12$。

5. 知道了切线的斜率,我们可以利用点斜式来求切线方程。

点斜式的一般形式为:$y-y_1=m(x-x_1)$,其中$m$为斜率,$(x_1,y_1)$为直线上一点的坐标。

6. 我们已经求得切线的斜率为$-12$,且已知点$(1,2)$在切线上。

将斜率和点的坐标代入点斜式,得到切线方程:$y-2=-12(x-1)$。

7. 现在,我们可以对切线方程进行化简,得到标准形式。

首先,将方程展开,得到:$y-2=-12x+12$。

8. 然后,将方程移项,得到:$y=-12x+14$。

9. 最后,我们得到曲线$y=f(x)$在点$(1,2)$处的切线方程为$y=-12x+14$。

总结:通过以上步骤,我们成功解答了2023年全国高考数学新课标1卷第20题。

题目要求我们求解曲线$y=f(x)$在点$(1,2)$处的切线方程。

2023年全国高考乙卷理科第20题的解法探究与拓展

2023年全国高考乙卷理科第20题的解法探究与拓展

圆锥曲线中的定点、定值问题一直是高考热点问题.本文以2023年全国高考乙卷理科第20题的第二问为例,多角度探究求解,有利于学生系统掌握解题方法、拓宽视野和全面提升解题能力.1真题呈现题目:(2023年全国乙卷理科第20题)已知椭圆C :y 2a 2+x 2b2=1()a >b >0的离心率为,点A ()-2,0在C 上.(1)求C 的方程;(2)过点()-2,3的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.此题以椭圆为载体,背景是高等几何中的极点、极线模型,以极点、极线为背景的问题一直是高考中的常青树.试题新颖别致,立意高远而厚重,构思独具匠心,突出关键能力考查,体现了高考试题从能力立意到素养导向的功能.试题解法十分灵活,解题入口宽,深入难,区分度较高,凸显了高考试题的选拔性,是一道有丰厚内涵的经典试题.[1]2多维视角,解法探究(1)解析:由椭圆中a ,b ,c 的关系易得椭圆方程为y 29+x 24=1(略).(2)多维视角的解法探究思维视角一:联立方程,设而不求解法1:普通方程法由题意可知直线PQ 的斜率存在,设P ()x 1,y 1,Q ()x 2,y 2,PQ :y =k ()x +2+3,联立方程ìíîïïy =k ()x +2+3y 29+x 24=1,消去y 得()4k 2+9x 2+8k (2k +3)x +16()k 2+3k =0,由Δ>0,解得k <0,可得x 1+x 2=-8k ()2k +34k 2+9,x 1x 2=16()k 2+3k 4k 2+9.因为A ()-2,0,则直线AP :y =y 1x 1+2(x +2),令x =0,解得y =2y 1x 1+2,即M æèçöø÷0,2y 1x 1+2,同理可得N æèçöø÷0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=2023年全国高考乙卷理科第20题的解法探究与拓展宁夏六盘山高级中学陈熙春李小刚750002摘要:借“题”发挥,从六种思维视角切入,多角度地对2023年高考乙卷理科第20题进行探究,旨在通过一题多解、寻根溯源、拓展延伸,深入挖掘试题背后隐藏的“秘密”,剖析此类问题的本质,归纳解题策略,提炼数学思想,实现从“一道题”到“一类题”质的飞跃.关键词:定点;解法探究;拓展··5[]k ()x 1+2+3x 1+2+[]k ()x2+2+3x 2+2=[]kx 1+()2k +3()x2+2+[]kx 2+()2k +3()x 1+2()x 1+2()x 2+2=2kx 1x 2+()4k +3()x 1+x 2+4()2k +3x 1x 2+2()x 1+x 2+4=32k ()k 2+3k 4k 2+9-8k ()4k +3()2k +34k 2+9+4()2k +316()k 2+3k 4k 2+9-16k ()2k +34k 2+9+4=10836=3,所以线段MN 的中点为定点()0,3.评析:解析几何中的定点问题,实质是定值问题,即求线段PQ 的中点纵坐标为定值.通过设点、设线,借助点的坐标,再结合根与系数的关系验证y M +yN 2为定值即可.求定点、定值问题常见的方法有两种,一种是从特殊入手,求出定值,再证明这个值与变量无关,直线过定点,由对称性知定点一般在坐标轴上;另一种是直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解法2:整体代换法设P ()x 1,y 1,Q ()x 2,y 2,B ()-2,3,M ()0,y M ,N ()0,y N ,直线PQ 的方程为y =k ()x +2+3,联立ìíîïïy =k ()x +2+3y 29+x 24=1,整理得()4k 2+9(x +2)2+()24k -36(x +2)+36=0,由根与系数的关系得(x 1+2)+(x 2+2)=36-24k 4k 2+9,(x 1+2)(x 2+2)=364k 2+9,因为A ()-2,0,则直线AP :y =y 1x 1+2·()x +2,令x =0,解得y M =2y 1x 1+2,同理可得y N =2y 2x 2+2,所以y M +y N 2=y 1x 1+2+y 2x 2+2=2k +3(x 1+2+x 2+2)(x 1+2)(x 2+2)=2k +3(36-24k 4k 2+9)364k 2+9=3,所以线段MN 的中点为定点()0,3.评析:利用整体的思想,通过构造出关于x +2的一元二次方程,得到斜率间的等量关系,把x +2看成整体以后,比解法1要简洁,运算量大大简化,这种整体代换的思想是处理解析几何繁琐运算的有效策略.思维视角二:构造齐次式解法3:构造+齐次化法设直线PQ 的方程为m ()x +2+ny =1,因为直线PQ 过点()-2,3,代入得n =13.