辽宁省沈阳市沈河区2020年初三一模数学试卷
2020年辽宁省沈阳中考数学一模试卷

中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.下列计算错误的是()A. 3-=2B. a0=1C. -2+|-2|=0D. (-3)-2=3.直线y=-x+1经过的象限是()A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限4.下列命题中是真命题的是()A. 确定性事件发生的概率为1B. 平分弦的直径垂直于弦C. 正n边形都是轴对称图形,并且有n条对称轴D. 两边及其一边的对角对应相等的两个三角形全等5.如图所示的几何体的俯视图是()A.B.C.D.6.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A. B. C. D.7.若x1,x2是一元二次方程x2-2x-1=0的两个根,则x12-x1+x2的值为()A. -1B. 0C. 2D. 38.如图,将边长为2的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A. 3B. 4C. 6D. 89.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B.C. D.10.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11.据统计,2018年我国某市高新技术产品出口总额达450亿元.将数据450亿用科学记数法表示为______元.12.数据1,2,3,5,5的众数是______ ,平均数是______ .13.已知关于x的不等式组仅有三个整数解,则a的取值范围是______.14.一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如图所示,如果汽车一直快速行驶,那么可以提前______ 小时到达B地.15.如图,直线y=-与x轴、y轴分别交于点A、B;点Q是以C(0,-1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小值是______.16.抛物线y=a(x-4)2-4(a≠0)在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为______ .三、解答题(本大题共9小题,共72.0分)17.计算:()-1+2(π-3.14)0-2sin60°+|1-3|.18.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?20.我州实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,一共调査了______名同学,其中C类女生有______名;(2)将下面的条形统计图补充完整;(3)为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=-(x<0)交于点P(-1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?22.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D点,DE⊥AC于点E.(1)判断DE与⊙O的位置关系,并证明;(2)连接OE交⊙O于F,连接DF,若tan∠EDF=,求cos∠DEF的值.23.随州某商场要经营一种新上市的文具,进价为10元/件.试营销阶段发现:当销售单价是15元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部门结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过20元;方案B:每天销售量不少于10件,且每件文具的利润至少为18元.请比较哪种方案的最大利润更高,并说明理由.24.数学活动课上,老师出示了一个问题:如图1,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC,现将△ABC与△DEF 按如图所示的方式叠放在一起,现将△ABC保持不动,△DEF运动,且满足点E在边BC边从B向C移动(不与B、C重合),DE始终经过点A,EF与AC交于M 点.求证:△ABE∽△ECM.(1)请解答老师提出的问题.(2)受此问题的启发,小明将△DEF绕点E按逆时针旋转,使DE、EF分别交AB、AC边于点N、M,连接MN,如图2,当EB=EC时,小明猜想△NEM与△ECM相似,小明的猜想正确吗?请你作出判断并说明理由;(3)在(2)的条件下,以E为圆心,作⊙E,使得AB与⊙E相切,请在图3中画出⊙E,并判断直线MN与⊙E的位置关系,说明理由.25.如图,在平面直角坐标系xOy中,抛物线y=ax2-x+c与直线y=x+交于A、B两点,已知点B的横坐标是4,直线y=x+与x、y轴的交点分别为A、C,点P是抛物线上一动点.(1)求抛物线的解析式;(2)若点P在直线y=x+下方,求△PAC的最大面积;(3)设M是抛物线对称轴上的一点,以点A、B、P、M为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,请说明理由.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.结合选项根据轴对称图形与中心对称图形的概念求解即可.本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2.【答案】B【解析】解:A、3-=2,正确,不合题意;B、a0=1(a≠0),故此选项错误,符合题意;C、-2+|-2|=0,正确,不合题意;D、(-3)-2=,正确,不合题意;故选:B.直接利用二次根式加减运算法则、零指数幂的性质、负整数指数幂的性质,化简得出答案.此题主要考查了二次根式加减运算、零指数幂、负整数指数幂的性质应用,正确化简各数是解题关键.3.【答案】B【解析】解:由于k=-1<0,b=1>0,故函数过一、二、四象限,故选:B.根据一次函数的性质解答即可.本题考查了一次函数的性质,一次函数解析式:y=kx+b(k≠0),k、b的符号决定函数所经过的象限.4.【答案】C【解析】解:A、确定性事件发生的概率为1,是假命题,发生的概率应该是0或1,故本选项错误;B、平分弦的直径垂直于弦,是假命题,被平分的弦是直径就不一定垂直,故本选项错误;C、正n边形都是轴对称图形,并且有n条对称轴,是真命题,故本选项正确;D、两边及其一边的对角对应相等的两个三角形全等,是假命题,故本选项错误.故选C.根据概率,圆的性质,正多边形的对称性以及全等三角形的判定对各选项分析判断即可得解.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.【答案】D【解析】解:从上往下看,得两个长方形的组合体.故选D.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.【答案】B【解析】解:画树状图为:(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C 表示)共有9种可能的结果数,其中小波和小睿选到同一课程的结果数为3,所以小波和小睿选到同一课程的概率==.故选:B.先画树状图(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)展示所有9种可能的结果数,再找出小波和小睿选到同一课程的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.【答案】D【解析】解:∵x1,x2是一元二次方程x2-2x-1=0的两个根,∴x1+x2=-=2,x1•x2==-1.x12-x1+x2=x12-2x1-1+x1+1+x2=1+x1+x2=1+2=3.故选:D.由根与系数的关系得出“x1+x2=2,x1•x2=-1”,将代数式x12-x1+x2变形为x12-2x1-1+x1+1+x2,套入数据即可得出结论.本题考查了根与系数的关系,解题的关键是利用根与系数的关系找出两根之积与两根之和.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系,找出两根之和与两根之积是关键.8.【答案】B【解析】解:∵正方形的边长为2,∴弧BD的弧长=4,∴S扇形DAB=lr=×4×2=4,故选B.由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=lr,此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB=lr.9.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选:D.先连接OP,易知OP是Rt△AOB斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半,可得OP=AB,由于木杆不管如何滑动,长度都不变,那么OP就是一个定值,那么P点就在以O为圆心的圆弧上.本题考查了轨迹,直角三角形斜边上的中线,解题的关键是知道直角三角形斜边上的中线等于斜边的一半.10.【答案】C【解析】解:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CF=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴=,∴AE•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG,MG=CH,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF,∴MG•MH=AE×BF=AE•BF=AC•BC=,故④正确;故选:C.①由题意知,△ABC是等腰直角三角形,根据等腰直角三角形即可作出判断;②如图1,当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而作出判断;③如图2所示,SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可作出判断;④根据AA可证△ACE∽△BFC,根据相似三角形的性质可得AF•BF=AC•BC=1,由题意知四边形CHMG是矩形,再根据平行线的性质和等量代换得到MG•MH=AE×BF=AE•BF=AC•BC=,依此即可作出判断.此题考查了三角形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.11.【答案】4.5×1010【解析】解:450亿=45000000000=4.5×1010,故答案为:4.5×1010.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】5;【解析】解:数据1,2,3,5,5的众数是5;平均数是×(1+2+3+5+5)=.故答案为:5;.根据众数、平均数的概念求解.本题考查了众数和平均数的概念,掌握各知识点的概念是解答本题的关键.13.