福建省高考数学 第20题优美解

合集下载

2023年福建省高考数学真题及参考答案

2023年福建省高考数学真题及参考答案

2023年福建省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.参考答案一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。

2015年福建省高考数学试题及答案(理科)【解析版】

2015年福建省高考数学试题及答案(理科)【解析版】
专题:
图表型;算法和程序框图.
分析:
模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=6时满足条件
i>5,退出循环,输出S的值为0.
解答:
解:模拟执行程序框图,可得
i=1,S=0
c兀•c
S=cos,i=2
2
jr
不满足条件i>5,S=cos——+cosn,i=3
2
jr<?jr
不满足条件i>5,S=cos +cosn+cos,i=4
••• |PF2|=9.
故选:B.
点评:
本题考查双曲线的标准方程,考查双曲线的定义,属于基础题.
4.(5分)(2015?福建)为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社 区5户家庭,得到如下统计数据表:
收入x(万兀)
8.2
8.6
10.0
11.3
11.9
支出y(万兀)
6.2
7.5
8.0
2 2
不满足条件i>5,S=cos1+cosn+cos+cos2n,i=5
22
不满足条件i>5,S=cos1+cosn+cos ' +cos2n+cos ' =0-1+0+1+0=0,i=6
222
满足条件i>5,退出循环,输出S的值为0,
故选:C.
点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的i,S的
偶函数.
B.f(-x)=|sin(-x)|=|sinx|=f(x),贝Uf(x)为偶函数.
C.y=cosx为偶函数.

多角度探究圆锥曲线中的定值问题——以2023年高考数学全国乙卷理科第20题为例

多角度探究圆锥曲线中的定值问题——以2023年高考数学全国乙卷理科第20题为例

二次曲线系方程可设为llBD +λ
lAB lAD =0.
设直线 AP :
x=my-2,
AQ :
x=ny-2,
PQ :
y=
易 知 椭 圆 在 点 A 处 的 切 线 方 程 为x=
k(
x+2)+3.
,
由引理可知过点
-2
A,
P,
Q 的二次曲线方程可设为
(
(
(
x+2)
kx-y+2
k+3)+λ(
x-my+2)
9+4
k2



-8
k2 +18
36
k2
,

yQ =
9+4
k2
9+4
k2


设 直线 PQ 方程为y=k(
x+2)+3,将点 P ,
Q的
同理,可得 xQ =

坐标分别代入直线方程,可得
12
k2

k1 +36k+27=0,
1 -3
{
12
k2

k2 +36k+27=0,
2 -3
即 k1 ,
k2 是方程 12x2 -36x+36k+27=0 的 两 个 根,
x1 ,
a>
y1 )在 椭 圆 2 + 2 =1(
a b
b>0)外,过点 P 可以作两条直线与椭圆相切,连 接 切
点 A,
B ,称线段 AB 为 切 点 弦,则 切 点 弦 所 在 直 线 的
x1x y1y
方程为 2 + 2 =1.
我们将 点 P 和 切 点 弦 分 别 称 为
a
b
椭圆的一对极点与极线 [1].