因为点P ,Q 在椭圆C :9x 2+4y 2=36上,变形为9[](x +2)-22+4y 2=36,即9(x +2)2-36(x +2)+4y 2=0,齐次化得9(x +2)2-36(x +2)[m (x +2)]+ny +4y 2=0,化简得4y 2-36ny (x +2)+(9-36m )(x +2)2=0,等式两边同除以()x +22构造斜率式得4(y x +2)y 2-36n yx +2+9-36m =0,把n =13代入得4(y x +2)y 2-12yx +2+9-36m =0,由根与系数的关系得k AQ +k AP =3.因为A ()-2,0,设直线AP 的方程为y =k AP (x+2),令x =0得y M =2k AP ,同理可得y N =2k AQ .故线段MN 的中点的纵坐标为y M +y N 2=2k AP +2k AQ2=k AP +k AQ =3,所以线段MN 的中点为定点()0,3.思维视角三:点差法解法4:点差法+三点共线设点B (-2,3),P (x 1,y 1),Q (x 2,y 2),直线AP ,AQ 的斜率分别为k 1,k 2,则有MN 的中点坐标为(0,k 1+k 2).因为点P ,Q 在椭圆C :y 29+x 24=1上,变形为(x 1+2-2)24+y 219=1⇒··614+19æèçöø÷y 1x 1+22=1x 1+2①,同理可得14+19⋅æèçöø÷y 2x 2+22=1x 2+2②,①-②可得19æèçy 1x 1+2-öø÷y 2x 2+2æèçöø÷y 1x 1+2+y 2x 2+2=1x 1+2-1x 2+2③,又知B ,P ,Q 三点共线可得y 1-3x 1+2=y 2-3x 2+2,变形可得y 1x 1+2-y 2x 2+2=3x 1+2-3x 2+2④,将④代入③可得y 1x 1+2+y 2x 2+2=3,即k 1+k 2=3,从而可得线段MN 的中点是定点()0,3.评析:利用“点差法”的思想方法,通过设点、代点、作差构造出k AP ,k AQ 的表达式,便可轻松解决.解法5:点差法+斜率双用设点B (-2,3),P (x 1,y 1),Q (x 2,y 2),直线AP ,AQ 的斜率分别为k 1,k 2,易得MN 的中点坐标为(0,k 1+k 2).由于ìíî9x 21+4y 12=36①9×(-2)2=36②,①-②可得k 1=y 1x 1+2=-94x 1-2y 1.同理可得k 2=y 2x 2+2=-94x 2-2y 2,不妨设k 1+k 2=m .则m =y 1x 1+2-94x 2-2y 2,化简可得4y 1y 2-9x 1x 2+18x 1-18x 2+36=4my 2x 1+8my 2③,同理可得4y 1y 2-9x 1x 2+18x 2-18x 1+36=4my 1x 2+8my 1④,③-④可得9(x 1-x 2)=m (y 1x 2-y 2x 1)+2m (y 2-y 1)⑤,又知直线B ,P ,Q 三点共线可得y 1-3x 1+2=y 2-3x 2+2,化简可得9(x 1-x 2)=3(y 1x 2-y 2x 1)+6(y 2-y 1)⑥,⑤与⑥对比可得m =3,所以线段MN 的中点是定点()0,3.评析:本题为“斜率和”问题,在解题中涉及到斜率和问题时的解题规律为,第一步,写出原式;第二步,交叉使用;第三步,化整做差;第四步,对照两点式.这种方法同样可以解决“斜率积”问题.解法6:定比点差法设点B (-2,3),P (x 1,y 1),Q (x 2,y 2),又设PB =λBQ ,所以有-2-x 1=λ(x 2+2),3-y 1=λ(y 2-3).变形得-2-2λ=λx 2+x 1,3+3λ=λy 2+y 1①.因为点P ,Q 在椭圆C :y 29+x 24=1上,所以有ìíîïïïïy 129+x 124=1(λy 2)29+(λx 2)24=λ2,两式作差得(y 1-λy 2)(y 1+λy 2)9+(x 1+λx 2)(x 1-λx 2)4=(1-λ)·(1+λ).把①式代入得y 1-λy 23-x 1-λx 22=1-λ.再由①式把λx 2,λy 2消去得2y13-x 1=3+λ②,又因为k AP =y 1x 1+2,把②式代入消去x 1得k AP =3y 12y 1-3-3λ.又因为k AQ =y 2x 2+2把①、②式代入得k AQ =-3+3λ-y 1x 1+2=-3(3+3λ-y 1)2y 1-3-3λ.所以k AP +k AQ =3y 12y 1-3-3λ-3(3+3λ-y 1)2y 1-3-3λ=3.即线段MN 的中点的纵坐标为y M +y N 2=2k AP +2k AQ2=k AP +k AQ =3,所以线段MN 的中点是定点()0,3.评析:定比点差法的一般变形公式,椭圆x 2a 2+y 2b2=1(a >b >0),点A (x 1 , y 1),B (x 2, y 2)是椭圆上的点,且 AP =λ PB ,P (x 0 , y 0),··7则ìíîïïïïλx 2=x 0(1+λ)-x 1λy 2=y 0(1+λ)-y 12(x 0x 1a2+y 0y 1b 2-1)=(x 20a 2+y 20b 2-1)⋅(1+λ)点A (x 1,y 1)、B (x 2 ,y 2)的坐标都可以用只含有x 1(或y 1)的式子表示出来.思维视角四:借梯登高思维解法7:参数方程法设直线PQ 的参数方程为{x =-2+t cos αy =3+t sin α(t 为参数),(其中α为直线PQ 的倾斜角).代入椭圆方程y 29+x 24=1,化简可得(4+5cos 2α)t 2+12(2sin α-3cos α)t +36=0,设P 、Q 对应的参数分别为t 1,t 2,则t 1+t 2=12(3cos α-2sin α)4+5cos 2α,t 1⋅t 2=364+5cos 2α.又因为P (-2+t 1cos α,3+t 1sin α),Q (-2+t 2cos α,3+t 2sin α).又因为直线AP 的方程为y =3+t 1sin αt 1cos α()x +2,令x =0得y M =2(3+t 1sin α)t 1cos α,同理可得y N =2(3+t 2sin α)t 2cos α.故线段MN 的中点的纵坐标为y M +yN 2=3+t 1sin αt 1cos α+3+t 2sin αt 2cos α=3(t 1+t 2)t 1t 2cos α+2sin αcos α==3(3cos α-2sin α)3cos α+2sin αcos α=3.