【答案】-≤a<0【解析】解:由4x+2>3x+3a,解得x>3a-2,由2x>3(x-2)+5,解得3a-2<x<1,由关于x的不等式组仅有三个整数解,得-3≤3a-2<-2,解得-≤a<0,故答案为:-≤a<0.根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.14.【答案】2【解析】解:320-160=160千米,160÷2=80千米/小时.320÷80=4小时.6-4=2.故答案为:2.由题意可知汽车2小时形式的路程为160千米,从而可求得汽车行驶的速度,然后依据路程÷速度=时间可求得按照原来速度形式所需要的时间,故此可求得提前的时间.本题主要考查的是一次函数的应用,依据函数的图形求得汽车原来的速度是解题的关键.15.【答案】【解析】解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.直线y=-,当x=0时,y=3,∴点B的坐标为(0,3);当y=0时,x=4,∴点A的坐标为(4,0).∴OA=4,OB=3,∴AB==5,∴sin B==.∵C(0,-1),∴BC=3-(-1)=4,∴CP=BC•sin B=.∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案为:.过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,利用角的正弦求出CP的值,再根据勾股定理即可求出PQ的长度.本题考查了切线的性质、三角函数以及勾股定理,解题的关键是确定P、Q点的位置.本题属于中档题,难度不大,解决该题型题目时,借助于切线的性质寻找到PQ取最小值时点P、Q的位置是关键.16.【答案】1【解析】解:∵抛物线y=a(x-4)2-4(a≠0)的对称轴为直线x=4,而抛物线在6<x<7这一段位于x轴的上方,∴抛物线在1<x<2这一段位于x轴的上方,∵抛物线在2<x<3这一段位于x轴的下方,∴抛物线过点(2,0),把(2,0)代入y=a(x-4)2-4(a≠0)得4a-4=0,解得a=1.故答案为:1.根据抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这一段位于x轴的上方,而抛物线在2<x<3这一段位于x轴的下方,于是可得抛物线过点(2,0),然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a的值.本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.17.【答案】解:原式=-3+2-2×-2+3-1=-3+2--2+3-1=-2.【解析】直接利用特殊角的三角函数值以及负整数指数幂的性质和零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.【解析】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.连接AD,利用“边边边”证明△ABD和△ACD全等,然后根据全等三角形对应角相等可得∠BAD=∠CAD,再根据角平分线上的点到角的两边距离相等证明即可.19.【答案】解:设甲队单独完成工程需x天,由题意,得:×9+×5=1,解得:x=20,经检验得:x=20是方程的解,∵-=,∴乙单独完成工程需30天,∵20<30,∴从缩短工期角度考虑,应该选择甲队.【解析】设甲队单独完成工程需x天,则甲队的工作效率为,等量关系:甲乙9天的工作量+甲5天的工作量=1,可得方程,解出即可.本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:甲乙9天的工作量+甲5天的工作量=1.20.【答案】(1)50;8;(2)补全条形统计图如下:(3)将A类与D类学生分为以下几种情况:男A女A1 女A2男D男A男D女A1男D女A2男D女D女D男A女A1女D女A2女D∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.【解析】解:(1)样本容量:25÷50%=50,C类总人数:50×40%=20人,C类女生人数:20-12=8人.故答案为:50,8;(2)见答案;(3)见答案.【分析】(1)由扇形图可知,B类总人数为10+15=25人,由条形图可知B类占50%,则样本容量为:25÷50%=50人;由条形图可知,C类占40%,则C类有50×40%=20人,结合条形图可知C类女生有20-12=8人;(2)根据(1)中所求数据补全条件统计图;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【答案】解:由P(-1,n)在y=-上,得n=4,∴P(-1,4),∵F为PE中点,∴OF=n=2,∴F(0,2),又∵P,F在y=kx+b上,∴,解得.∴直线l的解析式为:y=-2x+2.(2)如图,过P作PD⊥AB,垂足为点D,∵PA=PB,∴点D为AB的中点,又由题意知A点的纵坐标为-2a+2,B点的纵坐标为-,D点的纵坐标为4,∴得方程-2a+2-=4×2,解得a1=-2,a2=-1(舍去).∴当a=-2时,PA=PB.【解析】(1)先由y=-,求出点P的坐标,再根据F为PE中点,求出F的坐标,把P,F的坐标代入求出直线l的解析式;(2)过P作PD⊥AB,垂足为点D,由A点的纵坐标为-2a+2,B点的纵坐标为-,D点的纵坐标为4,列出方程求解即可.本题主要考查了反比例函数与一次函数的交点,解题的重点是求出直线l的解析式.22.【答案】解:(1)DE与⊙O相切,理由:如图1,连接OD,AD,∵AB为⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD,∵AO=BO,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE与⊙O相切;(2)如图2,延长EO,交⊙O于N,连接DN,OD,∵DE与⊙O相切,∴∠EDF=∠DNF,∴tan∠EDF=tan∠DNF=,∵∠FED=∠NED,∴△△EDF∽△END,∴==,设EF=1,DE=2,∵∠ODE=∠NDF=90°,∴OD2+DE2=(OD+EF)2,∴OD=,∴OE=∴cos∠DEF==.【解析】(1)如图1,连接OD,AD,由AB为⊙O的直径,得到AD⊥BC,根据等腰三角形的性质得到AO=BO,根据平行线的性质得到OD⊥DE,于是得到结论;(2)如图2,延长EO,交⊙O于N,连接DN,OD,由DE与⊙O相切,得到∠EDF=∠DNF根据相似三角形的性质得到==,设EF=1,DE=2,根据勾股定理得到OD=,解直角三角形即可得到结论.本题考查了直线与圆的位置关系,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.23.【答案】解:(1)由题意得,销售量=250-10(x-15)=-10x+400,则w=(x-10)(-10x+400)=-10x2+500x-4000;(2)w=-10x2+500x-4000=-10(x-25)2+2250.∵-10<0,∴函数图象开口向下,w有最大值,当x=25时,w最大=2250,故当单价为25元时,该文具每天的利润最大;(3)A方案利润高.理由如下:A方案中:10<x≤20,故当x=20时,w有最大值,此时w A=2000;B方案中:,故x的取值范围为:28≤x≤39,∵函数w=-10(x-35)2+2250,对称轴为直线x=35,∴当x=35时,w有最大值,此时w B=2250,∵w A<w B,∴B方案利润更高.【解析】(1)根据利润=(销售单价-进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.本题考查了二次函数的应用,属于销售利润问题;要明确销售利润=每件的利润×销售的数量,解这类题的一般步骤是:①根据题意列出函数表达式,求出取值范围;②在自变量的取值范围内,运用公式法或配方法求出二次函数的最大值或最小值.24.【答案】(1)证明:如图1中,∵△ABC≌△DEF,∴∠B=∠DEF,∵AB=AC,∴∠B=∠ECM,∵∠AEC=∠B+∠BAE=∠DEF+∠CEM,∴∠CEM=∠BAE,∴△ABE∽△ECM.(2)结论正确.理由:如图2中,∵∠NEC=∠B+∠ENB=∠NEF+∠CEM,∠NEF=∠B,∴∠ENB=∠CEM,∵∠B=∠ECM,∴△BNE∽△CEM,∴=,∵BE=EC,∴=,∴=,∵∠NEM=∠C,∴△NEM∽△ECM.(3)结论:直线MN与⊙E相切.理由:如图3中,设⊙E与AB相切于点G,作EH⊥NM于H.由(2)可知△BNE∽△CEM,△NEM∽△ECM.∴∠BNE=∠CEN=∠ENM,∵AB是⊙E的切线,∴EG⊥NB,∵EH⊥NM,∴EG=EH,∴NM是⊙E的切线.【解析】(1)欲证明△ABE∽△ECM,只要证明∠B=∠ECM,∠BAE=∠CEM.(2)结论正确.先证明△BNE∽△CEM,得=,因为BE=EC,所以=,即=,因为∠NEM=∠C,即可证明△NEM∽△ECM.(3)结论:直线MN与⊙E相切.如图3中,设⊙E与AB相切于点G,作EH⊥NM于H.首先证明∠ENB=∠ENM,再根据角平分线的性质定理即可证明.本题考查全等三角形的性质、相似三角形的判定和性质、圆、角平分线的性质定理等知识,解题的关键是熟练掌握相似三角形的判定和性质,学会利用角平分线的性质定理添加辅助线,属于中考压轴题.25.【答案】解:(1)y=x+,令y=0,则x=-1,故点A(-1,0),∵B的横坐标是4,则点B(4,2),将点A、B的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2-x-;(2)过点P作y轴的平行线交AB于点H,设点P(x,x2-x-),则点H(x,x+)则△PAC面积S=S△PHA-S△PHC=PH(x C-x A)=×(x+-x2+x+)=-x2+x+,∵<0,故S有最大值,当x=时,S的最大值为:;(3)能,理由:设点P的坐标为:(m,n),点M(1,s),而点A、B的坐标分别为:(-1,0)、(4,2),①当AB是边时,点A向右平移5个单位、向上平移2个单位得到B,同样,点P(M)向右平移5个单位、向上平移2个单位得到M(P),即1+5=m或1-5=m,解得:m=6或-4,则n=,故点P(6,)或(-4,);②当AB是对角线时,由中点公式得:m+1=4-1,解得:m=2,故点P(2,-);综上,点P的坐标为:(6,)或(-4,)或(2,-).【解析】(1)y=x+,令y=0,则x=-1,故点A(-1,0),B的横坐标是4,则点B(4,2),将点A、B的坐标代入抛物线表达式,即可求解;(2)△PAC面积S=S△PHA-S△PHC=PH(x C-x A)=×(x+-x2+x+)=-x2+x+,即可求解;(3)分AB是边、AB是对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2020年沈阳市初三数学上期末一模试卷带答案

(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
22.为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.