2020年全国高考数学一卷(理)20题解法赏析

2020年全国高考数学一卷(理)20题解法赏析

2020年全国高考数学一卷(理)20题解法赏析陈志年(安徽省合肥市肥西中学㊀231200)摘㊀要:本文给出2020年全国高考数学一卷(理)20题的多种解法及评析.关键词:解析几何ꎻ直线过定点ꎻ引进参数ꎻ参数的去留.中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)31-0038-02收稿日期:2020-08-05作者简介:陈志年(1962.4-)ꎬ男ꎬ安徽人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀2020年全国高考数学一卷(理)20题是一道解析几何题ꎬ其中第二问是证明直线过定点.虽然是一类常见常考的题型ꎬ但是解决起来有一定的难度.难点在于:引进一个参数ꎬ思路简单ꎬ可运算量大ꎬ要求运算流畅㊁准确ꎻ引进多个参数ꎬ最后涉及到参数的消去与保留ꎬ要求思维灵活㊁缜密.下面给出该题的多种解法及评析ꎬ欣赏一题多解的妙趣ꎻ领略难点突破的秘诀.题目㊀已知AꎬB分别为椭圆E:x2a2+y2=1(a>1)的左右顶点ꎬG为E的上顶点ꎬAGң GBң=8.P为直线x=6上的动点ꎬPA与E的另一交点为CꎬPB与E的另一交点为D.(1)求E的方程ꎻ(2)证明:直线CD过定点.解㊀(1)由题设得A(-aꎬ0)ꎬB(aꎬ0)ꎬG(0ꎬ1)ꎬ则AGң=(aꎬ1)ꎬGBң=(aꎬ-1).由AGң GBң=8得a2-1=8ꎬ即a=3.所以E的方程为x29+y2=1.(2)解法1㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设P(6ꎬt)则PA的方程为y=t9(x+3).将y=t9(x+3)代入x29+y2=1得(t2+9)x2+6t2x+9t2-81=0ꎬ则-3xc=9t2-81t2+9ꎬ所以xc=-3t2+27t2+9ꎬC点的坐标为(-3t2+27t2+9ꎬ6tt2+9)ꎻ同样求得D点坐标为(3t2-3t2+1ꎬ-2tt2+1).当t2ʂ3时ꎬ直线CD的斜率kCD=4t-3t2+9ꎬ直线CD的方程为y+2tt2+1=4t-3t2+9(x-3t2-3t2+1)ꎬ即y=4t-3t2+9(x-32)ꎻ当t2=3时ꎬ直线CD的方程为x=32.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法两次将直线方程代入椭圆方程得到关于x的一元二次方程ꎬ有一定的运算量ꎬ要求零失误ꎻ利用韦达定理求得C㊁D的坐标ꎬ是一个技巧ꎻ写出直线CD的方程还需要化简整理ꎬ方能得到所要证的结论.解法2㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设P(6ꎬt)ꎬC(3cosαꎬsinα)ꎬD(3cosβꎬsinβ)ꎬ则ACң=(3cosα+3ꎬsinα)ꎬAPң=(9ꎬt)ꎬBDң=(3cosβ-3ꎬsinβ)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(3cosα+3)t-9sinα=0ꎬ(3cosβ-3)t-3sinβ=0.当tʂ0时ꎬ则t=3tanα2ꎬt tanβ2=-1ꎬ从而tanα2tanβ2=-13.若cosαʂcosβꎬ直线CD的方程为y-sinα=sinα-sinβ3cosα-3cosβ(x-3cosα)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3sin(α-β)sinα-sinβ)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3cosα-β2cosα+β2)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3(1+tanα2tanβ2)1-tanα2tanβ2).将tanα2 tanβ2=83-13代入得直线CD的方程y=sinα-sinβ3cosα-3cosβ(x-32).若cosα=cosβꎬ由tanα2 tanβ2=-13ꎬ不妨设tanα2=33ꎬtanβ2=-33ꎬ所以cosα=cosβ=12ꎬ直线CD的方程为x=32.