所以线段MN 的中点是定点()0,3.评析:充分利用直线分别与椭圆相交这一几何条件,利用参数方程实现了几何问题代数化,体现了解析几何的基本思想——“数形结合”,有效地减少了运算量,应用参数方程法是破解此类问题的一个有效策略.解法8:三角代换法因为cos θ=cos 2θ2-sin 2θ2cos 2θ2+sin 2θ2,sin θ=2sin θ2cos θ2cos 2θ2+sin 2θ2,令t =tan θ2,故cos θ=1-t 21+t 2,sin θ=2t 1+t 2,于是设椭圆的参数方程为ìíîïïïïx =2(1-t 2)1+t 2y =6t 1+t 2(t 为参数).设B (-2,3),P ,Q 对应的参数分别为t 1,t 2,由B ,P ,Q 三点共线可得6t 11+t 21-32(1-t 21)1+t 21+2=6t 21+t 22-32(1-t 22)1+t 22+2,化简得t 1+t 2=2.又知k AP =6t 11+t 212(1-t 21)1+t 21+2=3t 12,同理k AQ =3t 22,所以k AP +k AQ =32(t 1+t 2)=3.又因为A ()-2,0,设直线AP 的方程为y =k AP ()x +2,令x =0得y M =2k AP ,同理可得y N =2k AQ .故线段MN的中点的纵坐标为y M +y N 2=2k AP +2k AQ2=k AP +k AQ =3,所以线段MN 的中点是定点()0,3.评析:引入椭圆的参数方程,巧妙地实现了几何问题与三角函数的精彩联袂,解题方向清晰明了.当然也可以设P æèççöø÷÷2()1-t 121+t 12,6t 11+t 12,Q æèççöø÷÷2()1-t 221+t 22,6t 21+t 22,进而得到直线PQ 的方程为2(t 1+t 2)y -3(t 1t 2-1)x=6(1+t 1t 2),代入点B ()-2,3得到t 1+t 2=2.解法9:定比插参法设点B (-2,3),P (x 1,y 1),Q (x 2,y 2),直线AP ,AQ 的斜率分别为k 1,k 2,则有MN 的中点坐标为(0,k 1+k 2).因为B ,P ,Q 三点共线可··8得y 1-3x 1+2=y 2-3x 2+2,变形得y 1-3y 2-3=x 1+2x 2+2=λ,故可得{y 1=λy 2+3(1-λ)x 1=λx 2+2(λ-1),代入椭圆方程y29+x 24=1化简可得1λ=3+x 2-23y 2.又因为k 1+k 2=y 1x 1+2+y 2x 2+2=λy 2+3(1-λ)λx 2+2λ+y 2x 2+2=1x 2+2æèöø2y 2+3λ-3.把1λ=3+x 2-23y 2代入并化简可得k 1+k 2=1x 2+2æèöø2y 2+3λ-3=3,从而可得线段MN 的中点是定点()0,3.评析:解决此题的难点在于如何“设参”,焦点在于如何“用参”,重点在于如何“消参”,设参、用参、消参是解圆锥曲线问题的基本方法.因此定值问题的解题思路是:设参数→用参数来表示要求定值的式子→消参数.思维视角五:同构法解法10:同构法1设直线AP :x =m 1y -2,AQ :x =m 2y -2,PQ :x =m 0y +n .直线AP ,PQ 联立可得ìíîïïïïx =m 1n +2m 0m 1-m 0y =2+n m 1-m 0,代入椭圆方程得(9n 2-36)m 21+(72m 0+36m 0n )m 1+4(2+n )2=0,同理可得(9n 2-36)m 22+(72m 0+36m 0n )m 2+4(2+n )2=0.从而m 1,m 2为方程(9n 2-36)m 2+(72m 0+36m 0n )·m +4(2+n )2=0的两根,又由直线PQ 过点()-2,3,代入得n =-2-3m 0,代入上式得(81m 20+108m 0)m 2-108m 20m +36m 20=0.设直线AP ,AQ 的斜率分别为k 1,k 2,故MN 的中点坐标为(0,k 1+k 2).k 1+k 2=1m 1+1m 2=3.故MN 的中点是定点()0,3.评析:同构是一种常见的思想方法,是映衬着数学的对称和谐之美的数学方法,是“同理可得”的理论基础,是函数与方程思想的代名词与具体体现.在解题中灵活利用同构式,可以起到化繁为简的作用.解法11:同构法2设直线AP 的方程为y =k ()x +2,联立ìíîïïy =k ()x +2y 29+x 24=1,消去y 得()4k 2+9x 2+16k 2x +16k 2-36=0,当Δ>0时,由根与系数的关系得x A x P =16k 2-364k 2+9,又由x A =-2得到x P =-8k 2+184k 2+9,故P (-8k 2+184k 2+9,36k 4k 2+9).设直线PQ :y =m (x +2)+3,把点P 的坐标代入并化简可得12k 2-36k +36m +27=0.同理设直线AQ 的斜率为k 1,同理可得12k 12-36k 1+36m +27=0.所以k ,k 1是二次方程12x 2-36x +36m +27=0的两根,k +k 1=3,下同解法3.[2]评析:利用同构思想解题相当于寻找斜率满足的二次方程,可以收到事半功倍的效果.本题中方程有一个根是-2,利用根与系数的关系求出另一个根,减少了计算量.思维视角六:营造对称,方便计算解法12:构造对偶式法设点B (-2,3),P (x 1-2,y 1),Q (x 2-2,y 2),因为B ,P ,Q 三点共线可得y 1-3x 1=y 2-3x 2,变形可得y 1x 2-y 2x 1=3(x 2-x 1).构造对偶式y 1x 2+y 2x 1=(y 1x 2)2-(y 2x 1)2y 1x 2-y 2x 1=x 22(9x 1-94x 12)-x 12(9x 2-94x 22)3(x 2-x 1)=3x 1x 2.因为直线AP 的方程为y =y1x 1()x +2,令x =0得y M =2y 1x 1,同理可得y N =2y 2x 2.