单链表转换成双向循环链表
循环链表的合并

循环链表的合并循环链表是一种特殊的链表,它的最后一个节点指向第一个节点,形成一个环状结构。
循环链表在数据结构中应用广泛,常用于约瑟夫问题、链式存储队列等场景。
在实际应用中,我们可能会需要合并两个循环链表,本文将介绍循环链表的合并算法。
一、什么是循环链表的合并循环链表的合并指将两个循环链表合并为一个。
合并后的链表仍然保持循环链表的结构,即最后一个节点指向第一个节点。
合并算法主要有两种,分别是非递归和递归实现。
二、非递归实现非递归实现循环链表的合并需要参考单链表的合并算法。
我们可以先创建一个新的循环链表,并将第一个链表的第一个元素与第二个链表的第一个元素进行比较,取较小的元素作为新链表的第一个元素。
然后移动被取到新链表中的节点的指针,再次比较两个链表的第一个元素,重复以上步骤,直到将两个链表中的元素全部取到新链表中为止。
具体实现如下:``` Node *mergeCircularList(Node *firstList, Node *secondList) { if (firstList == NULL){ return secondList; } if (secondList == NULL) { returnfirstList; } // 创建一个新的循环链表Node *newList = NULL; Node *newLast = NULL;if (firstList->data <= secondList->data){ newList = firstList; firstList = firstList->next; } else { newList = secondList; secondList =secondList->next; } newLast = newList; while (firstList != NULL && secondList != NULL){ if (firstList->data <= secondList->data) { newLast->next = firstList; firstList = firstList->next; } else{ newLast->next = secondList; secondList = secondList->next; } newLast = newLast->next; } if (firstList == NULL) { newLast->next = secondList; } else { newLast->next = firstList; } return newList; } ```三、递归实现递归实现循环链表的合并需要采用分治策略。
Java 数据结构经典题

1.把二元查找树转变成排序的双向链表题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10/ \6 14/ \ / \4 8 12 16转换成双向链表4=6=8=10=12=14=16。
首先我们定义的二元查找树节点的数据结构如下:struct BSTreeNode{int m_nValue; // value of nodeBSTreeNode *m_pLeft; // left child of nodeBSTreeNode *m_pRight; // right child of node};2.设计包含min函数的栈。
定义栈的数据结构,要求添加一个min函数,能够得到栈的最小元素。
要求函数min、push以及pop的时间复杂度都是O(1)。
3.求子数组的最大和题目:输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。
要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。
4.在二元树中找出和为某一值的所有路径题目:输入一个整数和一棵二元树。
从树的根结点开始往下访问一直到叶结点所经过的所有结点形成一条路径。
打印出和与输入整数相等的所有路径。
例如输入整数22和如下二元树10/ \5 12/ \4 7则打印出两条路径:10, 12和10, 5, 7。
二元树节点的数据结构定义为:struct BinaryTreeNode // a node in the binary tree{int m_nValue; // value of nodeBinaryTreeNode *m_pLeft; // left child of nodeBinaryTreeNode *m_pRight; // right child of node};5.查找最小的k个元素题目:输入n个整数,输出其中最小的k个。
第2-5章 线性结构

第二章线性表2-1 设有一个线性表(e0, e1, …, e n-2, e n-1)存放在一个一维数组A[arraySize]中的前n个数组元素位置。
请编写一个函数将这个线性表原地逆置,即将数组的前n个原址内容置换为(e n-1, e n-2, …, e1, e0)。
2-2 设有一个二维数组A[m][n],假设A[0][0]存放位置在644(10),A[2][2]存放位置在676,每个元素占一个空间,问A[3][3](10)存放在什么位置?脚注(10)表示用10进(10)制表示。
2-3 设有一个n n的对称矩阵A,如图(a)所示。
为了节约存储,可以只存对角线及对角线以上的元素,或者只存对角线或对角线以下的元素。
前者称为上三角矩阵,后者称为下三角矩阵。
我们把它们按行存放于一个一维数组B中,如图(b)和图(c)所示。
并称之为对称矩阵A的压缩存储方式。
试问:(1) 存放对称矩阵A上三角部分或下三角部分的一维数组B有多少元素?(2) 若在一维数组B中从0号位置开始存放,则如图(a)所示的对称矩阵中的任一元素a ij在只存上三角部分的情形下(图(b))应存于一维数组的什么下标位置?给出计算公式。
(3) 若在一维数组B中从0号位置开始存放,则如图(a)所示的对称矩阵中的任一元素a ij在只存下三角部分的情形下(图(c))应存于一维数组的什么下标位置?给出计算公式。
2-4 编写一个算法frequency,统计在一个输入字符串中各个不同字符出现的频度。
用适当的测试数据来验证这个算法。
2-5 利用顺序表的操作,实现以下的函数。
(1) 从顺序表中删除具有最小值的元素并由函数返回被删元素的值。
空出的位置由最后一个元素填补,若顺序表为空则显示出错信息并退出运行。
(3) 向顺序表中第i个位置插入一个新的元素x。
如果i不合理则显示出错信息并退出运行。
(8) 从顺序表中删除所有其值重复的元素,使表中所有元素的值均不相同。
2-6 字符串的替换操作replace ( String& s, String& t, String& v) 是指:若t是s的子串,则用串v替换串t在串s中的所有出现;若t不是s的子串,则串s不变。
循环双链表特点