当t=0时ꎬ直线CD的方程为y=0.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法利用椭圆的参数方程设点的坐标ꎬ减少了参数的个数ꎻ整个解答过程中ꎬ利用了多个三角公式ꎬ如:同角三角函数基本关系公式ꎬ两角和与差公式ꎬ二倍角公式及通过角的变换推导的 和差化积 公式等ꎬ可以说三角公式的运用得到了极致.解法3㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0).设P(6ꎬt)ꎬ根据对称性直线CD所过定点在x轴上.当tʂ0时ꎬ设直线CD的方程为my=x-nꎬC(my1+nꎬy1)ꎬD(my2+nꎬy2)ꎬ则ACң=(my1+n+3ꎬy1)ꎬAPң=(9ꎬt)ꎬBDң=(my2+n-3ꎬy2)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(my1+n+3)t-9y1=0ꎬ(my2+n-3)t-3y2=0.消去t得y2(my1+n+3)=3y1(my2+n-3).即2my1y2+3(n-3)y1-(n+3)y2=0.把x=my+n代入x29+y2=1得(m2+9)y2+2mny+n2-9=0.把y1y2=n2-9m2+9代入2my1y2+3(n-3)y1-(n+3)y2=0ꎬ得2m(n2-9)m2+9+3(n-3)y1-(n+3)y2=0ꎬ把2mm2+9=-y1+y2n代入2m(n2-9)m2+9+3(n-3)y1-(n+3)y2=0消去m得-(n2-9)(y1+y2)+3n(n-3)y1-n(n+3)y2=0ꎬ即(2n2-9n+9)y1-(2n2+3n-9)y2=0.所以2n2-9n+9=0ꎬ2n2+3n-9=0ꎬ从而n=32ꎬ直线CD的方程为my=x-32.当t=0时ꎬ直线CD的方程为y=0.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法引进多个参数ꎬ初心是利用韦达定理消去y1和y2保留mꎬ实际把y1y2=n2-9m2+9代入2my1y2+3(n-3)y1-(n+3)y2=0ꎬ结合y1+y2=-2mnm2+9ꎬ发现易消去mꎬ保留y1和y2ꎬ利用y1和y2的任意性就可求得n.解题过程中得到启发㊁灵感ꎬ适时调整我们的解题思路ꎬ体现了思维的多向性和灵活性.解法4㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设C(x1ꎬy1)ꎬD(x2ꎬy2)ꎬP(6ꎬt)ꎬ则ACң=(x1+3ꎬy1)ꎬAPң=(9ꎬt)ꎬBDң=(x2-3ꎬy2)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(x1+3)t-9y1=0ꎬ(x2-3)t-3y2=0.消去t得3y1(x2-3)=y2(x1+3)ꎬ所以9y21(x2-3)2=y22(x1+3)2.又y21=9-x219ꎬy22=9-x229ꎬ从而得9(x1-3)(x2-3)=(x1+3)(x2+3)ꎬ即4x1x2-15(x1+x2)+36=0.根据对称性直线CD所过定点在x轴上.当直线CD的斜率存在时ꎬ设直线CD的方程为y=k(x-n)ꎬ把y=k(x-n)代入x29+y2=1得(9k2+1)x2-18k2nx+9k2n2-9=0.把x1+x2=18k2n9k2+1ꎬx1x2=9k2n2-99k2+1代入4x1x2-15(x1+x2)+36=0得k2(2n2-15n+18)=0ꎬ所以2n2-15n+18=0ꎬ解得n=32或n=6(舍去)ꎬ直线CD的方程为y=k(x-32).当直线CD的斜率不存在时ꎬ则x1=x2ꎬ又4x1x2-15(x1+x2)+36=0ꎬ所以x1=x2=32或x1=x2=6(舍去)ꎬ直线CD的方程为x=32.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法引进更多的参数ꎬ利用C㊁D在椭圆上ꎬ我们首先消去y1和y2ꎬ得到4x1x2-15(x1+x2)+36=0ꎬ至此应用韦达定理解答显而易见ꎬ水到渠成.解析几何中ꎬ设而不求㊁加强韦达定理的应用是解答问题的重要方法.㊀㊀㊀参考文献:[1]2020年普通高等学校招生全国统一考试数学Ⅰ卷.㊀[责任编辑:李㊀璟]93。