故线段MN 的··9中点的纵坐标为y M +y N2=y 1x 1+y 2x 2=y 1x 2+y 2x 1x 1x 2=3,所以线段MN 的中点是定点()0,3.评析:构造对偶式重在“构造”,在运用时要对已知等式进行整体观察,利用代数式的对称性,设法构造有利于计算的代数式,使问题简捷获解.对偶式主要是用于化简、转化定点、定直线的坐标表示,构造对偶式法在解题中具有广泛性、灵活性和简洁性的特点.3探究与拓展探究1:已知椭圆C :x 2a 2+y 2b 2=1()a >b >0,左顶点为A ()-a ,0,上顶点为B ()0,b ,过点R ()-a ,b 的直线交椭圆C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为上顶点B ()0,b .证明:设直线AP 的方程为y =k (x +a ),联立ìíîïïy =k ()x +a x 2a 2+y 2b2=1,消去y 得()a 2k 2+b 2x 2+2a 3k 2x +a 4k 2-a 2b 2=0,当Δ>0时,由根与系数的关系得x A x P =a 4k 2-a 2b 2a 2k 2+b 2,又由x A =-a 得到x P =ab 2-a 3k 2a 2k 2+b 2,故P (ab 2-a 3k 2a 2k 2+b 2,2ab 2k a 2k 2+b2).设直线PQ :y =m (x +a )+b ,把点P 的坐标代入并化简可得a 2bk 2-2ab 2k +2ab 2m +b 3=0.设直线AQ 的斜率为k 1,同理可得a 2bk 12-2ab 2k 1+2ab 2m +b 3=0.所以k ,k 1是二次方程a 2bx 2-2ab 2x +2ab 2m +b 3=0的两根,k +k 1=2b a.设直线AP 的方程为y =k ()x +a ,令x =0得y M =ka ,同理可得y N =k 1a .故线段MN 的中点的纵坐标为y M +y N 2=ka +k 1a2=2b a ⋅a 2=b ,所以线段MN 的中点是上顶点B ()0,b .由此可见,2023年全国高考乙卷理科第20题是本结论的特殊情况.探究2:已知椭圆C :x 2a 2+y 2b2=1()a >b >0,左顶点为A ()-a ,0,上顶点为B ()0,b ,过点R ()-a ,b 的直线交椭圆C 于P ,Q 两点,直线BP ,BQ 与x 轴的交点分别为M ,N ,证明:线段MN 的中点为左顶点A ()-a ,0.证明过程与探究1类似.探究3:已知椭圆C :x 2a 2+y 2b 2=1()a >b >0,左顶点为A ()-a ,0,上顶点为B ()0,b ,点R 是直线x =-a 上的任意一点,过点R 作椭圆C 的两条切线,分别交椭圆C 于A ,B 两点,过点R 的直线交椭圆C 于P ,Q 两点,直线AB ,AP ,AQ 的斜率分别为k ,k 1,k 2.证明:k 1+k 2=2k .简证:设R ()-a ,m ,则AB 是R 的切点弦所在的直线,故直线AB 的方程为-ax a 2+my b 2=1,所以k =b 2ma .后面证明过程与探究1的方法类似,得到k 1+k 2=2b 2am.故有k 1+k 2=2k .4往年高考试题链接变式1:如图1,过点P 作y 轴的平行线,分别与AE ,AQ ,交于点T ,H ,满足 PT =TH .证明:直线HQ 过定点.便得到2022年全国乙卷理科第20题的模型.变式2:过点P 作x 轴的垂线,分别EBPTHA N Q -22图1xy(下转第13页)O ··10cos (B +π4)=3sin A -cos(π-A )=3sin A+cos A =2sin (A +π6).于是0<A <3π4,故π6<A +π6<11π12,从而当A +π6=π2,即A =π3时,2sin (A +π6)取得最大值2.综上所述,3sin A -cos(B +π4)的最大值为2,此时A =π3,B =5π12.点评:本题主要考查三角函数的基本公式、解斜三角形的基础知识和基本运算能力.高考中有关三角函数求值问题,一方面考查纯三角函数求值;另一方面就是结合三角形考查求角以及求三角函数值;再就是在知识交汇点出题,三角函数的最值与三角形的结合.通过对以上几例的解析,希望对同学们学好、用活这部分知识有所帮助.与AE ,AQ 交于点T ,H .证明:T 为线段PH 的中点.试题链接:(2022年全国乙卷理科第20题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A ()0,-2,B æèöø32,-1两点.(Ⅰ)求E 的方程;(Ⅱ)设过点P ()1,-2的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足 MT =TH .证明:直线HN 过定点.不难发现,2023年全国高考乙卷理科第20题的第二问与2022年全国乙卷理科第20题极其相似,可以看作“姊妹题”.5解题感悟圆锥曲线中的定值、定点问题淋漓尽致地体现了“几何”与“代数”的深度融合,“动态”与“静态”的和谐统一.定点、定值问题都是探求“变中有不变的量”.因此要注意挖掘问题中各个量之间的相互关系,恰当地运用函数与方程、转化与化归、数形结合、分类讨论、特殊到一般、相关点法、设而不求、换元、消元等基本思想方法.该类问题综合性强,方法灵活,在解题过程中,既有探索性的历程,又有严密的逻辑推理及复杂的运算,成为考查学生数学核心素养的一道亮丽的风景线.文中的解法各有千秋,展示了各种解法的思维轨迹,凸显了思维的灵活性.从深度和广度上做文章,进行了系统性探究、整合、推广,实现了从“一道题”到“一类题”质的飞跃,进而提升学生的核心素养.参考文献[1]陈熙春.2022年全国高考乙卷第20题的解法探究与拓展[J ].理科考试研究,2022(11):16-20.[2]陈熙春.2021年全国新高考I 卷第21题的解法探究与拓展[J ].数理化学习,2022(3):8-13.基金项目:宁夏教育科学规划“基础教育质量提升行动”专项课题“公费师范生教师队伍建设实践研究—以宁夏六盘山高级中学为例”(编号:NXJKG22174)成果.(上接第10页)··13。

