数字逻辑第3章答案

合集下载

数字逻辑课后习题答案

数字逻辑课后习题答案

第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。

(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。

数字电路第三章习题答案

数字电路第三章习题答案
S 1 S 0(A B A B )
数字电路第三章习题答案
3-10
F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B F F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B
数字电路第三章习题答案
3-11
试用六个与非门设计一个水箱控制电路。图为水箱示意图。A、B、C是三个电极。 当 电极被水浸没时,会有信号输出。水面在A,B间为正常状态,点亮绿灯G;水面在B、 C间或在A以上为异常状态,点亮黄灯Y;水面在C以下为危险状态.点亮红灯R。
3531736半加器的设计1半加器真值表2输出函数3逻辑图输入输出被加数a加数b4逻辑符号31837ab改为用与非门实现函数表达式变换形式
3-1 分析图示电路,分别写出M=1,M=0时的逻辑函数表达式
即M=1时,对输入取反,M=0时不取反。
数字电路第三章习题答案
3-2 分析图示补码电路,要求写出逻辑函数表达式,列出真值表。
3-10 试用与非门设计一个逻辑选择电路。
S1、S0为选择端,A、B为数据输入端。 选择电路的功能见下表。选择电路可 以有反变量输入。
数字电路第三章习题答案
3-10
F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B F F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B FS 1 S 0A B S 1 S 0(A B )S 1 S 0(A BA)B
数字电路第三章习题答案
3-5
Ai 0 0 0 0 1 1 1 1
Si Ai BiCi Ai BiCi Ai BiCi Ai BiCi

数字逻辑电路第三章部分答案

数字逻辑电路第三章部分答案

Hale Waihona Puke 根据与非与非式即可画出逻辑图其实将余3码直接当作一个二进制数十进制bcd代码再加3减去3就还原成为一位十进制数的bcd码设输出变量为ryg且低电平时点亮led即低电平输出有效
第三章习题讲解
A>B
A<B
同或电路
2线—4线译码电路
结果:
根据与非与非式即可 画出逻辑图
其实,将余3码直接当 作一个二进制 数(十进 制BCD代码再加3), 减去3就(还原)成为 一位十进制数的BCD码
8-1 MUX74151 功能表
功 能 表
S2 X 0 0 0 0 1 1 1 1 输入 S1 X 0 0 1 1 0 0 1 1 S0 X 0 1 0 1 0 1 0 1 使能 E 1 0 0 0 0 0 0 0 0 输出 Y 0 D0 D1 D2 D3 D4 D5 D6 D7 Y Y
设输出变量为R、Y、G,且低电平时点亮LED(即低电平输出有效)。 故可以列出真值表如下:
经变换 ,可以列出真值表如下:
列出最小项表达式 如下:
经变换 ,可以列出真值表如下:
列出最小项表达式 如下:
经变换 ,可以列出真值表如下:
卡诺图:
经变换 ,可以列出真值表如下:
根据简化后的与非与非式,选择合适的门电路 (与非门、OC输出门等)实现电路功能
11
D00 D D11 D D22 D D33 D D44 D D55 D D66 D D77 D
根据:
可得:
D0、D3、D4、D6为1; D1、D2、D5、D7为0。
则F的状态依次为: D0、D1、D2、D3、D4、D5、D6、D7、D0、D1………… 1 0 0 1 1 0 1 0 1 0 : D0、D3、D4、D6为1; D1、D2、D5、D7为0。