23.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克)
50
60
70
销售量y(千克)
100
80
60
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
12.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )
A. B. C. D.
二、填空题
13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
11.D
解析:D
【解析】
【分析】
首先根据根与系数的关系,求出a+b=-3;然后根据a是方程 的实数根,可得 ,据此求出 ,利用根与系数关系得: =-3, 变形为( )-( ),代入即可得到答案.
【详解】
解:∵a、b是方程 的两个实数根,
∴ =-3;
2020年辽宁省沈阳市中考数学一模试卷 (含答案解析)

2020年辽宁省沈阳市中考数学一模试卷一、选择题(本大题共10小题,共20.0分)1.下列各数中,比−4小的数是()A. −5B. −1C. 0D. 12.我国自行设计、自主集成研制的蛟龙号载人潜水器最大下潜深度为7062m.将7062用科学记数法表示为()A. 7.062×103B. 7.1×103C. 0.7062×104D. 7.062×1043.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A. a2+a3=a5B. a4⋅a3=a12C. a4÷a3=aD. (a4)3=a75.如图,AB//CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A. 34°B. 56°C. 66°D. 54°6.不等式−3x−3>0的解集是()A. x<1B. x<−1C. x>1D. x>−17.下列事件中,是必然事件的是()A. 将油滴入水中,油会浮在水面上B. 车辆随机到达一个路口,遇到红灯C. 如果a 2=b 2,那么a =bD. 掷一枚质地均匀的硬币,一定正面向上8. 关于一元二次方程x 2+4x +3=0的根的情况,下列说法正确的是( )A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 不确定9. 直线y =kx +b 交坐标轴于A(−2,0),B(0,3)两点,则直线不经过第( )象限A. 一 B. 二 C. 三D. 四10. 如图,矩形ABCD 中,AB =√2,BC =2,以B 为圆心,BC 为半径画弧,交AD 于E ,则图中阴影部分的周长是( )A. 2+π2B. √2+π2C. 2十πD. 1+π二、填空题(本大题共6小题,共18.0分)11. 因式分解:x 2−2x =______.12. 方程组{x −y =13x +y =7的解为______. 13. 甲、乙两人进行射击比赛,每人10次射击的平均成绩都是8.5环,方差分别是s 甲2=3,s 乙2=2.5,则射击成绩较稳定的是______.14. 在△ABC 中,AB =AC =17 cm ,BC =16 cm ,AD ⊥BC 于点D ,则AD =_______.15. 如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,点E 、F 分别是线段AO 、BO 的中点.若AC +BD =24cm ,若EF =4cm ,则△OCD 的周长= cm .16. 如图,矩形ABCD 中,AD =9,AB =15.点E 为射线DC 上的一个动点,将△ADE 沿着AE 折叠,当△AD′B 为直角三角形时,DE 的长为________.三、解答题(本大题共9小题,共82.0分))−1−2sin60°.17.17.计算:(3.14−π)0+|1−√3|+(−1418.某校组织一项公益知识竞赛,比赛规定:每个代表队由3名男生、4名女生和1名指导老师组成.但参赛时,每个代表队只能有3名队员上场参赛,指导老师必须参加,另外2名队员分别在3名男生和4名女生中各随机抽出一名.七年级(1)班代表队有甲、乙、丙三名男生和A、B、C、D4名女生及1名指导老师组成.求:(1)抽到D上场参赛的概率;(2)恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的概率.(请用“画树状图”或“列表”的方式给出分析过程)19.如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.求证:AF=BE.20.保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:根据图表解答下列问题:(1)请将图2−条形统计图补充完整;(2)在图3−扇形统计图中,求出“D”部分所对应的圆心角等于______度;(3)在抽样数据中,产生的有害垃圾共有______吨;(4)调查发现,在可回收物中废纸垃圾约占1,若每回收1吨废纸可再造好纸0.85吨.假设该城市5每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?21.列方程解应用题某工程队修建一条1200m的道路,由于施工过程中采用了新技术,所以工作效率提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)这项工程,如果要求工程队提前两天完成任务,那么实际的工作效率比原计划增加百分之几?22.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD//AB,求证:BC是⊙O的切线;23.如图1,在平面直角坐标系中,点A坐标为(2,0),点B在x轴负半轴上,C在y轴正半轴上,∠ACB=90°,∠ABC=30°.(1)求点B坐标;(2)如图2,点P从B出发,沿线段BC运动,点P运动速度为每秒2个单位长度,设运动时间为t秒,用含t的式子表示三角形△OBP的面积S;(3)如图3,在(2)的条件下,点P出发的同时,点Q从O出发,在线段OC上运动,运动速度为每秒2个单位长度,一个点到达终点,另一个点也停止运动.连接PQ,以PQ为一边,在第二象限作等边△PQM,作ME⊥y轴于E,点D为PC中点,作DN⊥BC交y轴于N,若CE=BP,BC=4√3,求N的坐标.24.(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:____;②若AC=BC=√10,DC=CE=√2,则线段AD的长为____;(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=√21,BC=√7,CD=√3,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.如图,在直角坐标平面内,抛物线经过原点O、点B(1,3),又与x轴正半轴相交于点A,∠BAO=45°,点P是线段AB上的一点,过点P作PM//OB,与抛物线交于点M,且点M在第一象限内.(1)求抛物线的表达式;(2)若∠BMP=∠AOB,求点P的坐标;(3)过点M作MC⊥x轴,分别交直线AB、x轴于点N、C,若△ANC的面积等于△PMN的面积的2倍,求MN的值.NC-------- 答案与解析 --------1.答案:A解析:此题考查的是有理数的大小比较,根据正数都大于0,负数都小于0,正数大于一切负数,两个负数比较,绝对值大的反而小的法则进行判断即可.解:−5<−1<0<1,所以比−4小的数是−5,故选A.2.答案:A解析:解:7062用科学记数法表示为7.062×103,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:A解析:解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.答案:C解析:解:A、a2+a3,无法计算,故此选项错误;B、a4⋅a3=a7,故此选项错误;C、a4÷a3=a,正确;D、(a4)3=a12,故此选项错误;故选:C.利用同底数幂的乘除运算法则和幂的乘方运算法则分别计算得出答案.本题主要考查了同底数幂的乘除运算和幂的乘方,正确掌握运算法则是解题的关键.5.答案:B解析:解:∵AB//CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°−90°−34°=56°.故选:B.根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.