循环双链表特点循环双链表是一种特殊的数据结构,它具有循环和双向链表的特点。
循环双链表中的每个节点都包含两个指针,一个指向前一个节点,一个指向后一个节点。
最后一个节点的后指针指向头节点,头节点的前指针指向最后一个节点,从而形成了一个闭环。
循环双链表的特点如下:1. 双向性:每个节点都有两个指针,分别指向前一个节点和后一个节点。
这样可以方便地在任意位置插入或删除节点,而不需要像单链表那样需要遍历找到前驱节点。
2. 循环性:循环双链表是一个闭环,即最后一个节点的后指针指向头节点,头节点的前指针指向最后一个节点。
这样可以方便地进行循环遍历,不需要判断是否到达了链表的末尾。
3. 动态性:循环双链表可以动态地增加或删除节点,而不需要预先指定链表的长度。
4. 灵活性:循环双链表可以在任意位置插入或删除节点,不受限于只能在链表的头部或尾部进行操作。
这样可以方便地实现栈、队列等数据结构。
5. 代码实现简单:相比于其他数据结构,循环双链表的代码实现相对简单,只需要处理好节点之间的指针关系即可。
循环双链表的应用领域非常广泛,特别是在需要频繁插入和删除节点的场景中,循环双链表能够提供高效的插入和删除操作。
下面以几个具体的应用场景来展开对循环双链表的解释和扩展。
1. 缓存替换算法:循环双链表可以用于实现LRU(Least Recently Used)缓存替换算法。
LRU算法中,当缓存满时,需要替换掉最近最少使用的数据。
循环双链表可以维护数据的访问顺序,每次访问一个数据时,将其移到链表的头部;当缓存满时,删除链表尾部的数据即可。
这样就可以保证链表头部的数据是最近访问的数据,尾部的数据是最久未访问的数据。
2. 轮播图:循环双链表可以用于实现轮播图功能。
轮播图需要循环展示多张图片,循环双链表正好可以满足这个需求。
每个节点表示一张图片,节点之间通过指针连接起来形成一个循环链表。
通过不断地遍历链表,可以实现图片的自动切换。
3. 约瑟夫环问题:循环双链表可以用于解决约瑟夫环问题。
循环单链表