新高考数学全国卷1第20题说题课件

新高考数学全国卷1第20题说题课件

立体几何是高中数学新教材人教A版 (2019)必修第二册和选择性必修第一册 的内容。空间向量是选择性必修课程系列 的重要组成部分。空间向量的广泛应用为 处理几何问题提供了新的视角。空间向量 的引入为解决三维空间中图形的位置关系 与度量问题提供了一个十分有效的工具。 学生运用空间向量解决有关线面位置关系 的问题,体会向量方法在研究几何图形中 的应用,进一步提升学生的直观想象、数 学抽象、逻辑推理以及运算能力。
说题比赛
教育 是
一种
信仰
原题 再现 年终工作概述
工作完成情况 成功项目展示
(2021年全国新高考1卷)
20.(12 分)如图,在三棱锥 A BCD 中,平面 ABD 平面 BCD , AB AD ,O 为 BD 的 中点. (1)证明: OA CD ; (2)若 OCD 是边长为 1 的等边三角形,点 E 在棱 AD 上,DE 2EA ,且二面角 E BC D 的大小为 45 ,求三棱锥 A BCD 的体积.
解题思路 第一问解题过程
年命终题工立作意概述 核心素养 工解作题完思成路情况
成如学功何生项指解目导答展示
经解验题总价结值不足 与推广
明年工作计划
(1)证明:在ABC中, AB AD ,O为BD的中点
AO BD 又 平面ABD 平面BCD,平面ABD AO 平面ABD AO 平面BCD 又CD 平面ABD AO CD
3 2
3 4
,所以 SBCD
3, 2
故 VABCD 1 SBCD OA 1 3 1 3 .
年命终题工立作意概述 核心素养 工解作题完思成路情况
成如学功何生项指解目导答展示
经解验题总价结值不足 与推广
明年工作计划
解题思路

2024年福建省高考数学真题及参考答案

2024年福建省高考数学真题及参考答案

2024年福建省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。

2012年福建省高考数学试卷(理科)及解析

2012年福建省高考数学试卷(理科)及解析

2012年福建省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出分四个选项中,只有一项是符合题目要求的.1.(2012•福建)若复数z满足zi=1﹣i,则z等于()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i2.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.43.(2012•福建)下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件4.(2012•福建)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱5.(2012•福建)下列不等式一定成立的是()A.lg(x2+)>lgx(x>0)B.sinx+≥2(x≠kx,k∈Z)C.x2+1≥2|x|(x∈R)D.(x∈R)6.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.7.(2012•福建)设函数则下列结论错误的是()A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数8.(2012•福建)已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.B.C.3D.59.(2012•福建)若函数y=2x图象上存在点(x,y)满足约束条件,则实数m的最大值为()A.B.1C.D.210.(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.(2012•福建)(a+x)4的展开式中x3的系数等于8,则实数a=_________.12.(2012•福建)阅读图所示的程序框图,运行相应地程序,输出的s值等于_________.13.(2012•福建)已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为_________.14.(2012•福建)数列{a n}的通项公式a n=ncos+1,前n项和为S n,则S2012=_________.15.(2012•福建)对于实数a和b,定义运算“﹡”:a*b=设f(x)=(2x﹣1)﹡(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是_________.三、解答题:本大题共5小题,共80分,解答题写出文字说明,证明过程或演算步骤.16.(2012•福建)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:品牌甲乙首次出现故障时间x(年)0<x<1 1<x≤2 x>2 0<x≤2 x>2轿车数量(辆) 2 3 45 5 45每辆利润(万元) 1 2 3 1.8 20.9将频率视为概率,解答下列问题:(I)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;(II)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(III)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.17.(2012•福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°﹣sin13°cos17°(2)sin215°+cos215°﹣sin15°cos15°(3)sin218°+cos212°﹣sin18°cos12°(4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°(5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°(Ⅰ)试从上述五个式子中选择一个,求出这个常数(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.18.(2012•福建)如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由.(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.19.(2012•福建)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.20.(2012•福建)已知函数f(x)=e x+ax2﹣ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.四、选考题(题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分。