2023年高考全国乙卷数学(理)真题(解析版)

2023年高考全国乙卷数学(理)真题(解析版)

2023年普通高等学校招生全国统一考试理科数学一、选择题1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得z =2+i 1+i 2+i 5=2+i 1-1+i =i 2+i i2=2i -1-1=1-2i ,则z=1+2i.故选:B .2.设集合U =R ,集合M =x x <1 ,N =x -1<x <2 ,则x x ≥2 =()A.∁U M ∪NB.N ∪∁U MC.∁U M ∩ND.M ∪∁U N【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为x |x ≥2 即可.【详解】由题意可得M ∪N =x |x <2 ,则∁U M ∪N =x |x ≥2 ,选项A 正确;∁U M =x |x ≥1 ,则N ∪∁U M =x |x >-1 ,选项B 错误;M ∩N =x |-1<x <1 ,则∁U M ∩N =x |x ≤-1 或x ≥1 ,选项C 错误;∁U N =x |x ≤-1 或x ≥2 ,则M ∪∁U N =x |x <1 或x ≥2 ,选项D 错误;故选:A .3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:2×2×2 +4×2×3 -2×1×1 =30.故选:D .4.已知f (x )=xe xe ax -1是偶函数,则a =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为f x =xe x e ax-1为偶函数,则f x -f -x =xexe ax -1--x e-xe -ax -1=x e x -e a -1xe ax -1=0,又因为x 不恒为0,可得e x -e a -1 x=0,即e x =e a -1x,则x =a -1 x ,即1=a -1,解得a =2.故选:D .5.设O 为平面坐标系的坐标原点,在区域x ,y 1≤x 2+y 2≤4 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域x ,y |1≤x 2+y 2≤4 表示以O 0,0 圆心,外圆半径R =2,内圆半径r =1的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角∠MON =π4,结合对称性可得所求概率P =2×π42π=14.故选:C .6.已知函数f (x )=sin (ωx +φ)在区间π6,2π3 单调递增,直线x =π6和x =2π3为函数y =f x 的图像的两条对称轴,则f -5π12 =()A.-32B.-12C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入x =-5π12即可得到答案.【详解】因为f (x )=sin (ωx +φ)在区间π6,2π3单调递增,所以T 2=2π3-π6=π2,且ω>0,则T =π,w =2πT =2,当x =π6时,f x 取得最小值,则2⋅π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f x =sin 2x -5π6 ,则f -5π12 =sin -5π3 =32,7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有C 16种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有A 25种,根据分步乘法公式则共有C 16⋅A 25=120种,故选:C .8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120°,若△PAB 的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在△AOB 中,∠AOB =120°,而OA =OB =3,取AC 中点C ,连接OC ,PC ,有OC ⊥AB ,PC ⊥AB ,如图,∠ABO =30°,OC =32,AB =2BC =3,由△PAB 的面积为934,得12×3×PC =934,解得PC =332,于是PO =PC 2-OC 2=332 2-32 2=6,所以圆锥的体积V =13π×OA 2×PO =13π×(3)2×6=6π.9.已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CDsin ∠CED,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列a n 的公差为2π3,集合S =cos a n n ∈N * ,若S =a ,b ,则ab =()A.-1B.-12C.0D.12【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{a n }中,a n =a 1+(n -1)⋅2π3=2π3n +a 1-2π3,显然函数y =cos 2π3n +a 1-2π3的周期为3,而n ∈N ∗,即cos a n 最多3个不同取值,又{cos a n |n ∈N ∗}={a ,b },则在cos a 1,cos a 2,cos a 3中,cos a 1=cos a 2≠cos a 3或cos a 1≠cos a 2=cos a 3,于是有cos θ=cos θ+2π3 ,即有θ+θ+2π3 =2k π,k ∈Z ,解得θ=k π-π3,k ∈Z ,所以k ∈Z ,ab =cos k π-π3 cos k π-π3 +4π3 =-cos k π-π3 cos k π=-cos 2k πcos π3=-12.故选:B11.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-4【答案】D 【解析】【分析】根据点差法分析可得k AB ⋅k =9,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设A x 1,y 1 ,B x 2,y 2 ,则AB 的中点M x 1+x 22,y 1+y 22,可得k AB =y 1-y 2x 1-x 2,k =y 1+y 22x 1+x 22=y 1+y 2x 1+x 2,因为A ,B 在双曲线上,则x 21-y 219=1x 22-y 229=1,两式相减得x 21-x 22-y 21-y 229=0,所以k AB ⋅k =y 21-y 22x 21-x 22=9.对于选项A :可得k =1,k AB =9,则AB :y =9x -8,联立方程y =9x -8x 2-y 29=1 ,消去y 得72x 2-2×72x +73=0,此时Δ=-2×72 2-4×72×73=-288<0,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得k =-2,k AB =-92,则AB :y =-92x -52,联立方程y =-92x -52x 2-y 29=1,消去y 得45x 2+2×45x +61=0,此时Δ=2×45 2-4×45×61=-4×45×16<0,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得k =3,k AB =3,则AB :y =3x由双曲线方程可得a =1,b =3,则AB :y =3x 为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :k =4,k AB =94,则AB :y =94x -74,联立方程y =94x -74x 2-y 29=1,消去y 得63x 2+126x -193=0,此时Δ=1262+4×63×193>0,故直线AB 与双曲线有交两个交点,故D 正确;故选:D .12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =2,则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA ⋅PD =12-22sin 2α-π4 ,或PA ⋅PD =12+22sin 2α+π4 然后结合三角函数的性质即可确定PA ⋅PD的最大值.【详解】如图所示,OA =1,OP =2,则由题意可知:∠APO =45°,由勾股定理可得PA =OP 2-OA 2=1当点A ,D 位于直线PO 异侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α+π4=1×2cos αcos α+π4=2cos α22cos α-22sin α =cos 2α-sin αcos α=1+cos2α2-12sin2α=12-22sin 2α-π4 0≤α≤π4,则-π4≤2α-π4≤π4∴当2α-π4=-π4时,PA ⋅PD 有最大值1.