循环单链表循环单链表是一种特殊的单链表,它的最后一个节点的指针指向第一个节点,形成一个环。
它具有单链表独有的优点,同时又克服了单链表存在的缺点。
因此,循环单链表在实际应用中受到了极大的欢迎。
本文介绍了循环单链表的概念,结构特性和实现功能,并分析了其与普通单链表的区别。
1.环单链表的概念循环单链表,也叫循环链表,是一种特殊的单链表,它的最后一个节点的指针指向第一个节点,形成一个环。
循环链表的结构比普通的单链表略有不同,其头结点的next域指向头节点,该结构最显著的特点就是头节点的“上一个”节点和最后一个节点“下一个”节点都是头结点,所以可以利用循环链表来实现双向链表的操作。
2.环单链表的结构特性循环单链表是一种特殊的单链表,其最后一个节点指针指向头结点,从结构上来看,它具有单链表的特点,如指针存储结构、节点为一个结构体成员以及只有单向指针,但又与普通单链表不同,它的结构特征有:(1)头结点的next域指向自身;(2)最后一个节点的next域也指向头结点;(3)整个结构类似一个拥有多叉指针的环形结构体。
3.环单链表的实现功能循环单链表的实现功能包括插入、删除、查找等,这些基本操作的实现和普通单链表的实现方法基本相同,只是有一些细节的不同。
例如,在普通单链表的删除操作中,如果需要删除的节点是链表的最后一个节点,则需要修改链表的尾指针,但是在循环单链表中,只需要修改头结点的next域指向,就可以实现操作。
4.与普通单链表的区别循环单链表有一些独特的结构特点,同时又克服了普通单链表的缺点,因此在实际应用中受到了极大的欢迎。
(1)普通单链表无法实现双向遍历,而循环单链表可以实现双向遍历和遍历,因为它有头结点和最后一个节点,所以可以实现双向遍历,再加上其结构特点,可以实现对双向链表的操作。
(2)普通单链表遍历需要维护一个辅助指针,而循环单链表则不需要,只需要从头结点开始,依次访问每一个节点,直到头结点。
结论:循环单链表是一种特殊的单链表,它的结构特征是头结点的next域指向头结点,最后一个节点的next域也指向头结点,它克服了普通单链表的缺点,可以实现双向遍历,同时又不需要维护辅助指针,因此广泛应用在实际工程中。
数据结构课后习题答案详解(C语言版_严蔚敏) 2

数据结构习题集答案(C语言版严蔚敏)第2章线性表2.1 描述以下三个概念的区别:头指针,头结点,首元结点(第一个元素结点)。
解:头指针是指向链表中第一个结点的指针。
首元结点是指链表中存储第一个数据元素的结点。
头结点是在首元结点之前附设的一个结点,该结点不存储数据元素,其指针域指向首元结点,其作用主要是为了方便对链表的操作。
它可以对空表、非空表以及首元结点的操作进行统一处理。
2.2 填空题。
解:(1) 在顺序表中插入或删除一个元素,需要平均移动表中一半元素,具体移动的元素个数与元素在表中的位置有关。
(2) 顺序表中逻辑上相邻的元素的物理位置必定紧邻。
单链表中逻辑上相邻的元素的物理位置不一定紧邻。
(3) 在单链表中,除了首元结点外,任一结点的存储位置由其前驱结点的链域的值指示。
(4) 在单链表中设置头结点的作用是插入和删除首元结点时不用进行特殊处理。
2.3 在什么情况下用顺序表比链表好?解:当线性表的数据元素在物理位置上是连续存储的时候,用顺序表比用链表好,其特点是可以进行随机存取。
2.4 对以下单链表分别执行下列各程序段,并画出结果示意图。
解:2.5 画出执行下列各行语句后各指针及链表的示意图。
L=(LinkList)malloc(sizeof(LNode)); P=L;for(i=1;i<=4;i++){P->next=(LinkList)malloc(sizeof(LNode));P=P->next; P->data=i*2-1;}P->next=NULL;for(i=4;i>=1;i--) Ins_LinkList(L,i+1,i*2);for(i=1;i<=3;i++) Del_LinkList(L,i);解:2.6 已知L是无表头结点的单链表,且P结点既不是首元结点,也不是尾元结点,试从下列提供的答案中选择合适的语句序列。
a. 在P结点后插入S结点的语句序列是__________________。
链表的反转与合并掌握链表反转和合并操作的实现

链表的反转与合并掌握链表反转和合并操作的实现链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
链表的反转和合并是链表操作中常见且重要的操作,在很多编程问题中都有应用。
本文将介绍链表的反转和合并操作的实现方法。
一、链表的反转链表的反转是指将链表中节点的顺序反向排列。
例如,对于链表1→2→3→4→5,反转后的链表为5→4→3→2→1。
实现链表的反转有两种常见的方法:迭代法和递归法。
1. 迭代法迭代法的实现思路是,从链表头节点开始,依次遍历每个节点,将该节点的指针指向前一个节点。
具体步骤如下:1)定义三个指针:当前节点指针cur、前一个节点指针prev、下一个节点指针next。
2)遍历链表,将当前节点的指针指向前一个节点,然后更新prev、cur和next指针的位置。
3)重复上述步骤,直到遍历到链表末尾。
以下是迭代法的实现代码示例(使用Python语言):```pythondef reverse_list(head):prev = Nonecur = headwhile cur:next = cur.nextcur.next = prevprev = curcur = nextreturn prev```2. 递归法递归法的实现思路是,从链表的尾节点开始,依次反转每个节点。
具体步骤如下:1)递归地反转除最后一个节点外的链表。
2)将当前节点的指针指向前一个节点。
3)返回反转后的链表的头节点。
以下是递归法的实现代码示例(使用Python语言):```pythondef reverse_list(head):if not head or not head.next:return headnew_head = reverse_list(head.next)head.next.next = headhead.next = Nonereturn new_head```二、链表的合并链表的合并是指将两个有序链表按照一定的规则合并成一个有序链表。
数据结构习题线性表 栈 队列 75