本题考查了平行线的性质,三角形的内角和,熟记平行线的性质定理是解题的关键.6.答案:B解析:解:−3x>3,x<−1故选:B.根据一元一次不等式的解法即可求出答案.本题考查一元一次不等式,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.7.答案:A解析:解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D 、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A .根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.答案:A解析:本题考查了根的判别式,利用根的判别式是解题关键.根据根的判别式,可得答案.解:a =1,b =4,c =3,Δ=b 2−4ac =42−4×1×3=4>0,∴一元二次方程x 2+4x +3=0有两个不相等的实数根,故选A .9.答案:D解析:本题考查用待定系数法求一次函数解析式,一次函数的图象.熟练掌握一次函数y =kx +b 的图象是一条直线,掌握直线的位置和性质与系数k ,b 的关系,再根据一次函数银析式中k ,b 的取值范围,确定一次函数图象经过的象限,从而得出答案.解:序曲直线解析式为y =kx +b ,把A(−2,0),B(0,3)代入即得{−2k +b =0b =3, 解得:{k =32b =3, ∵k =32>0,b =3>0,∴直线y =32x +3经过第一、第二、第三象限,不经过第四象限,故选D . 10.答案:A解析:解:∵矩形ABCD 中,AB =√2,BC =2,∴AD =BC =2,CD =AB =√2∠A =90°,∵BE =BC =2,在Rt △ABE 中,∵AB =√2,BE =2,∴∠AEB =∠ABE =45°,AE =AB =√2,∴DE =AD −AE =2−√2,∵∠ABC =90°,∴∠CBE =45°,∴CE ⏜的长度=45⋅π×2180=π2, ∴图中阴影部分的周长=√2+2−√2+12π=2+12π,故选:A .根据矩形的想知道的AD =BC =2,CD =AB =√2∠A =90°,求得BE =BC =2,得到∠AEB =∠ABE =45°,AE =AB =√2,根据弧长公式得到CE ⏜的长度=45⋅π×2180=π2,于是得到结论. 本题考查了弧长的计算,矩形的性质,等腰直角三角形的判定和性质,熟练掌握弧长的计算公式是解题的关键.11.答案:x(x −2)解析:解:原式=x(x −2),故答案为:x(x −2)原式提取x 即可得到结果.此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.答案:{x =2y =1解析:解:{x −y =1 ①3x +y =7 ②, ①+②得:4x =8,解得:x =2,把x =2代入①得:y =1,则方程组的解为{x =2y =1. 故答案为:{x =2y =1. 方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 13.答案:乙解析:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,比较出甲和乙的方差大小即可.解:∵s 甲2=3,s 乙2=2.5,∴s 甲2>s 乙2,∴则射击成绩较稳定的是乙,故答案为乙.14.答案:15cm解析:此题主要考查了勾股定理,等腰三角形的性质的理解及运用.利用等腰三角形“三线合一”的性质求得AD的长度是解题的关键.利用等腰三角形的性质求得BD=12BC=8cm.然后在直角△ABD中,利用勾股定理来求AD的长度.解:如图,∵△ABC中,AB=AC=17cm,BC=16cm,AD⊥BC于点D,∴BD=12BC=8cm,∴在直角△ABD中,由勾股定理,得AD=√AB2−BD2=√172−82=15(cm).故答案是:15cm.15.答案:20解析:本题主要考查了三角形中位线定理以及平行四边形的性质;熟练掌握平行四边形的性质,求出AB的长是解决问题的关键.根据平行四边形的性质可知OC=12AC,OD=12BD,求出OC+OD=12cm,由三角形中位线定理求出AB的长,即可得出△OCD的周长.解:∵▱ABCD的对角线AC,BD相交于点O,∴OC=12AC,OD=12BD,CD=AB,∵AC+BD=24cm,∴OD+OC=12cm,∵点E,F分别是线段AO,BO的中点,∴CD=AB=2EF=8cm,∴△OCD的周长=OC+OD+CD=12+8=20cm;故答案为20.16.答案:3或27解析:本题考查翻折的性质,三角形全等的判定与性质,勾股定理,矩形的性质,运用了分类讨论思想,分两种情况:点E在DC线段上,点E为DC延长线上的一点,进一步分析探讨得出答案即可.解:如图1,点D翻折到D′位置,由折叠得△AD′E≌△ADE,∴∠AD′E=∠D=90°,AD′=AD=BC,∵∠AD′B=90°,∴B、D′、E三点共线,又∵∠C=90°,∠ABC=90°,∠AD′B=90°,∴∠CEB+∠CBE=90°,∠D′BA=∠CBE=90°,∠C=∠AD′B,∴∠CEB=∠D′BA,又∵AD′=BC,∴ABD′≌△BEC(AAS),∴BE=AB=15,∵BD′=√AB2−AD′2=√152−92=12,∴DE=D′E=15−12=3;如图2,点D翻折到D′′位置,∵∠D,∴∠ABD″+∠EBC=∠ABD″+∠BAD″=90°,∴∠EBC=∠BAD″,在△ABD″和△BEC中,{∠D′′=∠BCE AD′′=BC∠BAD′′=∠EBC,∴△ABD″≌△BEC(ASA),∴BE=AB=15,CE=√BE2−BC2=√152−92=12,∴DE=CD+CE=15+12=27.综上所知,DE=3或27.故答案为3或27.17.答案:−4解析:分别利用零指数幂法则、绝对值的代数意义、负整数指数幂法则以及特殊角的三角函数值计算即可得到结果.【详解】=1+√3−1−4−√3=−4.原式=1+√3−1−4−2×√32本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.18.答案:解:(1)抽到D上场参赛的概率=1;4(2)画树状图为:共有12种等可能的结果数,其中恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的结果数为1,.所以恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的概率=112解析:(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,找出恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.19.答案:证明:∵四边形ABCD是矩形,∴AD=BC,AD//BC,∴∠DAE=∠BEA,在△ABE和△DFA中,{∠B=∠DFA∠BEA=∠FAD AE=AD,∴△ABE≌△DFA(AAS),∴AF=BE.解析:利用矩形的性质对边相等且平行以及每个内角都为90°,进而得出△ABE≌△DFA(AAS),求出即可.此题主要考查了矩形的性质以及全等三角形的判定与性质,得出△ABE≌△DFA是解题关键.20.答案:(1)抽查的垃圾总数是:5÷10%=50(吨)B组的数量是:50×30%=15.(2)36;(3)3;(4)10000×54%×15×0.85=918(吨).解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据D 类垃圾有5吨,所占的百分比是10%,据此即可求得总数,然后利用百分比的意义求得B 类的数值;(2)利用360°乘以对应的百分比即可求得;(3)利用抽查的总数乘以对应的百分比;(4)利用总数乘以可回收的比例,然后乘以0.85即可求解.解:(1)抽查的垃圾总数是:5÷10%=50(吨)B 组的数量是:50×30%=15.;(2)“D ”部分所对应的圆心角是:360°×10%=36°;(3)在抽样数据中,产生的有害垃圾共有:50×(1−54%−30%−10%)=3(吨);(4)10000×54%×15×0.85=918(吨). 21.答案:解:(1)设这个工程队原计划每天修建道路x 米,则实际每天修建道路(1+50%)x 米, 依题意,得:1200x −1200(1+50%)x =4,解得:x =100,经检验,x =100是原方程的解,且符合题意.答:这个工程队原计划每天修建道路100米.