水泥浆体凝结硬化分解
混凝土的工作原理

混凝土的工作原理
混凝土的工作原理是指在一定条件下,水泥、砂、石料等材料按一定比例混合后,加水搅拌形成均匀的浆状物,经过水化反应后逐渐硬化,在一定程度上得到一种坚实的工程材料的过程。
具体工作原理如下:
1. 水泥水化:水泥与水反应生成水化产物,最主要的是钙硅酸盐水化产物,它们在水的存在下迅速产生水化热,使混凝土浆体升温,达到一定水化程度后逐渐形成硬化结构。
2. 水化产物填充:水化产物填充了砂、石料等颗粒之间的间隙,并与其表面发生反应,形成胶凝体。
胶凝体可填充空隙,增加混凝土的致密性和强度。
3. 凝结硬化:随着水化反应的进行,混凝土中的水分逐渐减少,水与胶凝体反应生成硬化胶凝体。
硬化胶凝体的强度逐渐增加,使整个混凝土逐渐达到设计强度。
4. 干燥收缩:混凝土在硬化过程中会发生干燥收缩,因为水分逐渐蒸发,使混凝土体积变小。
这可能会导致混凝土出现裂缝,因此需要采取措施来控制干燥收缩。
5. 添加剂作用:混凝土中的添加剂可以改善混凝土的工作性能、提高强度、改变硬化过程等,进一步优化混凝土的工作原理。
总的来说,混凝土的工作原理是通过水泥的水化反应和硬化过程,以及砂、石料等颗粒与水化产物的填充与反应,形成一种坚实的工程材料,具有一定的强度和耐久性。
第二篇第二章第六节水泥浆体凝结硬化

根据公式得知牛顿液体得切变速度D与切变应力S 之间如下图所示,呈直线关系且直线经过原点。
(a)牛顿流动
二、非牛顿流动
实际上大多数液体不符合牛顿粘度定律,如高分子溶液、 胶体溶液、乳剂、混悬剂、软膏以及固-液得不均匀体系 得流动。把这种不遵循牛顿粘度定律得物质称为非牛顿流 体,这种物质得流动现象称为非牛顿流动。
随后,水化继续进行,从溶液中析出新得晶体和水化硅酸钙凝胶不断充满在结构 得空间中,水泥浆体得强度也不断得到增长。
4、 三阶段理论
F、W、 Locher提出该理论。实际上,该理论与前面介绍凝 聚-结晶理论比较接近。
将水泥得凝结硬化分为三个阶段,即水泥浆悬浮体结构阶 段、水泥浆凝聚结构阶段、水泥浆得凝聚、结晶结构阶段, 或分别称为诱导期、凝结期和硬化期。(P74图2-2-6-3)。
1、 在单位液层面积(A)上施加得使
y
各液层间产生相对运动得外力称为
剪切应力,简称剪切力(sheari g
force),单位为N/m2,以S表示。
2、剪切速度(rate of shear),单位 为S-1,以D表示。
第二部分 流变性质
一、牛顿流动
牛顿粘度定律:纯液体和多数低分子溶液在层流条件下得
剪切应力(S)与剪切速度(D)成正比。遵循该法则得液体为
在不同物理条件下(如温度、压力、湿度、辐射、电磁场等),以应力、 应变和时间得物理变量来定量描述材料得状态得方程,叫作流变状态方 程或本构方程。
材料得流变特性一般可用两种方法来模拟,即力学模型和物理模型。
➢ 流动主要表示液体和气体得性质。流动得难易与物质本 身具有得性质有关,把这种现象称为粘性(Viscosity)。流动 也视为一种非可逆性变形过程。
硅酸盐水泥的水化和硬化

C3 A CS H12 和C4AH13的固溶体。
石膏的存在延缓了C3A的水化
(四)铁相固溶体(C4AF)的水化 水化速率比C3A低。其水化产物与C3A很相似。相当于C3A 中一部分氧化铝被氧化铁所置换,生成水化铝酸钙和水化铁酸 钙的固溶体。
C-S-H(Ⅱ)
定义:水化硅酸钙凝胶体(C-S-H) 组成:不固定,随钙硅比和水硅比变化 结构:微晶,尺寸接近于胶体范畴; 形貌:纤维状,网络状,等大粒子,内部产物; CH:晶体,层状,六方板状,生长在孔洞之间。
C3S水化历程:
五个阶段: 起始期 15min PH=12 急剧 诱导期(静止期)——使硅酸盐水泥保持塑性的原因; 2-4h诱导期结束的时间,即初凝时间。 加速期(4-8h)C-S-H和Ca(OH)2 大量形成,达到终凝。 减速期(12-24h) 稳定期 受扩散控制
C-S-H凝胶的组成与它所处 的溶液中的CaO浓度有关, C-S-H在一定的碱度下才能存 在,如2- 2-3图所示:
下表是对上图的总结:
CaO浓度 g/l
0.06-0.11
0.11-1.12
>1.12
CaO摩尔浓度 mol/l 1-2
2-20
>20
C/S
<1
0.8-1.5
1.5-2
水化产物
水化硅酸钙和硅酸凝胶 C-S-H(Ⅰ)
钙矾石在常温和一般湿度条件下的脱水曲线
四、水泥的凝结、硬化过程
1882年,雷霞特利提出的结晶理论; 1892年,米哈艾利斯又提出了胶体理论; 拜依柯夫将上述两理论加以发展,把水泥的硬化为三个时期: 第一,溶解期;第二,胶化期;第三,结晶期 列宾捷尔提出凝聚-结晶三维网状结构理论; 鲍格提出是巨大表面能的作用引起互相粘结; 洛赫尔提出的三阶段论:
水泥凝结硬化的四个阶段

水泥凝结硬化的四个阶段
1、水泥加入水后,水泥颗粒外表会发生剧烈的水化反应,开始生成水化物。
2、随着水泥水化反应的不断进行,水泥颗粒表层会形成一层半透明的膜层,减少了外部水的渗入,降低水化反应速度,这一过程被称为休止期。
3、水化反应不断增加,膜层厚度也不断增加,水泥颗粒之间相互年节,形成了网状结构的混凝土,浆体的可塑性也降低,逐渐失去了流动性并且开始凝结,但是没有强度,这一过程被称为凝结期。
4、在整个胶凝体和晶体发展过程中,水化反应促使网状结构中的细孔不断被填充,结构逐渐紧缩,当具有了一定的强度,也就是水泥凝结开始,知道完全收缩,凝结终了,这一过程被称为硬化期。
扩展资料
混凝土在凝结硬化过程中龄期与强度的关系
在正常养护的条件下,砼强度将随龄期的增长而不断发展,最初7~14d内强度发展较快,以后逐渐缓慢,28d达到设计强度,并根据28d抗压强度确定砼的强度等级。
28d后强度仍在发展,其增长过程可延续数十年之久。
普通水泥制成的砼,在标准养护条件下,砼强度的发展大致与其龄期的常用对数成正比关系(龄期不少于3d)。
由所测砼早期强度,估算其28d龄期的强度。
由砼的28d强度,推算28d前后砼达到某一强度需要的天数,如确定砼拆模、构件起吊、放松预应力钢筋、制品养护、出厂日期。
一般情况下,普通砼在35d后的强度增长极小。
简述硅酸盐水泥的凝结硬化过程与特点

简述硅酸盐水泥的凝结硬化过程与特点摘要:一、硅酸盐水泥的凝结硬化过程1.熟料的制备2.水泥的生成3.水泥浆体的凝结4.硬化过程二、硅酸盐水泥的特点1.硬化速度适中2.强度高3.耐久性好4.适应性强5.环境友好性正文:硅酸盐水泥是一种广泛应用于建筑行业的胶凝材料。
其凝结硬化过程与特点如下:一、硅酸盐水泥的凝结硬化过程1.熟料的制备:硅酸盐水泥的制备过程始于矿山开采,将开采出的石灰石、粘土等原料进行混合、粉碎,并加热至高温,形成熟料。
2.水泥的生成:将熟料与石膏按一定比例混合,经过磨碎、筛选,得到硅酸盐水泥。
3.水泥浆体的凝结:当水泥与水混合时,水泥中的硅酸盐矿物与水发生水化反应,生成具有粘性的水泥浆体。
随着水化反应的进行,浆体逐渐凝结,形成凝胶体。
4.硬化过程:在水泥浆体凝结的基础上,水泥中的硅酸盐矿物不断水化,形成水化硅酸钙(CSH)凝胶。
这种凝胶具有很高的强度和耐久性,随着时间的推移,硬化过程逐渐完成。
二、硅酸盐水泥的特点1.硬化速度适中:硅酸盐水泥的硬化速度适中,有利于施工操作。
在正常条件下,水泥浆体在拌和水后约30分钟开始凝结,12小时内达到一定强度。