当点A ,D 位于直线PO 同侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α-π4=1×2cos αcos α-π4=2cos α22cos α+22sin α =cos 2α+sin αcos α=1+cos2α2+12sin2α=12+22sin 2α+π40≤α≤π4,则π4≤2α+π4≤π2∴当2α+π4=π2时,PA ⋅PD 有最大值1+22.综上可得,PA ⋅PD 的最大值为1+22.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点A 1,5 在抛物线C :y 2=2px 上,则A 到C 的准线的距离为.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为x =-54,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:5 2=2p ×1,则2p =5,抛物线的方程为y 2=5x ,准线方程为x =-54,点A 到C 的准线的距离为1--54 =94.故答案为:94.14.若x ,y 满足约束条件x -3y ≤-1x +2y ≤93x +y ≥7,则z =2x -y 的最大值为.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.详解】作出可行域如下图所示:z =2x -y ,移项得y =2x -z ,联立有x -3y =-1x +2y =9,解得x =5y =2,设A 5,2 ,显然平移直线y =2x 使其经过点A ,此时截距-z 最小,则z 最大,代入得z =8,故答案为:8.15.已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【解析】【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【详解】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.16.设a ∈0,1 ,若函数f x =a x +1+a x 在0,+∞ 上单调递增,则a 的取值范围是.【答案】5-12,1 【解析】【分析】原问题等价于f x =a x ln a +1+a x ln 1+a ≥0恒成立,据此将所得的不等式进行恒等变形,可得1+a a x ≥-ln aln 1+a ,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得f x =a x ln a +1+a x ln 1+a ≥0在区间0,+∞ 上恒成立,则1+a x ln 1+a ≥-a x ln a ,即1+a a x ≥-ln aln 1+a在区间0,+∞ 上恒成立,故1+a a 0=1≥-ln aln 1+a,而a +1∈1,2 ,故ln 1+a >0,故ln a +1 ≥-ln a 0<a <1即a a +1 ≥10<a <1 ,故5-12≤a <1,结合题意可得实数a 的取值范围是5-12,1.故答案为:5-12,1.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,⋅⋅⋅10),试验结果如下试验序号i 12345678910伸缩率x i545355525754545659545312541868伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,⋯,10),记z 1,z 2,⋯,z 10的样本平均数为z,样本方差为s 2,(1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)z =11,s 2=61;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出x ,y ,再得到所有的z i 值,最后计算出方差即可;(2)根据公式计算出2s 210的值,和z 比较大小即可.【小问1详解】x =545+533+551+522+575+544+541+568+596+54810=552.3,y =536+527+543+530+560+533+522+550+576+53610=541.3,z =x -y=552.3-541.3=11,z i =x i -y i 的值分别为:9,6,8,-8,15,11,19,18,20,12,故s 2=(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+0+(19-11)2+(18-11)2+(20-11)2+(12-110=61【小问2详解】由(1)知:z=11,2s 210=2 6.1=24.4,故有z ≥2s 210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在△ABC 中,已知∠BAC =120°,AB =2,AC =1.(1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.【答案】(1)21 14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC=7,然后由余弦定理可得cos B=5714,最后由同角三角函数基本关系可得sin B=21 14;(2)由题意可得S△ABDS△ACD=4,则S△ACD=15S△ABC,据此即可求得△ADC的面积.【小问1详解】由余弦定理可得:BC2=a2=b2+c2-2bc cos A=4+1-2×2×1×cos120°=7,则BC=7,cos B=a2+c2-b22ac=7+4-12×2×7=5714,sin B=1-cos2B=1-2528=2114.【小问2详解】由三角形面积公式可得S△ABDS△ACD=12×AB×AD×sin90°12×AC×AD×sin30°=4,则S△ACD=15S△ABC=15×12×2×1×sin120°=310.19.如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=22,PB=PC=6,BP,AP,BC的中点分别为D,E,O,AD=5DO,点F在AC上,BF⊥AO.(1)证明:EF⎳平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D-AO-C的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接DE ,OF ,设AF =tAC ,则BF =BA +AF =(1-t )BA +tBC ,AO =-BA +12BC ,BF ⊥AO ,则BF ⋅AO =[(1-t )BA +tBC ]⋅-BA +12BC =(t -1)BA 2+12tBC 2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,由D ,E ,O ,F 分别为PB ,PA ,BC ,AC 的中点,于是DE ⎳AB ,DE =12AB ,OF ⎳AB ,OF =12AB ,即DE ⎳OF ,DE =OF ,则四边形ODEF 为平行四边形,EF ⎳DO ,EF =DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ⎳平面ADO .ABCDEO P【小问2详解】由(1)可知EF ⎳OD ,则AO =6,DO =62,得AD =5DO =302,因此OD 2+AO 2=AD 2=152,则OD ⊥AO ,有EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .【小问3详解】过点O 作OH ⎳BF 交AC 于点H ,设AD ∩BE =G ,由AO ⊥BF ,得HO ⊥AO ,且FH =13AH ,又由(2)知,OD ⊥AO ,则∠DOH 为二面角D -AO -C 的平面角,因为D ,E 分别为PB ,PA 的中点,因此G 为△PAB 的重心,即有DG =13AD ,GE =13BE ,又FH =13 AH ,即有DH =32GF ,cos ∠ABD =4+32-1522×2×62=4+6-PA 22×2×6,解得PA =14,同理得BE =62,于是BE 2+EF 2=BF 2=3,即有BE ⊥EF ,则GF 2=13×622+622=53,从而GF =153,DH =32×153=152,在△DOH 中,OH =12BF =32,OD =62,DH =152,于是cos ∠DOH =64+34-1542×62×32=-22,sin ∠DOH =1--222=22,所以二面角D -AO -C 的正弦值为22.ABCD EFGH OP20.已知椭圆C :y 2a 2+x 2b 2=1a >b >0 的离心率为53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解【解析】【分析】(1)根据题意列式求解a ,b ,c ,进而可得结果;(2)设直线PQ 的方程,进而可求点M ,N 的坐标,结合韦达定理验证y M +y N2为定值即可.