(2)设实际的工作效率比原计划增加的百分比为y ,依题意,得:1200100−1200100(1+y)=2,解得:y =0.2=20%.经检验,y =20%是原方程的解,且符合题意.答:实际的工作效率比原计划增加20%.解析:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.(1)设这个工程队原计划每天修建道路x米,则实际每天修建道路(1+50%)x米,根据工作时间=工作总量÷工作效率结合实际比原计划提前4天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设实际的工作效率比原计划增加的百分比为y,根据工作时间=工作总量÷工作效率结合实际比原计划提前2天完成任务,即可得出关于y的分式方程,解之经检验后即可得出结论.22.答案:证明:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB//CD,∴∠4=∠1=30°,∴∠BOC=60°,∴∠BOC=∠COD,∵OB=OD,OC=OC,∴△BOC≌△DOC,∴∠OBC=∠ODC=90°,∴BC是⊙O的切线.解析:本题考查了圆的切线的性质与判定,三角形全等的性质与判定以及等腰三角形的性质与判定的知识,熟练掌握这些知识是解决本题的关键.(1)先判断∠2+∠3=90°,再判断出∠1=∠2,即可得出结论;(2)先判断出∠COD=60°,再判断∠BOC=60°,证出△BOC≌△DOC,即可得出结论.23.答案:解:(1)∵A(2,0),∴OA=2,∵∠ACB=90°,∠ABC=30°,∴∠BAC=60°,∴OC=OA⋅tan60°=2√3,AC=2OA=4,∴AB=2AC=8,∴OB=8−2=6,∴B(−6,0).(2)如图1,过P作PG⊥x轴于G,由题意得:BP=2t,Rt△BPG中,∠B=30°,∴PG=12BP=t,∴S=12⋅OB⋅PG=12×6×t=3t;(3)如图2,连接PN、CM∵BP=2t,BC=4√3,∴PC=4√3−2t,∵D是PC的中点,∴PD=CD,∵DN⊥PC,∴PN=CN,∵∠PCN=60°,∴△PCN是等边三角形,∴PC=PN=CN=4√3−2t,∠NPC=60°,∵△PQM是等边三角形,∴PM=PQ,∠MPQ=60°,∴∠MPC=∠QPN,∴△MPC≌△QPN(SAS),∴QN=CM,∠MCP=∠QNP=60°,∵∠PCN=60°,∴∠MCE=60°,∵OC=2√3,OQ=2t,∴CQ=2√3−2t,∴QN=CN−CQ=4√3−2t−(2√3−2t)=2√3,∴CM=QN=2√3,Rt△MCE中,∠MCE=60°,∴CE=12CM=√3,∵CE=BP=2t=√3,∴ON=QN−OQ=2√3−2t=2√3−√3=√3,∴N(0,−√3).解析:(1)解直角三角形求出AB即可解决问题;(2)如图1,作高线PG,根据直角三角形30度角的性质可得PG的长为t,利用三角形面积公式可得S;(3)如图2,作辅助线,证明△PCN是等边三角形,再证明△MPC≌△QPN(SAS),得QN=CM,∠MCP=∠QNP=60°,得到30度的直角△MCE,并求得CM=QN=2√3,根据CE=BP可得结论.本题属于三角形综合题,考查了解直角三角形,锐角三角函数,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会作辅助线,构建全等三角形思考问题,属于中考压轴题.24.答案:解:(1)①AD⊥BD;②4;(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=√21,BC=√7,CD=√3,CE=1.∴∠ACD=∠BCE,ACBC =√3=CDCE,∴△ACD∽△BCE,∴∠ADC=∠BEC,∵CD =√3,CE =1, ∴DE =√DC 2+CE 2=2,∵∠ADC =∠BEC ,∠DCE =∠CFD =90°,∴△DCE∽△CFD ,,即2√3=√3CF =1DF , ∴CF =32,DF =√32, ∴AF =√AC 2−CF 2=5√32, ∴AD =DF +AF =3√3;若点D 在BC 左侧,如图,过点C 作CF ⊥AD ,交AD 的延长线于点F ,∵∠ACB =∠DCE =90°,AC =√21,BC =√7,CD =√3,CE =1.∴∠ACD =∠BCE ,AC BC =√3=CDCE ,∴△ACD∽△BCE ,∴∠ADC =∠BEC ,∵CD =√3,CE =1,,∵∠CED =∠CDF ,∠DCE =∠CFD =90°,∴△DCE∽△CFD ,∴DE DC =DC CF =CE DF , 即√3=√3CF =1DF ,∴CF =32,DF =√32, ∴AF =√AC 2−CF 2=5√32, ∴AD =AF −DF =2√3.解析:本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线.(1)①由“SAS ”可证△ACD ≌△BCE ,可得∠ADC =∠BEC =45°,可得AD ⊥BD ;②过点C 作CF ⊥AD 于点F ,由勾股定理可求DF ,CF ,AF 的长,即可求AD 的长;(2)分点D 在BC 左侧和BC 右侧两种情况讨论,根据勾股定理和相似三角形的性质可求解. 解:(1)①∵△ABC 和△DEC 均为等腰直角三角形,∴AC =BC ,CE =CD ,∠ABC =∠DEC =45°=∠CDE ,∵∠ACB =∠DCE =90°,又AC=BC,CE=CD,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC=45°,∴∠ADE=∠ADC+∠CDE=90°,∴AD⊥BD,故答案为:AD⊥BD;②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=√2,∴DF=CF=1,,∴AD=AF+DF=4,故答案为:4;(2)见答案.25.答案:解:(1)如图,过点B作BH⊥x轴,垂足为点H,∵点B(1,3)∴BH=3,OH=1,∵∠BAO=45°,∠BHA=90°∴AH=BH=3,∴OA=4∴点A(4,0)∵抛物线过原点O、点A、B,∴设抛物线的表达式为y=ax2+bx(a≠0)∴{0=16a+4ba+b=3解得:a=−1,b=4∴抛物的线表达式为:y=−x2+4x(2)如图,∵PM//OB∴∠PMB+∠OBM=180°,且∠BMP=∠AOB,∴∠AOB+∠OBM=180°∴BM//OA,设点M(m,3),且点M 在抛物线y =−x 2+4x 上,∴3=−m 2+4m ,∴m =1(舍去),m =3∴点M(3,3),∵点O(0,0),点A(4,0),点B(1,3)∴直线OB 解析式为y =3x ,直线AB 解析式为y =−x +4,∵PM//OB ,∴设PM 解析式为y =3x +n ,且过点M(3,3)∴3=3×3+n ,∴n =−6∴PM 解析式为y =3x −6∴{y =3x −6y =−x +4解得:x =52,y =32∴点P(52,32)(3)如图,延长MP 交x 轴于点D ,作PG ⊥MN 于点G ,∵PG ⊥MN ,MC ⊥AD∴PG//AD∴∠MPG =∠MDC ,∠GPN =∠BAO =45°,又∵∠PGC =90°,∠ACG =90°,∴AC =CN ,PG =NG ,∵PM//OB,∴∠BOA=∠MDC,∴∠MPG=∠BOA ∵点B坐标(1,3)∴tan∠BOA=3=tan∠MPG=MG PG∴MG=3PG=3NG,∴MN=4PG,∵△ANC的面积等于△PMN的面积的2倍,∴12×AC×NC=2×12×MN×PG,∴NC2=2×MN×14MN=12MN2,∴MNNC=√2解析:(1)过点B作BH⊥x轴,垂足为点H,根据等腰直角三角形的性质可求点A(4,0),用待定系数法可求抛物线的表达式;(2)根据平行线的性质可得BM//OA,可求点M坐标,用待定系数法可求直线BO,直线AB,直线PM的解析式,即可求点P坐标;(3)延长MP交x轴于点D,作PG⊥MN于点G,根据等腰直角三角形的性质可得AC=CN,PG=NG,根据锐角三角函数可得tan∠BOA=3=tan∠MPG=MGPG,可得MG=3PG=3NG,根据面积关系可求MNNC的值.本题是二次函数综合题,考查了待定系数法可求函数解析式,平行线的性质,锐角三角函数等知识,正确作出辅助线是解题的关键.。
辽宁省沈阳市沈阳2020年数学中考模拟试卷(一)及参考答案

三、解答题 17. 计算: 18. 如图, ABCD中,点E是BC边的一点,延长AD至点F,使∠DFC=∠DEC. 求证:四边形DECF是平行四边形.
