双向循环链表操作-二叉树和树操作-图的创建及相关操作的实现(2)

合集下载

二叉树的基本操作

二叉树的基本操作

二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。

1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。

插入操作会按照一定规则将新节点放置在正确的位置上。

插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。

-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。

-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。

-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。

-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。

2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。

删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。

-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。

-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。

3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。

查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。

-如果待查找值等于当前节点的值,则返回该节点。

-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。

-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。

-如果左子树或右子树为空,则说明在二叉树中找不到该值。

4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。

有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。

- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

双向链表的算法设计与实现实验报告

双向链表的算法设计与实现实验报告

数学与计算科学学院实验报告
实验项目名称双向链表的算法设计与实现
所属课程名称__数据结构A
实验类型设计型
实验日期__
班级信计1402
学号201453100214
姓名俞凯烨
成绩
【实验小结】(收获体会)
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。

2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。

3.实验原理:简要说明本实验项目所涉及的理论知识。

4.实验环境:实验用的软、硬件环境。

5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。

概括整个实验过程。

对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。

对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。

对于创新性实验,还应注明其创新点、特色。

6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。

7.实验结论(结果):根据实验过程中得到的结果,做出结论。

8.实验小结:本次实验心得体会、思考和建议。

9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。

二叉树的建立方法总结

二叉树的建立方法总结

⼆叉树的建⽴⽅法总结之前已经介绍了⼆叉树的四种遍历(如果不熟悉),下⾯介绍⼀些⼆叉树的建⽴⽅式。

⾸先需要明确的是,由于⼆叉树的定义是递归的,所以⽤递归的思想建⽴⼆叉树是很⾃然的想法。

1. 交互式问答⽅式这种⽅式是最直接的⽅式,就是先询问⽤户根节点是谁,然后每次都询问⽤户某个节点的左孩⼦是谁,右孩⼦是谁。

代码如下(其中字符'#'代表空节点):#include <cstdio>#include <cstdlib>using namespace std;typedef struct BTNode *Position;typedef Position BTree;struct BTNode{char data;Position lChild, rChild;};BTree CreateBTree(BTree bt, bool isRoot){char ch;if (isRoot)printf("Root: ");fflush(stdin); /* 清空缓存区 */scanf("%c", &ch);fflush(stdin);if (ch != '#'){isRoot = false;bt = new BTNode;bt->data = ch;bt->lChild = NULL;bt->rChild = NULL;printf("%c's left child is: ", bt->data);bt->lChild = CreateBTree(bt->lChild, isRoot);printf("%c's right child is: ", bt->data);bt->rChild = CreateBTree(bt->rChild, isRoot);}return bt;}int main(){BTree bt;bt = CreateBTree(bt, true);LevelOrderTraversal(bt); /* 层序遍历 */return0;}2. 根据先序序列例如输⼊序列ABDH##I##E##CF#J##G##(#表⽰空),则会建⽴如下图所⽰的⼆叉树思路和第⼀种⽅式很相似,只是代码实现细节有⼀点区别,这⾥给出创建函数BTree CreateBTree(){BTree bt = NULL;char ch;scanf("%c", &ch);if (ch != '#'){bt = new BTNode;bt->data = ch;bt->lChild = CreateBTree();bt->rChild = CreateBTree();}return bt;}3. 根据中序序列和后序序列和⽅式⼆不同的是,这⾥的序列不会给出空节点的表⽰,所以如果只给出先序序列,中序序列,后序序列中的⼀种,不能唯⼀确定⼀棵⼆叉树。

双向链表

双向链表

第8讲 双向链表● 循环单链表的出现,虽然能够实现从任一结点出发沿着链能找到其前趋结点,但时间耗费是O (n) 。

● 如果希望从表中快速确定某一个结点的前趋,另一个解决方法就是在单链表的每个结点里再增加一个指向其前趋的指针域prior 。

这样形成的链表中就有两条方向不同的链,我们称之为双向链表。

● 双向链表的结构定义如下:typedef struct DNode{ ElemType data ;struct DNode *prior ,*next ;}DNode, * DoubleList ;● 双向链表的结点结构如图所示。

图:双链表的结点结构注:● 双向链表也是由头指针唯一确定的,● 增加头结点能使双链表的某些运算变得方便● 由于在双向链表中既有前向链又有后向链,寻找任一个结点的直接前驱结点与直接后继结点变得非常方便。

● 设指针p 指向双链表中某一结点,则有下式成立:p->prior->next = p = p->next->prior●在双向链表中,那些只涉及后继指针的算法,如求表长度、取元素、元素定位等,与单链表中相应的算法相同,● 但对于前插和删除操作则涉及到前驱和后继两个方向的指针变化,因此与单链表中的算法不同。