【小问1详解】由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.【小问2详解】由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3 x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=k x 1+2 +3x 1+2+k x 2+2 +3x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2 x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +316k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段PQ 的中点是定点0,3 .【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数f(x)=1x +aln(1+x).(1)当a=-1时,求曲线y=f x 在点1,f1处的切线方程;(2)是否存在a,b,使得曲线y=f1x关于直线x=b对称,若存在,求a,b的值,若不存在,说明理由.(3)若f x 在0,+∞存在极值,求a的取值范围.【答案】(1)ln2x+y-ln2=0;(2)存在a=12,b=-12满足题意,理由见解析.(3)0,12.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b的值,进一步结合函数的对称性利用特殊值法可得关于实数a的方程,解方程可得实数a的值,最后检验所得的a,b是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数g x =ax2+x-x+1ln x+1,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论a≤0,a≥12和0<a<12三中情况即可求得实数a的取值范围.【小问1详解】当a=-1时,f x =1x-1ln x+1,则f x =-1x2×ln x+1+1x-1×1x+1,据此可得f1 =0,f 1 =-ln2,函数在1,f1处的切线方程为y-0=-ln2x-1,即ln2x+y-ln2=0.【小问2详解】由函数的解析式可得f1x=x+aln1x+1,函数的定义域满足1x+1=x+1x>0,即函数的定义域为-∞,-1∪0,+∞,定义域关于直线x=-12对称,由题意可得b=-12,由对称性可知f-12+m=f-12-mm>12,取m=32可得f1 =f-2,即a+1ln2=a-2ln 12,则a+1=2-a,解得a=12,经检验a=12,b=-12满足题意,故a=12,b=-12.即存在a=12,b=-12满足题意.【小问3详解】由函数的解析式可得f x =-1 x2ln x+1+1x+a1x+1,由f x 在区间0,+∞存在极值点,则f x 在区间0,+∞上存在变号零点;令-1 x2ln x+1+1x+a1x+1=0,则-x+1ln x+1+x+ax2=0,令g x =ax2+x-x+1ln x+1,f x 在区间0,+∞存在极值点,等价于g x 在区间0,+∞上存在变号零点,g x =2ax-ln x+1,g x =2a-1 x+1当a≤0时,g x <0,g x 在区间0,+∞上单调递减,此时g x <g0 =0,g x 在区间0,+∞上无零点,不合题意;当a≥12,2a≥1时,由于1x+1<1,所以g x >0,g x 在区间0,+∞上单调递增,所以g x >g 0 =0,g x 在区间0,+∞上单调递增,g x >g0 =0,所以g x 在区间0,+∞上无零点,不符合题意;当0<a<12时,由gx =2a-1x+1=0可得x=12a-1,当x∈0,12a-1时,g x <0,g x 单调递减,当x∈12a-1,+∞时,g x >0,g x 单调递增,故g x 的最小值为g12a-1=1-2a+ln2a,令m x =1-x+ln x0<x<1,则m x =-x+1x>0,函数m x 在定义域内单调递增,m x <m1 =0,据此可得1-x+ln x<0恒成立,则g 12a-1=1-2a +ln2a <0,令h x =ln x -x 2+x x >0 ,则hx =-2x 2+x +1x ,当x ∈0,1 时,h x >0,h x 单调递增,当x ∈1,+∞ 时,h x <0,h x 单调递减,故h x ≤h 1 =0,即ln x ≤x 2-x (取等条件为x =1),所以g x =2ax -ln x +1 >2ax -x +1 2-x +1 =2ax -x 2+x ,g 2a -1 >2a 2a -1 -2a -1 2+2a -1 =0,且注意到g 0 =0,根据零点存在性定理可知:g x 在区间0,+∞ 上存在唯一零点x 0.当x ∈0,x 0 时,g x <0,g x 单调减,当x ∈x 0,+∞ 时,g x >0,g x 单调递增,所以g x 0 <g 0 =0.令n x =ln x -12x -1x ,则n x =1x -121+1x 2=-x -1 22x2≤0,则n x 单调递减,注意到n 1 =0,故当x ∈1,+∞ 时,ln x -12x -1x <0,从而有ln x <12x -1x,所以g x =ax 2+x -x +1 ln x +1 >ax 2+x -x +1 ×12x +1 -1x +1=a -12 x 2+12,令a -12 x 2+12=0得x 2=11-2a,所以g 11-2a>0,所以函数g x区间0,+∞ 上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是0,12.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2sin θπ4≤θ≤π2,曲线C 2:x =2cos αy =2sin α (α为参数,π2<α<π).(1)写出C 1的直角坐标方程;(2)若直线y =x +m 既与C 1没有公共点,也与C 2没有公共点,求m 的取值范围.【答案】(1)x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 (2)-∞,0 ∪22,+∞ 【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意x ,y 的取值范围;(2)根据曲线C 1,C 2的方程,结合图形通过平移直线y =x +m 分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为ρ=2sin θ,即ρ2=2ρsin θ,可得x 2+y 2=2y ,整理得x 2+y -1 2=1,表示以0,1 为圆心,半径为1的圆,又因为x =ρcos θ=2sin θcos θ=sin2θ,y =ρsin θ=2sin 2θ=1-cos2θ,且π4≤θ≤π2,则π2≤2θ≤π,则x =sin2θ∈0,1 ,y =1-cos2θ∈1,2 ,故C 1:x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 .【小问2详解】因为C 2:x =2cos αy =2sin α(α为参数,π2<α<π),整理得x 2+y 2=4,表示圆心为O 0,0 ,半径为2,且位于第二象限的圆弧,如图所示,若直线y =x +m 过1,1 ,则1=1+m ,解得m =0;若直线y =x +m ,即x -y +m =0与C 2相切,则m2=2m >0 ,解得m =22,若直线y=x +m 与C 1,C 2均没有公共点,则m >22或m <0,即实数m 的取值范围-∞,0 ∪22,+∞ .【选修4-5】(10分)23.已知f x =2x +x -2 .(1)求不等式f x ≤6-x 的解集;(2)在直角坐标系xOy 中,求不等式组f (x )≤yx +y -6≤0所确定的平面区域的面积.【答案】(1)[-2,2];(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,f (x )=3x -2,x >2x +2,0≤x ≤2-3x +2,x <0,不等式f (x )≤6-x 化为:x >23x -2≤6-x或0≤x ≤2x +2≤6-x 或x <0-3x +2≤6-x ,解x >23x -2≤6-x,得无解;解0≤x ≤2x +2≤6-x ,得0≤x ≤2,解x <0-3x +2≤6-x ,得-2≤x <0,因此-2≤x ≤2,所以原不等式的解集为:[-2,2]小问2详解】作出不等式组f (x )≤yx +y -6≤0表示的平面区域,如图中阴影△ABC,由y =-3x +2x +y =6,解得A (-2,8),由y =x +2x +y =6 , 解得C (2,4),又B (0,2),D (0,6),所以△ABC 的面积S △ABC =12|BD |×x C -x A =12|6-2|×|2-(-2)|=8.。