19. 中雅培粹学校举办运动会,全校有3000名同学报名参加校运会,为了解各类运动赛事的分布情况,从中抽取了部 分同学进行统计:A.田径类,B.球类,C.团体类,D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.
甲
乙
进价(元/袋) 售价(元/袋)
m
m﹣2
20
13
(1) 求m的值; (2) 假如购进的甲、乙两种绿色袋装食品全部卖出,所获总利润不少于5200元,且不超过5280元,问该超市有几种
进货方案?(利润=售价﹣进价)
22. 如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于 点E,交AB的延长线于点F.
(1) 求抛物线的解析式; (2) F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;
(3) 在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为
?若存在,求出点P的坐标;若不存
在,请说明理由;
(4) 矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面 积时,求抛物线平移的距离.
14. 如图,四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°,则∠OCB=________°.
15. 一男生推铅球,铅球行进高度y与水平距离x之间的关系是
,则铅球推出的距离是________.
2020年辽宁省沈阳市沈河区中考数学一模试卷(含解析和答案)

2020年辽宁省沈阳市沈河区中考数学一模试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。
每小题2分,共20分)1.(2分)﹣2020的倒数是()A.2020B.±12020C.﹣12020D.120202.(2分)2020年初全球处于新型冠状病毒引起的巨变之中,中国有2万名以上的医护人员在短时间就集结完毕,他们是我们心中的“最美逆行者”!其中数据2万用科学记数法表示为()A.2×103B.2×104C.0.2×105D.20×1033.(2分)如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形的俯视图是()A.B.C.D.4.(2分)“2019武汉军运会”部分体育项目的示意图中是轴对称图形的是()A.B.C.D.5.(2分)不等式组23451020aa+>⎧⎨+<⎩的解集为()A.B.C.D.6.(2分)如图,将一张矩形纸片折叠,若∠1=78°,则∠2的度数是()A.51°B.56°C.61°D.78°7.(2分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为()A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩8.(2分)为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如表:每天使用零花钱(单位:元)2345人数14532关于这15名同学每天使用零花钱的情况,下列说法正确的是()A .中位数是3元B .众数是5元C.平均数是2.5元D .方差是49.(2分)如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(图中阴影部分)的面积是32,那么sin α的值为()A .12B .23C .34D .4510.(2分)使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度可能为()A .18°B .37°C .54°D .58°二、填空题(每小题3分,共18分)11.(3分)分解因式:9ax 2﹣ay 2=.12.(3分)若一个圆内接正六边形的边长是4cm ,则这个正六边形的边心距=.13.(3分)关于x 的一元二次方程x 2﹣2x +k ﹣1=0没有实数根,则k 的取值范围是.14.(3分)如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数3yx的图象上,则菱形的面积为.15.(3分)某服装商预测一种应季衬衫能畅销市场,就用4000元购进一批衬衫,面市后果然供不应求,该服装商又用9000元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了5元.则该服装商第一批进货的单价是元.16.(3分)如图,在网格纸中,每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,点A,B,C,D均落在格点上,点E是AB的中点,过点E作EF∥AD,交BC于点F,作AG⊥EF,交FE延长线于点G,则线段EG的长度是.三、解答题(第17小题6分,18、19小题各8分,共22分)17.(6﹣2|﹣2×cos30°+(12)﹣1.18.(8分)某商场开业,为了活跃气氛,用红、黄、蓝三色均分的转盘设计了两种抽奖方案,凡来商场消费的顾客都可以选择一种抽奖方案进行抽奖(若指针恰好停在分割线上则重转).方案一:转动转盘一次,指针落在红色区域可领取一份奖品;方案二:转动转盘两次,指针落在不同颜色区域可领取一份奖品.(1)若选择方案一,则可领取一份奖品的概率是;(2)选择哪个方案可以使领取一份奖品的可能性更大?请用列表法或画树状图法说明理由.19.(8分)我校为了了解九年级学生身体素质测试情况,随机抽取了本校九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如图不完整的统计图,请你结合图表所给信息解答下列问题:(1)请在答题卡上直接将条形统计图补充完整;(2)扇形统计图中“B”部分所对应的圆心角的度数是°;(3)若我校九年级共有1500名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.四、(每小题8分,共16分)20.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=12,AD=13,则线段OE的长度是.21.(8分)如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,求A,C两地相距多少千米?(结果保留根号)五、(本题10分)22.(10分)如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cos∠DAB=34,BE=1,则线段AD的长是.六、(本题10分)23.(10分)如图,在平面直角坐标系中,矩形OABC边OA,OC分别在x轴,y的正半轴上,且OA=8,OC=6,连接AC,点D为AC中点,点E从点C出发以每秒1个单位长度运动到点O停止,设运动时间为t秒(0<t<6),连接DE,作DF⊥DE交OA于点F,连接EF.(1)当t的值为时,四边形DEOF是矩形;(2)用含t的代数式表示线段OF的长度,并说明理由;(3)当△OEF面积为132时,请直接写出直线DE的解析式.七、(本题12分)24.(12分)思维探索:在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;拓展提升:如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度八、(本题12分)25.(12分)在平面直角坐标系中,抛物线y=ax2+bx+2与x轴分别交于点A(﹣1,0),B(3,0),点C是顶点.(1)求抛物线的解析式;(2)如图1,线段DE 是射线AC 上的一条动线段(点D 在点E 的下方),且DE =2,点D 从点A 出发沿着射线AC 的方向以每秒2个单位长度的速度运动,以DE 为一边在AC 上方作等腰Rt △DEF ,其中∠EDF =90°,设运动时间为t 秒.①点D 的坐标是(用含t 的代数式表示);②当直线BC 与△DEF 有交点时,请求出t 的取值范围;(3)如图2,点P 是△ABC 内一动点,BP =52,点M ,N 分别是AB ,BC 边上的两个动点,当△PMN 的周长最小时,请直接写出四边形PNBM 面积的最大值.2020年辽宁省沈阳市沈河区中考数学一模试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的。
2020年辽宁省沈阳市沈河区中考数学一模试卷(含解析答案)

2020年辽宁省沈阳市沈河区中考数学一模试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。
每小题2分,共20分)1.(2分)﹣2020的倒数是()A.2020B.±12020C.﹣12020D.120202.(2分)2020年初全球处于新型冠状病毒引起的巨变之中,中国有2万名以上的医护人员在短时间就集结完毕,他们是我们心中的“最美逆行者”!其中数据2万用科学记数法表示为()A.2×103B.2×104C.0.2×105D.20×1033.(2分)如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形的俯视图是()A.B.C.D.4.(2分)“2019武汉军运会”部分体育项目的示意图中是轴对称图形的是()A.B.C.D.5.(2分)不等式组23451020aa+>⎧⎨+<⎩的解集为()A.B.C.D.6.(2分)如图,将一张矩形纸片折叠,若∠1=78°,则∠2的度数是()A.51°B.56°C.61°D.78°7.(2分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为()A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩8.(2分)为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如表:每天使用零花钱(单位:元)02345人数14532关于这15名同学每天使用零花钱的情况,下列说法正确的是()A.中位数是3元B.众数是5元C.平均数是2.5元D.方差是49.(2分)如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(图中阴影部分)的面积是32,那么sinα的值为()A.12B.23C.34D.4510.(2分)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x (单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度可能为()A.18°B.37°C.54°D.58°二、填空题(每小题3分,共18分)11.