2.强度高:硅酸盐水泥具有较高的早期和后期强度,能满足不同工程结构对抗压强度的要求。
3.耐久性好:硅酸盐水泥硬化后,其水化产物具有良好的抗侵蚀性、抗渗透性、抗碳化性,使建筑物具有较好的耐久性。
4.适应性强:硅酸盐水泥在不同环境下均能保持良好的性能,适用于多种工程结构,如混凝土、砂浆等。
5.环境友好性:硅酸盐水泥生产过程中,采用低碳、环保的生产工艺,有利于减少环境污染。
综上所述,硅酸盐水泥以其优良的性能在建筑行业中得到广泛应用。
硬化水泥浆体的组成与结构及其性质

(3)水灰比
水灰比对徐变的影响,定性的评论是水灰比越大,徐变也愈大。
(4)温度
在荷载作用期间,环境混度活化徐变变形。
其他如湿度,养护条件,水泥组成等同样也会影响硬化水泥浆体的徐变。
16
03
硬化水泥浆体性质
3.3 硬化水泥浆体的渗透性
在水力梯度作用下,水作为典型的均质流体,流过多孔介质(
THE MAIN CONTENTS
01
03
概述
02
硬化水泥浆体组成与结构
硬化水泥浆体的性质
2
01 概述
1.1硬化水泥浆体
硬化水泥浆体是非均质的多相体系,由各种水化产物和残存熟料所构成的固相以
及存在于空隙中的水和空气组成,所以是固-液-气三相多孔体。它具有一定的机械强
度和空隙率,而外观和其他性能则与天然石材相似,因此通常又称之为水泥石。
水化产物和残存熟料-固相
非均质的多相体系
孔隙中的水-液相
三相多孔体
孔隙中的空气-气相
3
01 概述
1.2 水泥硬化机理
硬化机理
产生凝结硬化的原因
水化硬化过程
结晶理论
水化反应生成晶体
相互交叉联结
溶解-沉淀过程:熟料矿物溶解于
水,与水发生水化反应,产物溶解
度更小,结晶沉淀。
胶体理论
水化反应生成大量胶体,由于干燥或 局部化学反应:熟料矿物不溶于水,
泥浆体强度的函数。
抗压强度
= , +
m------经验直线的斜率
B------- 轴上的截距
12
03
硬化水泥浆体性质
(2)硬化水泥浆体的弹性模量
硬化水泥浆体的组成与结构和性质

硬化水泥浆体的组成与结构和性质
硬化水泥浆体的组成主要包括水泥、水和外加剂。
水泥是硬化水泥浆体的胶凝材料,通常使用的水泥有普通硅酸盐水泥、矿渣水泥和高性能水泥等。
水是用来调节水泥浆体的流动性和达到适当的可操作性。
外加剂则用于调整硬化水泥浆体的工作性能,如缓凝剂、加速剂和减水剂等。
硬化水泥浆体的结构主要是由水泥胶体、水泥石、骨料等组成。
水泥胶体是指水泥颗粒与水的反应产物,它是水泥浆体中起到胶结和充填作用的关键组分。
水泥石是由水泥胶体与骨料颗粒相互结合而形成的坚固网状结构,它能够固定骨料颗粒,提高硬化水泥浆体的强度。
骨料是硬化水泥浆体中的颗粒状填料,它可以分为细骨料和粗骨料,用于增加硬化水泥浆体的体积和强度。
硬化水泥浆体的性质主要包括塑性、可流性、强度、耐久性等。
塑性是指硬化水泥浆体在施工过程中可以正常变形而不破坏其连通性和稳定性的能力。
可流性是指硬化水泥浆体在施工过程中能够较好地流动,填充空间的能力。
强度是指硬化水泥浆体在一定的压力和剪切力下具有抵抗破坏的能力,它决定了硬化水泥浆体的承载能力和耐久性。
耐久性是指硬化水泥浆体在不同的环境条件下,如湿热、冻融循环、化学腐蚀等环境的侵蚀下能够保持较好的工程性能和使用寿命。
总之,硬化水泥浆体的组成和结构以及性质对于混凝土的制备和应用有着重要的影响。
通过对硬化水泥浆体的研究和理解,可以优化混凝土配合比,提高混凝土的工作性能和力学性能,从而满足不同工程的需求。
混凝土凝固的机理

混凝土凝固的机理当水泥与适量的水调和时,开始形成的是一种可塑性的浆体,具有可加工性。
