非线性模型参数估计方法步骤
非线性参数估计的数值方法

二、遗传算法原理
遗传算法(Genetic Algorithm,GA):起源于应用计算机模拟生 物进化系统。
基本原理:
1)将优化问题离散后的各个可行解“编码”成“个体”(或染色 体),一群个体组成“种群”; 2)将参数编码个体(如二进制字符串),各个字符(二进制码0 或1)称为“基因”; 3)父代初始种群随机产生; 4)模拟生物进化,选择“适应度”(如优化问题的目标函数)高 的个体,进行“交叉”和“变异”操作,生成子代种群。“选 择”、“交叉”和“变异”是遗传算法的三个基本操作算子; 5)对子代种群,再进行选择、交叉和变异操作,直至收敛; 6)收敛的最优个体,对应于问题的最优或次优解。
按变异概率005实施变异操作序号交叉生成种群的个体位串随机变量y的计算结果变异生成种群的个体位串实参数适应值201129999683201677998967201194999839201355999949总和平均值最大值新一代的种群3998438999610999949在此基础上再用排序选择结合精英选择确定进入交配池的种群再实施交叉和变异操作直到适应值指标或最大进化代数达到设定的要求
从输入层通过隐层到输出层的传播为: ~ R 1 ~ ~ y y R f R ( z R ) f R (W R ~ y ) f R [W R F R 1 (W R 1 ~ y R 2 )] ~ ~ f R {W R f R 1[ f 1 (W 1 x )]}
, , ,
( yk d k ) ~ ) E E yk ( y d ) yk E ( w k k k ~ ~ ~ w y w w k k k k f ( zk ) zk f ( zk ) ~ ~ ( y d ) x δ x k k k ~ zk wk zk
非线性混合效应模型参数估计方法分析

算法( F 0 ) 和条件一阶线性 化算法 ( F O C E ) 为 2种 计 算 非 线 性 混 合 效 应 模 型 参 数 的 常 用 线 性 化 算 法 。本 文 基 于 F O C E算 法 , 提 出 一 种 改 进 的 随机 效 应 参 数 计 算 方 法 , 并 利 用 树 高 生 长 数 据 和 模 拟 数 据 对 3种 a r l y i n t h e mo d e l f u n c t i o n .F i r s t — o r d e r l i n e a r i z a t i o n a l g o i r t h m( F O) a n d c o n d i t i o n a l f i r s t — o r d e r l i n e a i r z a t i o n a l g o r i t h m
非线性回归分析的入门知识

非线性回归分析的入门知识在统计学和机器学习领域,回归分析是一种重要的数据分析方法,用于研究自变量和因变量之间的关系。
在实际问题中,很多情况下自变量和因变量之间的关系并不是简单的线性关系,而是呈现出一种复杂的非线性关系。
因此,非线性回归分析就应运而生,用于描述和预测这种非线性关系。
本文将介绍非线性回归分析的入门知识,包括非线性回归模型的基本概念、常见的非线性回归模型以及参数估计方法等内容。
一、非线性回归模型的基本概念在回归分析中,线性回归模型是最简单和最常用的模型之一,其数学表达式为:$$Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + ... + \beta_pX_p +\varepsilon$$其中,$Y$表示因变量,$X_1, X_2, ..., X_p$表示自变量,$\beta_0, \beta_1, \beta_2, ..., \beta_p$表示模型的参数,$\varepsilon$表示误差项。
线性回归模型的关键特点是因变量$Y$与自变量$X$之间呈线性关系。
而非线性回归模型则允许因变量$Y$与自变量$X$之间呈现非线性关系,其数学表达式可以是各种形式的非线性函数,例如指数函数、对数函数、多项式函数等。
一般来说,非线性回归模型可以表示为:$$Y = f(X, \beta) + \varepsilon$$其中,$f(X, \beta)$表示非线性函数,$\beta$表示模型的参数。
非线性回归模型的关键在于确定合适的非线性函数形式$f(X,\beta)$以及估计参数$\beta$。
二、常见的非线性回归模型1. 多项式回归模型多项式回归模型是一种简单且常见的非线性回归模型,其形式为: $$Y = \beta_0 + \beta_1X + \beta_2X^2 + ... + \beta_nX^n +\varepsilon$$其中,$X^2, X^3, ..., X^n$表示自变量$X$的高次项,$\beta_0, \beta_1, \beta_2, ..., \beta_n$表示模型的参数。
(整理)计量经济学第四章非线性回归模型的线性化