(3分)分解因式:9ax2﹣ay2=.12.(3分)若一个圆内接正六边形的边长是4cm,则这个正六边形的边心距=.13.(3分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是.14.(3分)如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数3yx的图象上,则菱形的面积为.15.(3分)某服装商预测一种应季衬衫能畅销市场,就用4000元购进一批衬衫,面市后果然供不应求,该服装商又用9000元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了5元.则该服装商第一批进货的单价是元.16.(3分)如图,在网格纸中,每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,点A,B,C,D均落在格点上,点E是AB的中点,过点E作EF∥AD,交BC于点F,作AG⊥EF,交FE延长线于点G,则线段EG的长度是.三、解答题(第17小题6分,18、19小题各8分,共22分)17.(62|﹣2×cos30°+(12)﹣1.18.(8分)某商场开业,为了活跃气氛,用红、黄、蓝三色均分的转盘设计了两种抽奖方案,凡来商场消费的顾客都可以选择一种抽奖方案进行抽奖(若指针恰好停在分割线上则重转).方案一:转动转盘一次,指针落在红色区域可领取一份奖品;方案二:转动转盘两次,指针落在不同颜色区域可领取一份奖品.(1)若选择方案一,则可领取一份奖品的概率是;(2)选择哪个方案可以使领取一份奖品的可能性更大?请用列表法或画树状图法说明理由.19.(8分)我校为了了解九年级学生身体素质测试情况,随机抽取了本校九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如图不完整的统计图,请你结合图表所给信息解答下列问题:(1)请在答题卡上直接将条形统计图补充完整;(2)扇形统计图中“B”部分所对应的圆心角的度数是°;(3)若我校九年级共有1500名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.四、(每小题8分,共16分)20.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=12,AD=13,则线段OE的长度是.21.(8分)如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,求A,C两地相距多少千米?(结果保留根号)五、(本题10分)22.(10分)如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cos∠DAB=34,BE=1,则线段AD的长是.六、(本题10分)23.(10分)如图,在平面直角坐标系中,矩形OABC边OA,OC分别在x轴,y的正半轴上,且OA=8,OC=6,连接AC,点D为AC中点,点E从点C出发以每秒1个单位长度运动到点O停止,设运动时间为t秒(0<t<6),连接DE,作DF⊥DE交OA于点F,连接EF.(1)当t的值为时,四边形DEOF是矩形;(2)用含t的代数式表示线段OF的长度,并说明理由;(3)当△OEF面积为132时,请直接写出直线DE的解析式.七、(本题12分)24.(12分)思维探索:在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;拓展提升:如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度八、(本题12分)25.(12分)在平面直角坐标系中,抛物线y=ax2+bx+与x轴分别交于点A(﹣1,0),2B(3,0),点C是顶点.(1)求抛物线的解析式;(2)如图1,线段DE是射线AC上的一条动线段(点D在点E的下方),且DE=2,点D从点A出发沿着射线AC的方向以每秒2个单位长度的速度运动,以DE为一边在AC上方作等腰Rt△DEF,其中∠EDF=90°,设运动时间为t秒.①点D的坐标是(用含t的代数式表示);②当直线BC与△DEF有交点时,请求出t的取值范围;(3)如图2,点P是△ABC内一动点,BP=52,点M,N分别是AB,BC边上的两个动点,当△PMN的周长最小时,请直接写出四边形PNBM面积的最大值.2020年辽宁省沈阳市沈河区中考数学一模试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的。
2020年辽宁省沈阳市中考数学一模试卷(含答案解析)

2020年辽宁省沈阳市中考数学一模试卷一、选择题(本大题共10小题,共20.0分)1. 在12,−√3,0.667,π2,2−√2,3.14中,无理数的个数是( ) A. 2 B. 3 C. 4 D. 52. 如图所示的几何体是由五个小正方体组合而成的,则它的左视图是( )A.B.C.D.3. 下列运算正确的是( )A. 2a −3a =aB. 3x 2⋅4xy 3=12x 2y 3C. 6x 3y ÷3x 2=2xyD. (2x 3)4=8x 124. 光速约为300000千米/秒,用科学记数法表示为( )A. 3×104千米/秒B. 3×105千米/秒C. 3×106千米/秒D. 30×104千米/秒5. 如图,AB 是⊙O 的直径,点C 在⊙O 上,BC =1,AC =2,则sin∠D 的值等于A. √55B. 12C. 2√55D. √256.如图,四边形OABC是矩形,四边形ADEF是边长为3的正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx(x>0)的图象上,且BF=5,则k值为()A. 15B. 714C. 725D. 177.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,设原计划平均每天生产x个零件,根据题意可列方程为()A. 600x−25=450xB. 600x=450x−25C. 600x+25=450xD. 600x=450x+258.如图,一科珍贵的乌稔树被台风“山竹”吹歪了,处于对它的保护,需要测量它的高度.现采取以下措施:在地面选取一点C,测得∠BCA=45°,AC=20米,∠BAC=60°,则这棵乌稔树的高AB约为()(参考数据:√2≈1.4,√3≈1.7)A. 7米B. 14米C. 20米D. 40米9.一个半径为2cm的圆内接正六边形的面积等于()A. 24cm2B. 6√3cm2C. 12√3cm2D. 8√3cm210.小聪和小慧参加某健身房的半年卡促销活动,若设该半年卡的定价为x元,可列方程:0.8(2x−100)=2×500,则该健身房的促销活动可能是()A. 两人一起办卡每人立减100元,再打八折,优惠后每人只需500元B. 两人一起办卡总价立减100元,再打八折,优惠后每人只需500元C. 两人一起办卡可打八折,折后每人再减100元,优惠后每人只需500元D. 两人一起办卡可打八折,折后总价再减100元,优惠后每人只需500元二、填空题(本大题共6小题,共18.0分)11.当m=__________时,分式的值为0.当x______时,分式xx−3有意义.12.阳阳的身高是1.6m,他在阳光下的影长是1.2m,在同一时刻测得某棵树的影长为3.6m,则这棵树的高度约为______m.13.不等式组{x2≤−1−x+7>4的解集是______.14.在▱ABCD中,∠BAD的平分线AE交BC于点E,BE=3,若▱ABCD的周长是16,则EC=______.15.甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(ℎ)之间的函数关系,且OP与EF相交于点M.则经过______小时,甲、乙两人相距3km.16.正方形ABCD中,E为DC边上一点,且DE=1,将AE绕点E顺时针旋转90°得到EF,连接AF,FC,则FC=______.三、计算题(本大题共1小题,共6.0分)17.计算:(−2016)0+(−12)−1+|1−√3|−8sin60°+√27.四、解答题(本大题共8小题,共76.0分)18.2019年3月24日无锡马拉松赛在盛大的樱花雨中鸣枪起跑.无锡马拉松赛的赛事共有三项:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小华、小红和小明参与该项赛事的志愿者服务工作,组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为____________;(2)已知小明被分配到A(全程马拉松),请利用树状图或列表法求三人被分配到不同项目组的概率.19.如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是______;(2)EB与ED相等吗?证明你的结论.20.某学校为了解学生课外阅读的情况,对学生“平均每天课外阅读的时间”进行了随机抽样调查,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)平均每天课外阅读的时间为“0.5~1小时”部分的扇形图的圆心角为______度;(2)本次一共调查了______名学生;(3)将条形图补充完整;(4)若该校有1680名学生,请估计该校有多少名学生平均每天课外阅读的时间在0.5小时以下.21.为了迎接“五⋅一”小长假的购物高峰.某服装专卖店老板小王准备购进甲、乙两种夏季服装.其中甲种服装每件的成本价比乙种服装的成本价多20元,甲种服装每件的售价为240元比乙种服装的售价多80元.小王用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同.(1)甲种服装每件的成本是多少元?(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价−进价)不少于21100元,且不超过21700元,问小王有几种进货方案?22.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.23.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,在点P的运动过程中,① 求当P,E,B三点在同一直线上时对应的t的值.②求当点A与点E距离最近时t的值,并求出该最近距离.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,求符合条件的m的取值范围.24.在△ABC中,点D、E分别在AB、AC上,BE、CD相交于点O,且∠DCB=∠EBC=1∠A.2(1)如图1,若AB=AC,则BD与CE的数量关系是______;(2)如图2,若AB≠AC,请你补全图2,思考BD与CE是否仍然具有(1)中的数量关系,并说明理由;(3)如图3,∠BDC=105°,BD=3,且BE平分∠ABC,请写出求BE长的思路.