随着时间的推移,浆体逐渐失去了可塑性,变成不能流动的紧密的状态,此后浆体的强度逐渐增加,直到最后能变成具有相当强度的石状固体。
如果原先还掺有集合料如砂、石子等,水泥就会把它们胶结在一起,变成坚固的整体,即我们常说的混凝土。
这整个过程我们把它叫做水泥的凝结和硬化。
从物理、化学观点来看,凝结和硬化是连续进行的、不可截然分开的一个过程,凝结是硬化的基础,硬化是凝结的继续。
但是在施工中为了保证施工质量,要求在水泥浆体失去其可塑性以前必须结束施工,因此人们根据需要以及水泥浆体的这个特性,人为地将这整个过程划分为凝结和硬化两个过程。
凝结是指水泥浆体从可塑性变成非可塑性,并有很低的强度的过程;硬化是指浆体强度逐渐提高能抵抗外来作用力的过程。
此外,对凝结过程还人为地进一步划分为初凝和终凝,用加水后开始计算的时间来表示。
例如,国家标准规定:普通硅酸盐水泥初凝不得早于45min,终凝不得迟于12h。
使用时施工浇灌过程的时间,必须早于45min;到终凝后,才能脱去模板开始下一个周期生产。
水泥的凝结和硬化,是一个复杂的物理—化学过程,其根本原因在于构成水泥熟料的矿物成分本身的特性。
水泥熟料矿物遇水后会发生水解或水化反应而变成水化物,由这些水化物按照一定的方式靠多种引力相互搭接和联结形成水泥石的结构,导致产生强度。
普通硅酸盐水泥熟料主要是由硅酸三钙(3CaO·SiO2)、硅酸二钙(β-2CaO·SiO2)、铝酸三钙(3CaO·Al2O3)和铁铝酸四钙(4CaO·Al2O3·Fe2O3)四种矿物组成的,它们的相对含量大致为:硅酸三钙37~60%,硅酸二钙15~37%,铝酸三钙7~15%,铁铝酸四钙10~18%。
这四种矿物遇水后均能起水化反应,但由于它们本身矿物结构上的差异以及相应水化产物性质的不同,各矿物的水化速率和强度,也有很大的差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三阶段,是指24h之后,直到水化结束。在一般情况下,石膏已经 耗完,所以钙矾石开始转化为单硫型水化硫铝酸钙,还可能会形成 C4(A 、 F)H13, 随 着 水 化 进 行 , C-S-H 、 Ca(OH)2 、 C3A 、 C4(A 、 F)H13 等水化产物的数量不断增加,结构更趋致密,强度相应提高。
第一阶段,大约在水泥拌水起到初凝时为止,C3S和水迅速反应生成 Ca(OH)2饱和溶液,并从中析出Ca(OH)2晶体。同时,石膏也很快进入 溶液和C3A反应生成微小的钙矾石晶体。在这一阶段,由于水化产物 尺寸细小,数量又少,不足以在颗粒间架桥相联,网状结构未能形成, 水泥浆呈塑性状态。
第二阶段,大约从初凝起至24h为止,水泥水化开始迅速,生成较多 的Ca(OH)2和钙矾石晶体。同时水泥颗粒上长出纤维状的C-S-H。在这 个阶段,由于钙矾石晶体的长大以及C-S-H的大量形成,产生强(结 晶的、)、弱(凝聚的)不等的接触点,将各颗粒初步连接成网,而 使水泥浆凝结,随着接触点数目的增加,网状结构不断加强,强度相 应增长,原来剩留在颗粒间空间中的非结合水,就逐渐被分割成各种 尺寸的水滴,填充在相应大小的空隙之中。
水泥水化初期生成了许多胶体大小范围的晶粒如CSH(B)和一些大的晶粒如 Ca(OH)2包裹在水泥颗粒表面,它们这些细小的固相质点靠极弱的物理引力 使彼此在接触点处粘结起来,而连成一空间网状结构,叫做凝聚结构。由于 这种结构是靠较弱的引力在接触点进行无秩序地连结在一起而形成的,所以 结构的强度很低而有明显的可塑性。(即凝聚为主)
流变学发展简史:
流变学出现在20世纪20年代。学者们在研究橡胶、塑料、混凝土等材 料的性质过程中,发现使用古典弹性理论、塑性理论和牛顿流体理论 已不能说明这些材料的复杂特性,于是就产生了流变学的思想。英国 物理学家麦克斯韦和开尔文很早就认识到材料的变化与时间存在紧密 联系的时间效应。