(整理)计量经济学第四章⾮线性回归模型的线性化第四章⾮线性回归模型的线性化以上介绍了线性回归模型。
但有时候变量之间的关系是⾮线性的。
例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述⾮线性回归模型是⽆法⽤最⼩⼆乘法估计参数的。
可采⽤⾮线性⽅法进⾏估计。
估计过程⾮常复杂和困难,在20世纪40年代之前⼏乎不可能实现。
计算机的出现⼤⼤⽅便了⾮线性回归模型的估计。
专⽤软件使这种计算变得⾮常容易。
但本章不是介绍这类模型的估计。
另外还有⼀类⾮线性回归模型。
其形式是⾮线性的,但可以通过适当的变换,转化为线性模型,然后利⽤线性回归模型的估计与检验⽅法进⾏处理。
称此类模型为可线性化的⾮线性模型。
下⾯介绍⼏种典型的可以线性化的⾮线性模型。
4.1 可线性化的模型⑴指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。
显然x t 和y t 的关系是⾮线性的。
对上式等号两侧同取⾃然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。
其中u t 表⽰随机误差项。
010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =t+, (b < 0)⑵对数函数模型y t = a + b Ln x t+ u t(4.4)b>0和b<0两种情形的图形分别见图4.3和4.4。
x t和y t的关系是⾮线性的。
令x t* = Lnx t, 则y t = a + b x t* + u t(4.5)变量y t和x t* 已变换成为线性关系。
图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶幂函数模型y t= a x t b t u e(4.6) b取不同值的图形分别见图4.5和4.6。
非线性回归模型的拟合与评估

非线性回归模型的拟合与评估非线性回归是统计学中常用的一种回归分析方法,用于描述自变量与因变量之间的非线性关系。
本文将介绍非线性回归模型的拟合与评估方法。
一、非线性回归模型的拟合方法1. 数据收集与准备拟合非线性回归模型首先需要收集与问题相关的数据。
数据的准备包括数据清洗、变量选择和数据变换等步骤,以确保数据的质量和适应非线性回归模型的要求。
2. 模型选择在准备好数据后,需要选择适合问题的非线性回归模型。
常见的非线性回归模型包括多项式回归模型、指数回归模型、对数回归模型等。
选择合适的模型需要根据问题的特点和理论的支持进行判断。
3. 模型拟合模型拟合是指通过最小化残差平方和或最大似然估计等方法,估计模型的参数。
对于非线性回归模型,常用的拟合方法有最小二乘法、非线性最小二乘法、广义最小二乘法等。
4. 拟合效果评估拟合效果评估是判断非线性回归模型拟合程度好坏的指标。
常用的评估方法有残差分析、决定系数、AIC和BIC等。
残差分析可以检验模型的拟合效果和残差的独立性、常数方差和正态性假设。
二、非线性回归模型的评估方法1. 决定系数(R-squared)决定系数是衡量模型拟合程度的指标,其取值范围为0到1之间。
决定系数越接近1,表示模型对观测数据的解释能力越强。
但需要注意,决定系数无法判断模型是否过拟合。
2. 调整决定系数(Adjusted R-squared)调整决定系数是对决定系数进行修正,考虑了自变量数目的影响。
调整决定系数比决定系数更能有效地评估模型的拟合效果。
3. Akaike信息准则(AIC)和贝叶斯信息准则(BIC)AIC和BIC是用于比较不同模型的拟合效果的统计准则。
AIC和BIC数值越小,表示模型越好。
这两个指标在非线性回归模型的选择和评估中广泛应用。
4. 拟合图形分析通过绘制拟合曲线与实际观测数据的对比图,可以直观地评估非线性回归模型的拟合效果。
拟合图形分析可以帮助发现模型的不足之处,从而进行进一步的改进。
非线性回归模型