(不用写出计算结果)x2+bx+c交25.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B(3,5),抛物线y=−12 x轴于点C,D两点,且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F,使得△ACF的面积等于5,若存在,求出点F的坐标;若不存在,说明理由;(3)点M(4,k)在抛物线上,连接CM,求出在坐标轴的点P,使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形,请直接写出P点的坐标.【答案与解析】1.答案:B解析:本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.根据无理数是无限不循环小数,可得答案.,2−√2是无理数,共有3个.解:−√3,π2故选B.2.答案:D解析:解:此几何体的左视图有两列,左边一列有2个小正方形,右边一列有1个小正方体,故选:D.找出几何体从左边看所得到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.3.答案:C解析:解;A、2a−3a=−a,故此选项错误;B、3x2⋅4xy3=12x3y3,故此选项错误;C、6x3y÷3x2=2xy,故此选项正确;D、(2x3)4=16x12,故此选项错误;故选:C.分别利用合并同类项以及单项式除以单项式和整式的除法运算进而判断得出即可.此题主要考查了合并同类项以及单项式除以单项式和整式的除法运算等知识,熟练应用相关定义是解题关键.4.答案:B解析:解:300000千米/秒,用科学记数法表示为3×105千米/秒,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.答案:A解析:本题考查了圆周角定理的应用和勾股定理、锐角三角函数的应用,掌握直径所对的圆周角是直角和同弧所对的圆周角相等是解题的关键.根据AB是⊙O的直径,求出∠ACB=90º,根据勾股定理,求出AB的长,再由∠D=∠A,运用锐角三角函数的定义即可求出结论.解:∵AB是⊙O的直径,∴∠ACB=90º,BC=1,AC=2,由勾股定理得:AB=√5,∵∠D=∠A,∴sin∠D=sin∠A=BCAB =√5=√55.故选A.6.答案:C解析:解:设AO=a,∵四边形ADEF是边长为3的正方形,BF=5,∴AB=8,OD=a+3,∴B(a,8),E(a+3,3),又∵点B、E在反比例函数y=kx(x>0)的图象上,∴8a=3(a+3),解得a=95,∴B(95,8),∴k=95×8=725,故选:C.。
2020年辽宁省沈阳市沈河区九年级一模试题(PDF含答案)

2020年沈河区九年级一模英语试卷(考试时间:100分钟满分:100分)第一部分选择题(三大题;共38分)一、单项选择(共10小题,每小题0.5分,满分5分)1.My best friend James_________a fan of Manchester United since he was12years old.A.isB.wasC.wereD.has been2.Sally has a good new job,she_________happy.A.looksB.tastesC.soundsD.remains3.—Did you hear what the teacher said at the end of the class?—No,I was_________far away to hear her.A.soB.tooC.quiteD.enoughst July,I went to Beijing to visited Uncle Zhang.He took me to many places of interest,such as ___________Summer Palace.A.aB.anC.theD./5.__________people,both young and old,are becoming greener today.This means they are trying to protect the environment.A.More or lessB.Fewer and fewerC.Less and lessD.More and more6.—Do you know“My Chinese Dream”speech contest?I won the first prize.—_____________.A.What a pity.B.Don't worry.C.Congratulations.D.I'm sorry to hear that.7.On the last day of the week,our head teacher will speak to the__________school and tell us how to communicate better in English.A.wholeB.singleC.otherD.same8.A person with_________is usually not afraid of something dangerous and difficult.A.advantage.B.courage.C.health.D.wealth.9.Everybody knows the giant panda has a_________population.rgeB.small.C.muchD.little10.They organized a lot of activities for me in my spare time__________I wouldn't miss home or feel lonely.A.becauseB.althoughC.so thatD.as soon as二、完形填空(共15题,每小题1分,满分15分)Homes get smarter.Most of us spend all day at school or work.After a long and busy day,all we want to do is return to a ____11____home.Smart technology can turn any home_____12____a nicer place to live.Smart homes have been for____13____.Scottish company Pico Electronics invented a type of technology ____14____X10in1975.With X10,household devices(家用装置),such as lights and alarms,can communicate ____15____each other by using radio waves.Of course,5G networks have made smart homes much than____16____X10.Perhaps the most widely used smart home technology is the voice-activated assistant.Google Home and Amazon’s Alexa allow users to interact with nearly any device in_____17____home simply by speaking a few words.This is especially____18____for children and disabled people as they can do things____19____would usually be too difficult according to How-To-Geek.Common household appliances can become smart_____20_____.According to How-Stuff-Works,a smart waste bin can keep track of the things you have____21____away and place an online order for new items.Smartfridges can create dinner lists____22____the food inside.But it's not only about convenience.Smart homes are also perfect for the____23____.By turning off devices that you are not using,smart homes can lower____24____electricity you use.As we know using less energy_____25____that we use fewer natural resources.11. A.possible fortable C.believable D.terrible12. A.over B.down C.into D.onto13. A.sometime B.sometimes C.some times D.some time14. A.called B.told C.said D.spoken15. A.with B.for C.of D.at16. A.strong B.stronger C.strongest D.the strongest17. A.its B.her C.his D.their18. mon B.awful C.good D.funny19. A.that B.who C.why D.what20. A.so far B.as well C.at times D.for now21. A.risen B.given C.taken D.thrown22. A.replied to B.based on C.interested in D.filled with23. A.family B.school C.environment ernment24. A.how much B.how many C.how long D.how old25. A.seems B.feels C.hopes D.means三、阅读理解(共12小题,每小题1.5分,满分18分)阅读下列短文,然后根据其内容从A、B、C、D中选出最佳选项。