《数字逻辑》第3章习题答案

《数字逻辑》第3章习题答案


【3-1】填空: (1) 逻辑代数中有三种最基本运算: 与 、 或 和 非 ,在此基础上又派生出五种基本运算, 分别为 与非 、 或非 、 异或 、 同或 、和 与或非 。 (2) 与运算的法则可概述为:有 0 出 0 ,全 1 出 1 ;类似地,或运算的法则为 有”1”出”1”, 全”0”出”0” 。 (3) 摩根定理表示为: A B = A B ; A B = A B 。 (4) 函数表达式 Y= AB C D ,则其对偶式为 Y ' = ( A B)C D 。 积的形式结果应为 M ( 0,1,2,4,5,8,9,10)。 (5) 函数式 F=AB+BC+CD 写成最小项之和的形式结果应为 m ((3,6,7,11,12,13,14,15)), 写成最大项之
0 0 1 1 1 1
1 1 0 0 1 1
0 1 0 1 0 1
1 1 0 0 1 0
【3-8】写出下列函数的反函数 F ,并将其化成最简与或式。 (1) F1 ( A D )( B C D)( AB C ) (2) F2 ( A B )( BCD E )( B C E )(C A) (3) F3 A B C A D (4) F4 ( A B)C ( B C ) D 解: (1) F1 AD C (2) F2 AB A C E (3) F3 AB AC A D (4) F4 BC C D ABD A B C 【3-9】用对偶规则,写出下列函数的对偶式 F ,再将 F 化为最简与或式。 (1) F1 AB B C A C (2) F2 A B C D (3) F3 ( A C )( B C D)( A B D) ABC (4) F4 ( A B )( A C )( B C )(C D) (5) F5 AB C CD BD C 解:题中各函数对偶函数的最简与或式如下: (1) F1 A BC AB C (2) F2 A B D A C D (3) F3 AC A BD (4) F4 A BC B C CD (5) F5 ABC D (6) F6 AB C D 【3-10】已知逻辑函数 F A B C , G=A⊙B⊙C,试用代数法证明: F G 。 解:

数字逻辑 课后习题答案

数字逻辑 课后习题答案
时序逻辑电路:电路在任意时刻产生的稳定输出值不仅与该时刻电路的输 入值有关,而且与电路过去的输入值有关。时序逻辑电 路又可根据电路中有无统一的定时信号进一步分为同 步时序逻辑电路和异步时序逻辑电路。
4. 最简电路是否一定最佳?为什么?
解答
一个最简的方案并不等于一个最佳的方案。最佳方案应满足全面的性能指标 和实际应用要求。所以,在求出一个实现预定功能的最简电路之后,往往要根据 实际情况进行相应调整。
2. 数字逻辑电路具有哪些主要特点?
解答
数字逻辑电路具有如下主要特点:
● 电路的基本工作信号是二值信号。 ● 电路中的半导体器件一般都工作在开、关状态。 ● 电路结构简单、功耗低、便于集成制造和系列化生产。产品价格低
廉、使用方便、通用性好。 ● 由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可
第二章
1 假定一个电路中,指示灯 F 和开关 A、B、C 的关系为 F=(A+B)C
试画出相应电路图。 解答
电路图如图 1 所示。
图1
2 用逻辑代数的公理、定理和规则证明下列表达式:
(1) AB + AC = AB + AC (2) AB + AB + AB + AB = 1 (3) AABC = ABC + ABC + ABC
= (A + B) ⋅ (A + B) =B
( ) F = BC + D + D ⋅ B + C ⋅ (AC + B)
= BC + D + (B + C)(AC + B) = BC + D + BC(AC + B) = BC + D + AC + B = B + D + AC

数字电路习题答案-第三章

数字电路习题答案-第三章
(2)写最简表达式
ABCD F
1000 1 1001 1 1010 Ø 1011 Ø 1100 Ø 1101 Ø 1110 Ø 1111 Ø
CD
AB
00
01
11
10
00
01
1
1
1
11
φ
φ
φ
φ
10
1
1
φ
φ
F = A + BD + BC=A · BD · BC (3)画逻辑电路,如下图所示:
D
&
B
&
C
所以,此时电路中存在功能冒险。
2.当 ABCD 从 1000 向 1101 变化时: 先判断是否有功能冒险,函数 F 的卡诺图如下图所
ABCD00 01 11 10 00 1
01 1
1
11 1 1 1 1
10 1 1 1
示: (1) F(1,0,0,0)=F(1,1,0,1); (2) 有 2 个变量同时变化; (3) AC对应的卡诺圈中全部为“1”; 所以,此时电路中不存在功能冒险。 再判断是否有逻辑冒险:
10 1 1 Ø = ABC·CD·AB·AD
画逻辑电路,如下图所示:
C&
D
A&
B
A&
D
A B
&
C
&
F
3.9 人的血型有 A、B、AB、O 四种。输血时输血者的血型与受血者的血型必须符合图 P3.4 中箭头指示的授受关系。试设计一个逻辑电路,判断输血者与受血者的血型是否符合上述规 定。 解:设00代表血型A、01代表血型B、10代表血型AB、11代表血型O。输血者的血型用逻辑 变量WX表示,受血者的血型用YZ表示,则由图中所指示的授受关系,列真值表:

数字逻辑第3章习题参考解答

数字逻辑第3章习题参考解答

3.68
分析图 3-37 所示反相器的下降时间,设 RL=900Ω ,VL=2V。
解:该电路图可以等效为下列带开关的一阶电路图。当输出从高态转 为低态时,可以等效为开关 K 从位置 1 转到位置 2。
按照一阶电路三要素法的分析方法,对于电容上的电压分析如下: 初态:VH=4.45V 终态:VL=0.2V
VOUT VL VH VL (1 e t / )
由上式可以得出从 1.5V 到 3.5V 的上升时间为:
t ln VH 1.5 19ns VH 3.5
可以驱动。
I=(3.84-2.03)/0.487 = 3.72 < 4mA
可以驱动。
3.40 一个发光二极管导通时的电压降约为 2.0V,正常发光时需要约 5mA 的电流。当发光二极管如图 3-54(a)那样连接时,确定上拉电 阻的适当值。 解:根据 3.7.5 所给的条件,低态输出电平 VOLmax=0.37V。 对应等效 电路如下:
13 画出 NOR3 对应的电路图。 解:3 输入端或非门结构应为:上部 3 个 P 管串联,下部 3 个 N 管并 联,结构如图所示。
3.15 画出 OR2 所对应的电路图。 解:在 NOR2 电路的输出端后面级联一个 INV。
3.59 解:
画出图 X3.59 逻辑图所对应的电路图。
3.21 若输出低电平阈值和高电平阈值分别设置为 1.5V 和 3.5V,对 图 X3.21 所示的反相器特性,确定高态与低态的 DC 噪声容限。 解:由图中可以看到,输出 3.5V 对应的输入为 2.4V,输出 1.5V 对应 的输入为 2.5V; 所以,高态噪声容限为:3.5-2.5=1 V ;低态噪声 容限为:2.4-1.5=0.9 V。

数字电子技术第三章(组合逻辑电路)作业及答案

数字电子技术第三章(组合逻辑电路)作业及答案

第三章(组合逻辑电路)作业及答案1、写出图3-1所示组合逻辑电路中输入输出的逻辑关系式和真值表。

图3-1:组合逻辑电路逻辑图解:(1)C A A AC B AY +=++=1(2)D B C B A CD B A CD B A D BD CD A B A Y ++=++=+=++=)(2 2、试分析图3-2所示组合逻辑电路,写出其逻辑函数表达式。

若设S 1﹑S 0为功能控制信号,A ﹑B 为输入信号,L 为输出,说明当S 1﹑S 0取不同信号值时,电路所实现的逻辑功能。

图3-2:组合逻辑电路逻辑图3、试用与门、或门和非门,或者与门、或门和非门的组合来实现如下各逻辑函数关ABS 1S=1=1&=1系,画出相应的逻辑电路图。

(1)1Y AB BC=+(2)2Y A C B=+()(3)3Y ABC B EF G=++()&&1≥Y1.1ABC.&1≥Y2.1ABC&1≥1≥&&1ABC.EFG.Y3...4、试用门电路设计4线-2线优先编码器,输入、输出信号都是高电平有效,要求任一按键按下时,G S为1,否则G S=0;还要求没有按键按下时,E O信号为1,否则为0。