4.赋值语句一般形式是u=表达式,例如u=abs(y(sin(a1*x1)+b2*cos(c+x2)));用以指定确定性部分 是sin(a1*x1)+b2*cos(c+x2),abs是绝对值函数.
为了估计未知参数的值.常用的方法是非 线性最小二乘法,有时也用非线性最小一乘法, 即LAD回归。非线性最小二乘法即选择合适的使 残差平方和最小从而估计的值。
由于是非线性形式出现,非线性最小二乘法 的解,一般没有线性情形那样的公式可用,只 能通过一个数学分支“最优化”的方法使SSE达 到极小。最优化的理论和方法非常丰富,有多 种方法使SSE达到极小。
X
ln ln Pr(Y 1) =ln 优势=ln( odds)
1 Pr(Y 0) log it ( ) 0 1X1 p X p
优势=
Pr(Y Pr(Y
1) 0)
exp( 0
1 X1
p
X
p
)
如果 Pr(Y 1)=0.7,那么Pr(Y 0)=0.3, 那么,事件发生Pr(Y 1)是事件不发生Pr(Y 0)比较 的0.7 / 0.3=2.33倍。
NLIN应用举例
data bb; input x y wc; cards; 0.001 1.7834 0.032 0.01 1.6983 0.021 0.1 1.5536 0.016 1 1.1145 0.019 10 0.5734 0.023 100 0.2814 0.032 1000 0.1443 0.024 10000 0.0862 0.014 ; proc nlin data=bb method=newton; parms a=1.7 to 2 by 0.05
非线性模型参数估计方法步骤

EViews非线性模型参数估计方法步骤1.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;2.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令并按回车键param c(1) 1 c(2) 1 c(3) 1 c(4) 13.估计非线性模型参数,其方法是在工作区中其输入下列命令并按回车键nls q=exp(c(1))*x^c(2)*p1^c(3)*p0^c(4)4.得到结果见table01(91页表3.5.4结果)(案例一结束)Dependent Variable: QMethod: Least SquaresDate: 03/29/15 Time: 21:44Sample: 1985 2006Included observations: 22Convergence achieved after 9 iterationsQ=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4)Coefficient Std. Error t-Statistic Prob.C(1) 5.567708 0.083537 66.64931 0.0000C(2) 0.555715 0.029067 19.11874 0.0000C(3) -0.190154 0.143823 -1.322146 0.2027C(4) -0.394861 0.159291 -2.478866 0.0233R-squared 0.983631 Mean dependent var 1830.000Adjusted R-squared 0.980903 S.D. dependent var 365.1392S.E. of regression 50.45954 Akaike info criterion 10.84319Sum squared resid 45830.98 Schwarz criterion 11.04156Log likelihood -115.2751 Hannan-Quinn criter. 10.88992Durbin-Watson stat 0.672163(92页表3.5.5结果)(案例二过程)5.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;6.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令并按回车键param c(1) 1 c(2) 1 c(3) 17.估计非线性模型参数,其方法是在工作区中其输入下列命令并按回车键nls q=exp(c(1))*(x/p0)^c(2)*(p1/p0)^c(3)8.得到结果见table02(92页表3.5.5结果)(案例二结束)Dependent Variable: QMethod: Least SquaresDate: 03/29/15 Time: 22:14Sample: 1985 2006Included observations: 22Convergence achieved after 4 iterationsQ=EXP(C(1))*(X/P0)^C(2)*(P1/P0)^C(3)Coefficient Std. Error t-Statistic Prob.C(1) 5.525965 0.072685 76.02666 0.0000C(2) 0.533824 0.019785 26.98163 0.0000C(3) -0.242862 0.134014 -1.812219 0.0858R-squared 0.982669 Mean dependent var 1830.000Adjusted R-squared 0.980845 S.D. dependent var 365.1392S.E. of regression 50.53638 Akaike info criterion 10.80939Sum squared resid 48524.59 Schwarz criterion 10.95817Log likelihood -115.9033 Hannan-Quinn criter. 10.84444Durbin-Watson stat 0.656740。
参数估计的一般步骤