2023年全国高考数学新课标1卷第20题解答

2023年全国高考数学新课标1卷第20题解答

2023年全国高考数学新课标1卷第20题解答2023年全国高考数学新课标1卷第20题要求解决一个与函数有关的问题。

下面将逐步解答这道题目,希望能帮助大家更好地理解题目要求和解题方法。

题目描述:已知函数$f(x)=x^3-3x^2-9x+5$,则曲线$y=f(x)$在点$(1,2)$处的切线方程是________。

解题步骤:1. 首先,根据题目给出的函数$f(x)$,我们需要求出曲线$y=f(x)$在点$(1,2)$处的切线方程。

要求切线方程,我们需要先求出曲线的斜率。

2. 曲线的斜率可以通过求函数$f(x)$的导数来得到。

导数的定义是函数在某一点的切线的斜率。

我们可以利用导数的定义求出函数$f(x)$的导数。

3. 对于函数$f(x)=x^3-3x^2-9x+5$,我们需要对每一项分别求导数。

根据求导法则,我们可以得到:$f'(x)=3x^2-6x-9$。

4. 然后,我们将点$(1,2)$的横坐标代入函数$f'(x)$,得到切线的斜率。

代入得到:$f'(1)=3(1)^2-6(1)-9=-12$。

5. 知道了切线的斜率,我们可以利用点斜式来求切线方程。

点斜式的一般形式为:$y-y_1=m(x-x_1)$,其中$m$为斜率,$(x_1,y_1)$为直线上一点的坐标。

6. 我们已经求得切线的斜率为$-12$,且已知点$(1,2)$在切线上。

将斜率和点的坐标代入点斜式,得到切线方程:$y-2=-12(x-1)$。

7. 现在,我们可以对切线方程进行化简,得到标准形式。

首先,将方程展开,得到:$y-2=-12x+12$。

8. 然后,将方程移项,得到:$y=-12x+14$。

9. 最后,我们得到曲线$y=f(x)$在点$(1,2)$处的切线方程为$y=-12x+14$。

总结:通过以上步骤,我们成功解答了2023年全国高考数学新课标1卷第20题。

题目要求我们求解曲线$y=f(x)$在点$(1,2)$处的切线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年高考数学(福建)第20题(理)试题优美解
试题(福建、 理20)
已知函数R a ex ax e x f x ∈-+=,)(2
(Ⅰ)若曲线)(x f y =在点))1(,1(f 处的切线平行于x 轴,求函数)(x f 的单调区间; (Ⅱ)试确定a 的取值范围,使得曲线)(x f y =上存在唯一的点P ,曲线在该点处的 切线与曲线只有一个公共点P 。

解析:
(Ⅰ)2()()2x x f x e ax ex f x e ax e '=+-⇒=+-
由题意得:(1)200f e a e a '=+-=⇔=
()01,()01x
f x e e x f x x ''=->⇔><⇔<
得:函数()f x 的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞
(Ⅱ)设00(,())P x f x ; 则过切点P 的切线方程为000()()()y f x x x f x '=-+ 令000()()()()()g x f x f x x x f x '=---;则0()0g x =
切线与曲线只有一个公共点P ()0g x ⇔=只有一个根0x
000()()()2()x x g x f x f x e e a x x '''=-=-+-,且0()0g x '= (1)当0a ≥时,00()0,()0g x x x g x x x ''>⇔><⇔<
得:当且仅当0x x =时,min 0()()0g x g x ==
由0x 的任意性,0a ≥不符合条件(lby lfx )
(2)当0a <时,令
00()2()()20ln(2)x x x h x e e a x x h x e a x x a ''=-+-⇒=+=⇔==-
①当0x x '=时,00()0,()0h x x x h x x x ''>⇔><⇔<
当且仅当0x x =时,0()()0()g x g x g x ''≥=⇒在x R ∈上单调递增
()0g x ⇔=只有一个根0x
②当0x x '>时,()0,()0h x x x h x x x ''''>⇔><⇔<
得:0()()0g x g x '''<=,又,(),,()x g x x g x ''→+∞→+∞→-∞→+∞
存在两个数0x x ''<使,0()()0g x g x ''''==
得:00()0()()0g x x x x g x g x '''''<⇔<<⇒<=又,()x g x '→+∞→+∞ 存在1x x ''>使()0g x ''=,与条件不符。

③当0x x '<时,同理可证,与条件不符
从上得:当0a <时,存在唯一的点(ln(2),(ln(2))P a f a --使该点处的切线与曲线只有一个公共点P
试题或解法赏析.
本题考查的知识点为导数的理解, 较难的一道好题。

相关文档
最新文档