5、试用逻辑门电路设计一个2选1数据选择器,输入信号为A、B,选择信号为S,输出信号为Y,要求写出真值表、逻辑函数表达式和画出逻辑电路图。

6、某公司3条装配线各需要100kW电力,采用两台发电动机供电,一台100kW,另外一台是200kW,3条装配线不同时开工,试设计一个发电动机控制电路,可以按照需求启动发电动机以达到节电的目的。

7、图3-3是由3线/8线译码器74LS138和与非门构成的组合逻辑电路,试写出P和P2的逻辑表达式,并列出真值表,说明其逻辑功能。

1BIN/OCT01201234567B AC 10074LS138P 1P 2图3-3 组合逻辑电路图8、试用3线-8线译码器74LS138和与非门实现以下多输出函数:1F AB C AB BC AC =++(,,) ∑=),,,(),,(75422m C B A F9、图3-4是由八选一数据选择器74LS151构成的组合逻辑电路,试写出当G 1G 0为各种不同取值时输出Y 与输入A 、B 的逻辑函数表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(最简与-或式)
F(A,B,C, D) ABC ABC
F(A,B,C, D) (A B C)(A B C) (最简或-与式)
(2)函数 F(A, B,C, D) BC D D (B C) (AD B) 的卡诺图如图 3 所示。
F(A,B,C, D) BC D D (B C) (AD B) BC D (B D C D)( AD B) BC D BCD
(2)
FA, B,C, D AB ABD (B CD)
A B ABD B CD (A B)(A B D) B CD AB AB AD BD B CD AB AD B CD AB(CD CD CD CD) AD(BC BC BC BC) B(ACD ACD ACD ACD ACD ACD ACD ACD) CD(AB AB AB AB) ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD m8 m9 m10 m11 m8 m10 m12 m14 m4 m5 m6 m7 m12 m13 m14 m15 m3 m7 m11 m15
(3) 正确。因为若 Y≠Z,则当 X=0 时,等式 X + Y = X + Z 不可能成立;当 X=1 时,等式 XY = XZ 不可能成立;仅当 Y=Z 时,才能使 X+Y = X+Z 和 XY = XZ 同时成立。
(4) 正确。 因为若 Y≠Y,则 X+Y=1,而 X·Y=0,等式 X + Y = X·Y 不成立。
解答 (1) 证明如下
AB AC AB AC (A B)(A C) AB AC BC AB AC
(2) 证明如下
AB AB AB AB A(B B) A(B B) AA 1
(3) 证明如下
AABC A(A B C) AB AC AB(C C) AC(B B) ABC ABC ABC ABC ABC ABC ABC
(4)证明如下
AB BC AC AB BC AC (A B) (B C) (A C) (A B AC BC) (A C) ABC A B C
3 用真值表验证下列表达式:
(1) AB AB A B A B (2) A B A B AB AB
第二章
1 假定一个电路中,指示灯 F 和开关 A、B、C F=(A+B)C
试画出相应电路图。 解答
电路图如图 1 所示。
图1
2 用逻辑代数的公理、定理和规则证明下列表达式: (1) AB AC AB AC (2) AB AB AB AB 1 (3) AABC ABC ABC ABC (4) ABC ABC AB BC AC
值相同,那么 Y = Z。正确吗?为什么? (4) 如果已知 X+Y 和 X·Y 的逻辑值相同,那么 X 和 Y 的逻辑值
一定相同。正确吗?为什么? 解答
(1) 错误。因为当 X=1 时,Y≠Z 同样可以使等式 X + Y = X + Z 成立。
(2) 错误。因为当 X=0 时,Y≠Z 同样可以使等式 XY = XZ 成立。
解答
(1) F (A B)(A B)
F' (A B)(A B)
(2) F [A B AC C(D E)] E F' [AB AC C(D E)] E
(3) F AB C(D A C) F' AB C(D A C)
10
0
0
01 0 0 1 1
1
1
10 0 0 1 1