参数估计的一般步骤
参数估计是统计学中的一种方法,用于根据样本数据估计总体参数的值。
它是一个重要的统计推断技术,可以帮助我们了解和描述总体的特征。
参数估计的一般步骤如下:
1. 确定研究对象和目标参数:首先,我们需要明确研究对象是什么,需要估计的是哪个参数。
例如,我们可能希望估计某个产品的平均寿命,那么研究对象是产品,目标参数是平均寿命。
2. 收集样本数据:为了进行参数估计,我们需要收集一定数量的样本数据。
样本应该能够代表总体,并且必须是随机选择的,以避免抽样偏差。
3. 选择合适的估计方法:根据研究对象和目标参数的不同,我们可以选择不同的估计方法。
常见的估计方法包括点估计和区间估计。
点估计给出一个单一的数值作为参数的估计值,而区间估计给出一个范围,以表明参数估计值的不确定性。
4. 计算估计值:根据选择的估计方法,我们可以使用样本数据计算出参数的估计值。
例如,对于平均寿命的估计,我们可以计算样本的平均值作为总体平均寿命的估计值。
5. 评估估计的准确性:估计值的准确性可以通过计算估计的标准误
差或置信区间来评估。
标准误差反映了估计值与真实参数值之间的差异,而置信区间提供了参数估计值的不确定性范围。
6. 解释和应用估计结果:最后,我们需要解释估计结果并应用于实际问题中。
根据估计结果,我们可以得出结论,做出决策或提出建议。
参数估计是一种重要的统计推断方法,可以帮助我们了解总体特征并做出准确的推断。
通过正确的步骤和方法,我们可以获得可靠的参数估计结果,并将其应用于实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EViews非线性模型参数估计方法步骤
1.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;
2.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令
并按回车键
param c(1) 1 c(2) 1 c(3) 1 c(4) 1
3.估计非线性模型参数,其方法是在工作区中其输入下列命令并按
回车键
nls q=exp(c(1))*x^c(2)*p1^c(3)*p0^c(4)
4.得到结果见table01(91页表3.
5.4结果)(案例一结束)
Dependent Variable: Q
Method: Least Squares
Date: 03/29/15 Time: 21:44
Sample: 1985 2006
Included observations: 22
Convergence achieved after 9 iterations
Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4)
Coefficient Std. Error t-Statistic Prob.
C(1) 5.567708 0.083537 66.64931 0.0000
C(2) 0.555715 0.029067 19.11874 0.0000
C(3) -0.190154 0.143823 -1.322146 0.2027
C(4) -0.394861 0.159291 -2.478866 0.0233
R-squared 0.983631 Mean dependent var 1830.000
Adjusted R-squared 0.980903 S.D. dependent var 365.1392
S.E. of regression 50.45954 Akaike info criterion 10.84319
Sum squared resid 45830.98 Schwarz criterion 11.04156
Log likelihood -115.2751 Hannan-Quinn criter. 10.88992
Durbin-Watson stat 0.672163
(92页表3.5.5结果)(案例二过程)
5.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;
6.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令
并按回车键
param c(1) 1 c(2) 1 c(3) 1
7.估计非线性模型参数,其方法是在工作区中其输入下列命令并按
回车键
nls q=exp(c(1))*(x/p0)^c(2)*(p1/p0)^c(3)
8.得到结果见table02(92页表3.5.5结果)(案例二结束)
Dependent Variable: Q
Method: Least Squares
Date: 03/29/15 Time: 22:14
Sample: 1985 2006
Included observations: 22
Convergence achieved after 4 iterations
Q=EXP(C(1))*(X/P0)^C(2)*(P1/P0)^C(3)
Coefficient Std. Error t-Statistic Prob.
C(1) 5.525965 0.072685 76.02666 0.0000
C(2) 0.533824 0.019785 26.98163 0.0000
C(3) -0.242862 0.134014 -1.812219 0.0858
R-squared 0.982669 Mean dependent var 1830.000
Adjusted R-squared 0.980845 S.D. dependent var 365.1392
S.E. of regression 50.53638 Akaike info criterion 10.80939
Sum squared resid 48524.59 Schwarz criterion 10.95817
Log likelihood -115.9033 Hannan-Quinn criter. 10.84444
Durbin-Watson stat 0.656740。