2023新高考一卷数学20题

2023新高考一卷数学20题

2023新高考一卷数学20题题目列表:1. 直角三角形的性质与应用2. 平行四边形的性质与应用3. 二次函数图像及其应用4. 集合的表示与运算5. 正比例函数与反比例函数6. 几何体的表面积与体积7. 数列的概念与性质8. 三角函数的概念与公式9. 球与圆柱的表面积与体积10. 数据的收集、整理与分析有关2023新高考一卷数学20题的文章:随着新高考的实行,数学成为一门重要的科目。

其中,20题是新高考一卷数学中的重点,试卷将涉及多个知识点。

接下来,我们将按照题目列表,分别介绍与解析每道题目。

1. 直角三角形的性质与应用此类题目涵盖了直角三角形的各项性质,诸如斜边长度的计算、勾股定理等。

在实际场景中,常常会用到直角三角形的应用,如勾股伴随,建模计算等等。

2. 平行四边形的性质与应用平行四边形是初中数学中的主要内容,在高中阶段进一步学习。

此类题目将包括平行四边形的各项性质,如对角线的相交、周长面积的计算等,同时涉及到平行四边形在实际中的应用,如积分计算。

3. 二次函数图像及其应用二次函数是高中数学中的难点,此类题目将包括二次函数的基本图像及其性质,并会通过实例进行分析,以期提升学生对二次函数的理解和掌握。

4. 集合的表示与运算集合是数学中的基础知识,此类题目将包括集合的表示、集合的运算符号及运用,以及概率的计算等内容。

5. 正比例函数与反比例函数此类题目囊括了正、反比例函数的概念,如生成函数,其图像特征,以及实际应用。

同时,还会进行例题演练,以加强学生对这些函数的理解和熟练度。

6. 几何体的表面积与体积几何体是高中数学的一大难点,此类题目将包括各类几何体的表面积和体积计算,如三棱柱、圆台、正方体等等。

7. 数列的概念与性质此类题目将主要围绕数列的概念、公式、求和公式,等值性质等等方面进行介绍,并通过例题,对这些知识点进行讲解和实例分析。

8. 三角函数的概念与公式三角函数是高中数学的重点之一,此类题目将囊括三角函数的概念、基本公式、性质,以及应用场景。

2023年高考文科数学(全国乙卷)及答案

2023年高考文科数学(全国乙卷)及答案

2023年高考文科数学试卷(全国乙卷)一、选择题1.232i 2i ++=()A.1B.2C.D.52.设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B.26C.28D.304.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C π=,则B ∠=()A.10π B.5π C.310π D.25π5.已知e ()e 1xaxx f x =-是偶函数,则=a ()A.2- B.1- C.1 D.26.正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A.B.3C. D.57.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.128.函数()32f x x ax =++存在3个零点,则a 的取值范围是()A.(),2-∞- B.(),3-∞- C.()4,1-- D.()3,0-9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.1310.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A.32B.12-C.12D.3211.已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A.3212+B.4C.1+D.712.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14.若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=________.15.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.16.已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥-P ABC 的体积.20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,f x 处的切线方程.(2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+-(1)求不等式()6x f x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+-≤⎩所确定的平面区域的面积.2023年高考文科数学试卷(全国乙卷)答案一、选择题【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】D【11题答案】【答案】C【12题答案】【答案】D二、填空题【13题答案】【答案】94【14题答案】【答案】5-【15题答案】【答案】8【16题答案】【答案】2三、解答题【17题答案】【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【18题答案】【答案】(1)152n a n=-(2)2214,71498,8n n n n T n n n ⎧-≤=⎨-+≥⎩【19题答案】【答案】(1)证明见解析(2)3【20题答案】【答案】(1)()ln 2ln 20x y +-=;(2)1|2a a ⎧⎫≥⎨⎬⎩⎭.【21题答案】【答案】(1)22194y x +=(2)证明见详解【选修4-4】(10分)【22题答案】【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞【选修4-5】(10分)【23题答案】【答案】(1)[2,2]-;(2)6.。

新高考一卷2023数学题

新高考一卷2023数学题

新高考一卷2023数学题新高考一卷2023数学题一、选择题(共20题,每题2分,共40分)1. 设函数ƒ(x) = (2x - 5)² - 9x - 6,若ƒ(x)的最小值为k,则k的值是()。

A. 12B. -12C. 18D. -182. 若正整数a、b满足log₂a = log₅b,那么a和b之间的关系是()。

A. a = bB. a > bC. a < bD. 不能确定3. 函数y = ax² + bx + 3的图像在x轴上有两个不同的零点,且两个零点的差为6。

则a + b的值为()。

A. 0B. 1C. 3D. 64. 若a、b、c均为正数,且abc = 1,那么a² + b² + c²的最小值为()。

A. 1B. 2C. 3D. 45. 已知a + b + c = 0,那么3a²b²c²的值为()。

A. 1B. 0C. -1D. 36. 定义域为[0, 2π]的三角函数f(x) = 2si n(x + π/6) - 3cos(x + π/3) 的最大值为()。

A. 3B. 2C. √3D. -37. 在一个等边三角形ABC中,AB = BC = CA = 2a,点D是边AC上的一个动点,则BD的长度的最大值为()。

A. aB. 2aC. √3aD. √2a8. 已知牛顿二项式展开式(x + a)⁶的二项式系数和为128,那么实数a的值为()。

A. -4B. 2C. -2D. 49. 若数列{an}满足a₁ = 1,an+1 = 2 + 1/an,那么数列的通项an的最大值为()。

A. 2B. √2C. √3D. 310. 若函数f(x) = sin²x + cosx在区间[0, 2π]上的最小值为m,则m的值为()。

A. 1/2B. 1/3C. 2/3D. 3/2二、填空题(共5题,每题6分,共30分)11. 若a + b + c = 2, 则(a + b)(b + c)的最小值为_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023年新高考数学一卷第20题
题目:已知函数$f(x) = \frac{1}{3}x^{3} - x^{2} + a$,其中$a \in
\mathbf{R}$.
(1)若$f(x)$在区间$( - 1,3)$上有且仅有一个零点,求实数$a$的取值范围;
(2)若$\exists x_{0} \in ( - 1,3),f(x_{0}) > 0$,求实数$a$的取值范围.
【分析】
(1)求出函数的导数,通过讨论$a$的范围,求出函数的单调区间,从而求出函数的极值,利用函数在区间$( - 1,3)$上有且仅有一个零点,列出不等式,求出$a$的范围即可;
(2)利用特称命题转化为存在性问题,利用导数求出函数的极值,求出函数
的最大值,得到关于$a$的不等式,求出$a$的范围即可.
【解答】
(1)由题意得:$f^{\prime}(x) = x^{2} - 2x = x(x - 2)$,由$f^{\prime}(x) > 0$得:$x < 0$或$x > 2$,由$f^{\prime}(x) < 0$得:$0 < x < 2$,故函数$f(x)$在$( - 1,0)$上单调递增,在$(0,2)$上单调递减,在$(2,3)$上单调
递增,故函数在区间$( - 1,3)$上的极大值为:$f(0) = a$,极小值为:$f(2)
= \frac{4}{3} - 4 + a = \frac{4}{3} - 4 + a = a - \frac{8}{3}$,若函数在区间$( - 1,3)$上有且仅有一个零点,则满足:$\left\{ \begin{matrix} a > 0 \\
a \leqslant 0或a - \frac{8}{3} \geqslant 0 \\
\end{matrix} \right$.,解得:$0 < a \leqslant \frac{8}{3}$或$a
\leqslant 0$;
(2)由$(1)$知:函数在区间$( - 1,3)$上的极大值为:$f(0) = a$,极小值为:$f(2) = a - \frac{8}{3}$,若$\exists x_{0} \in ( - 1,3),f(x_{0}) > 0$,则
满足:$\left\{ \begin{matrix} a > 0 \\
a \geqslant f(2) \\
\end{matrix} \right$.,即满足:$\left\{ \begin{matrix} a > 0 \\
a \geqslant a - \frac{8}{3} \\
\end{matrix} \right$.,解得:$a > 0$.。

相关文档
最新文档