麦克斯韦在1869年发现,材料可以是弹性的,又可以是粘性的。对于 粘性材料,应力不能保持恒定,而是以某一速率减小到零,其速率取 决于施加的起始应力值和材料的性质。这种现象称为应力松弛。许多 学者还发现,应力虽然不变,材料棒却可随时间继续变形,这种性能 就是蠕变或流动。
第六节 水泥浆体凝结硬化
6-1 凝结硬化理论 硬化定义: 水泥与水拌和后,形成的浆体最初具有可
塑性和流动性。随着时间的推迟、水化反 应的不断进行,浆体逐渐失去流动能力, 转变成具有一定强度的石状体,这个过程 称作水泥凝结硬化。
二、水泥凝结硬化原理
与结晶理论的差别:不需要经过矿物溶解于水的阶段,而 是固相直接与水反应生成水化产物,即所谓局部化学反应。 然后,通过水分的扩散作用,使反应界面由颗粒表面向内 延伸,继续进行水化。所以,凝结硬化是胶体凝聚成刚性 凝胶的过程。
缺点:不能完整地说明水化过程。
3. 凝聚-结晶理论
列宾捷尔最先提出该理论。
要回答两个问题: (1)水泥的水化如何先后进行,即各种水化产物如何先
后出现。 (2)各种小的水化产物粒子如何连接成整体(如网状结
构)(注:只要能连接成整体,那么就能将粗或细的集料 包裹在其中)
水泥凝结硬化理论
1. 结晶理论 2. 胶体理论 3. 凝聚-结晶理论 4. 三阶段理论
1. 结晶理论
凝聚-结晶理论和三阶段理论的异同?
6-2 水泥浆体的流变性质
第一部分 流变学简介 第二部分 流变性质 第三部分 流变学模型
第一部分 流变学简介
定义:流变学是力学的一个新分支,它主要研究物理材料 在应力、应变、温度湿度、辐射等条件下与时间因素有关 的变形和流动的规律。
一般不包括对于符合虎克定律的弹性体以及符合牛顿流体 定律的流体(常见的包括水和空气)的研究。
缺点:难以理解溶解、扩散、凝聚过程没有干扰。因为水泥浆体中的 水量有限,生成物难以扩散,在颗粒表面凝聚后,阻止颗粒进一步与 水接触,就不存在溶解的条件。
2. 胶体理论
1892年,W. Michaelis提出胶体理论。认为水化后生成大 量的胶体物质,这些胶体物质由于外部干燥失水,或由于 内部未水化颗粒的继续水化,于是产生“内吸作用”而失 水,从而使胶体硬化。
随后,水化继续进行,从溶液中析出新的晶体和水化硅酸钙凝胶不断充满在 结构的空间中,水泥浆体的强度也不断得到增长。
4. 三阶段理论
F.W. Locher提出该理论。实际上,该理论与前面介绍凝 聚-结晶理论比较接近。
将水泥的凝结硬化分为三个阶段,即水泥浆悬浮体结构阶 段、水泥浆凝聚结构阶段、水泥浆的凝聚、结晶结构阶段, 或分别称为诱导期、凝结期和硬化期。(P74图2-2-6-3)。
经过长期探索,人们终于得知,一切材料都具有时间效应,于是出现 了流变学。
流变学研究内容
流变学研究内容是各种材料的蠕变和应力松弛的现象、屈服值以及材 料的流变模型和本构方程。
当作用在材料上的剪应力小于某一数值时,材料仅产生弹性形变;而 当剪应力大于该数值时,材料将产生部分或完全永久变形。则此数值 就是这种材料的屈服值。屈服值标志着材料有完全弹性进入具有流动 现象的界限值,所以又称弹性极限、屈服极限或流动极限。
1882年H. Lechateier提出结晶理论。水泥熟料矿物水化以后生成的晶 体物质相互交错,聚结在一起从而使整个物料凝结并硬化。
水泥水化、硬化的过程如下:水泥中各熟料矿物首先溶解于水,与水 反应,生成的水化产物由于溶解度小于反应物,所以结晶沉淀出来。 随后熟料矿物继续溶解,水化产物不断结晶沉淀。沉淀后水化产物的 结晶交联而凝结、硬化。