线性表(58)1. 在单链表、双链表和单循环链表中,若仅知道指针p指向某结点,不知道头指针,能否将结点*p从相应的链表中删去?若可以,其时间复杂度各为多少?2.设线性表的n个结点定义为(a0,a1,...an-1),重写顺序表上实现的插入和删除算法:InsertList 和DeleteList。
3.试分别用顺序表和单链表作为存储结构,实现将线性表(a0,a1,...an-1)就地逆置的操作,所谓"就地"指辅助空间应为O(1)。
4.设顺序表L是一个递增有序表,试写一算法,将x插入L中,并使L仍是一个有序表。
5.设顺序表L是一个递减有序表,试写一算法,将x插入其后仍保持L的有序性。
解答:与上题相类似,只要从终端结点开始往前找到第一个比x大(或相等)的结点数据,在这个位置插入就可以了。
(边寻找,边移动)6.写一算法在单链表上实现线性表的ListLength(L)运算。
7.已知L1和L2分别指向两个单链表的头结点,且已知其长度分别为m和n。
试写一算法将这两个链表连接在一起。
请分析你的算法的时间复杂度。
8.设 A和B是两个单链表,其表中元素递增有序。
试写一算法将A和B归并成一个按元素值递减有序的单链表C,并要求辅助空间为O(1),请分析算法的时间复杂度。
9.已知单链表L是一个递增有序表,试写一高效算法,删除表中值大于min 且小于max的结点(若表中有这样的结点),同时释放被删结点的空间,这里min 和 max是两个给定的参数。
请分析你的算法的时间复杂度。
10.写一算法将单链表中值重复的结点删除,使所得的结果表中各结点值均不相同。
11.假设在长度大于1的单循环链表中,既无头结点也无头指针。
s为指向链表中某个结点的指针,试编写算法删除结点*s的直接前趋结点。
12. 试编写一个算法,在带表头结点的单链表中寻找第i个结点。
若找到,则函数返回第i个结点的地址;若找不到,则函数返回0。
13. 设ha和hb分别是两个带表头结点的非递减有序单链表的表头指针, 试设计一个算法, 将这两个有序链表合并成一个非递增有序的单链表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p=head->next;
while(p!=NULL)
{
printf("%d ",p->data);
p=p->next;
}
One_To_Double(head);
}
void One_To_Double(List *head)
{
int i=-1;
List *p,*data1,*q,*Last;
data1=(List *)malloc(sizeof(List));
void main()
{
int i=1,sum;
List *head,*q,*p;
head=(List *)malloc(sizeof(List));
head->pre=NULL;
printf("输入链表的长度:");
scanf("%d",&sum);
p=(List *)malloc(sizeof(List));
#include<stdio.h>
#include<stdlib.h>
struct linklist
{
int data;
struct linklist *pre;
struct linklist *next;
};
typedef struct linklist List;
void One_To_Double(List *head);
p->data=i;
head->next=p;
p->next=NULL;
p->pre=head;
i++;
while(i<=sum)
{
q=(List *)malloc(sizeof(List));
q->data=i;
q->next=NULL;
q->pre=NULL;
p->next=q;
p=q;
i++;
//双向链表构成
p=Last;
printf("\n\n");
while(p->data!=1)
{
printf("%d ",p->data);
p=p->pre;
}
printf("%d \n",p->data);
}
p=(List *)malloc(sizeof(List));
q=(List *)malloc(sizeof(List));
data1=head->next;//记住第一个数据地址
p=head->next;
while(p->next!=NULL)
{
q=p; //q是前一个节点
p=p->next; //p是后一个节点
p->pre=q; //后一个节点的【前继指针】指向前一个节点的地址
}
Last=p; //p就是【最后一个数据】的地址
data1->pre=Last; //【第一个元素】的【前继指针】指向【最后一个元素】的地址
Last->next=data1; //【最后一个元素】的【后继指针】指向【第一个元素】的地址