1
1
11 0 1 0 1
0
0
4 求下列函数的反函数和对偶函数: (1) F AB AB
(2) F A B A C C DE E
(3) F (A B)(C DAC)
(4) F A B CD E G
(A B) (A B) B
F BC D D B C AC B
BC D (B C)(AC B) BC D BC(AC B) BC D AC B B D AC
7. 将下列逻辑函数表示成“最小项之和”形式及“最大项之积”的
解答
(1) 真值表证明如表 1 所示。
表1
A B AB AB A B A+B AB AB (A B)(A B)
00 0 0 1 0
0
0
01 0 1 1 1
1
1
10 1 0 1 1
1
1
11 0 0 0。
表2
A B AB AB 00 1 0
A B A+B AB AB (A B)(A B)
ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD
m4 m12 m4 m5 m6 m7 m13 m6 m7 m14 m15
m(4,5,6,7,12,13,14,15) F(A,B, C, D) M (0,1,2,3,8,9,10,11)
AB CD 00 01 11 10
11 00
01
1
11
1
11
1
11
1
10
11
图3
F(A,B,C,D) = B + D (既是最简与-或式,也是最简或-与式)
(3)函数 F(A,B,C,D) M(2,4,6,10,11,12,13,14,15) m(0,1,3,5,7,8,9)
的卡诺图如图 4 所示。
AB CD 00 01 11 10
1
1
00
01
1
1
1
11
1
1
10
图4
F(A,B,C, D) AD B C (最簡与 - 或式)
F(A,B,C,D) AB AC BD CD
(最簡或-与式)
F(A,B,C,D) (A B)(A C)(B D)(C D)
9 用卡诺图判断函数 F(A,B,C,D)和 G(A,B,C,D)有何关系?
(1)作出函数 F 和 G 的卡诺图分别如图 5、图 6 所示。
AB
CD 00 01 11 10
1
11
1
00
01
11
10
1
11
1
AB CD 00 01 11 10
00
01
1
11
1
11
1
11
1
10
图5
图6
由卡诺图可知, F 和 G 互为反函数,即: F G, F G
(2)作出函数 F 和 G 的卡诺图分别如图 7、图 8 所示。
AB
CD 00 01 11 10
1
1
00
01
1
1
11
1
1
10
1
1
图7
AB
CD 00 01 11 10
1
1
00
01
1
1
11
1
1
10
1
1
图8
由卡诺图可知, F 和 G 相等,即: F G
10 某函数的卡诺图如图 9 所示 .
图9 (1) 若 b a ,当 a 取何值时能得到最简的“与-或”表达式? (2) a 和 b 各取何值时能得到最简的“与-或”表达式? 解答
(1) (2)
F AB ABC BC AB (AB B)C AB (A B)C AB AC BC AB AC
(3) (4)
F AB B BCD AB B AB
F A B C A B A B C
(4) F A B[(C D)E G]
F, A B[(C D)E G]
5 (1) 如果已知 X + Y 和 X + Z 的逻辑值相同,那么 Y 和 Z 的逻
辑值一定相同。正确吗?为什么? (2) 如果已知 XY 和 XZ 的逻辑值相同,那么那么 Y 和 Z 的逻辑值
一定相同。正确吗?为什么? (3)如果已知 X + Y 和 X + Z 的逻辑值相同,且 XY 和 XZ 的逻辑
解答 F(A,B,C, D) BD BD CD 或者 F(A,B,C, D) BD BD BC
(1) F(A, B,C, D) BD AD CD AC D
G(A, B,C, D) BD CD ACD ABD
(2) F(A, B,C, D) (AB AB) C (AB AB) C
解答
G(A, B,C, D) AB BC AC (A B C) ABC
m(3 ~ 15) M(0,1,2)
8 用卡诺图化简法求出下列逻辑函数的最简“与-或”表达式和最简
“或-与”表达式
(1) F(A, B,C, D) AB ACD AC BC
解答
(2) F(A, B,C, D) BC D D (B C) (AD B)
相关文档
最新文档