1、 双向链表的前插操作【算法思想】欲在双向链表第i 个结点之前插入一个的新的结点,则指针的变化情况如图所示:… p …s->prior=p->prior; ①p->prior->next=s;②s->next=p; ③p->prior=s;④【算法描述】int DlinkIns(DoubleList L,int i,ElemType e){DNode *s,*p;… /*先检查待插入的位置i是否合法(实现方法同单链表的前插操作)*/… /*若位置i合法,则找到第i个结点并让指针p指向它*/s=(DNode*)malloc(sizeof(DNode));if (s){ s->data=e;s->prior=p->prior; ①p->prior->next=s; ②s->next=p; ③p->prior=s; ④r eturn TRUE;}else return FALSE;}2、双向链表的删除操作【算法思想】欲删除双向链表中的第i个结点,则指针的变化情况如图所示:p->prior->next=p->next; ①p->next->prior=p->prior; ②free(p);【算法描述】int DlinkDel(DoubleList L,int i,ElemType *e){DNode *p;… /*先检查待插入的位置i 是否合法(实现方法同单链表的删除操作)*/… /*若位置i 合法,则找到第i 个结点并让指针p 指向它*/*e=p->data;p->prior->next=p->next; ①p->next->prior=p->prior; ②free(p);return TRUE;}3、 双向循环链表双向链表可以有循环表,称为双向循环链表。

数据结构中的双向链表实现和应用场景

数据结构中的双向链表实现和应用场景

数据结构中的双向链表实现和应用场景双向链表是一种常用的数据结构,它在许多实际应用中都发挥着重要的作用。

本文将介绍双向链表的实现原理以及一些常见的应用场景。

一、双向链表的实现原理双向链表由一系列节点组成,每个节点包含两个指针,一个指向前一个节点,一个指向后一个节点。

相比于单向链表,双向链表可以实现双向遍历,提高了一些操作的效率。

1.1 节点定义双向链表的节点通常由数据域和两个指针域组成,例如:```struct Node {int data; // 节点数据Node* prev; // 前一个节点指针Node* next; // 后一个节点指针};```1.2 插入操作在双向链表中插入一个节点可以分为两种情况:在表头插入和在表尾插入。

在表头插入时,只需修改原来头节点的prev指针为新节点的地址,并将新节点的next指针指向原头节点即可。

在表尾插入时,需要先找到原来的尾节点,然后将尾节点的next指针指向新节点的地址,并将新节点的prev指针指向尾节点的地址。

1.3 删除操作删除操作与插入操作类似,同样分为在表头和表尾删除节点。

在表头删除时,只需将头节点的next指针指向新的头节点,同时将新头节点的prev指针置为空。

在表尾删除时,需要先找到尾节点的前一个节点,然后将该节点的next指针置为空。

1.4 查找操作双向链表支持从前向后和从后向前两种遍历方式。

从前向后遍历时,我们可以利用节点的next指针不断向后遍历得到所有节点。

同样,从后向前遍历时,可以利用节点的prev指针不断向前遍历得到所有节点。

二、双向链表的应用场景双向链表广泛应用于各种软件和系统中,下面列举了一些常见的应用场景。

2.1 浏览器的历史记录在浏览器中,经常需要记录用户浏览过的网页历史记录。

这时可以使用双向链表来实现。

每当用户访问一个新的网页,就在双向链表中插入一个新节点,同时将新节点的next指针指向前一个节点,prev指针指向后一个节点。

C语言数据结构之二叉链表创建二叉树

C语言数据结构之二叉链表创建二叉树

C 语⾔数据结构之⼆叉链表创建⼆叉树⽬录⼀、思想(先序思想创建)⼆、创建⼆叉树(1)传⼀级参数⽅法(2)传⼆级参数⽅法⼀、思想(先序思想创建)第⼀步先创建根节点,然后创建根节点左⼦树,开始递归创建左⼦树,直到递归创建到的节点下不继续创建左⼦树,也就是当下递归到的节点下的左⼦树指向NULL ,结束本次左⼦树递归,返回这个节点的上⼀个节点,开始创建右⼦树,然后⼜开始以当下这个节点,继续递归创建左⼦树,左⼦树递归创建完,就递归创建右⼦树,直到递归结束返回到上⼀级指针节点(也就是根节点下),此时根节点左边⼦树创建完毕,开始创建右边⼦树,原理和根节点左边创建左右⼦树相同⼆、创建⼆叉树⼆叉树的操作通常使⽤递归⽅法,如果递归不太明⽩,建议去对此进⾏⼀下学习和练习。

⼆叉树的操作可以分为两类,⼀类是需要改变⼆叉树的结构的,⽐如⼆叉树的创建、节点删除等等,这类操作,传⼊的⼆叉树的节点参数为⼆叉树指针的地址,这种参⼊传⼊,便于更改⼆叉树结构体的指针(即地址)。

这⾥稍微有⼀点点绕,可能需要多思考⼀下如下是⼆叉数创建的函数,这⾥我规定,节点值为整数,如果输⼊的数为-1,则表⽰结束继续往下创建⼦节点的操作。

然后我们使⽤递归的⽅法以此创建左⼦树和右⼦树为了更⽅便的使⽤⼆叉树结构体,可以使⽤ typedef 对结构体进⾏命名123456typedef struct Tree{int data; // 存放数据域struct Tree *lchild; // 遍历左⼦树指针struct Tree *rchild; // 遍历右⼦树指针}Tree,*BitTree;这⾥展⽰两种传参类型的创建⽅法,其中深意可多次参考理解,加深指针理解(1)传⼀级参数⽅法123456789101112131415161718BitTree CreateLink(){ int data; int temp; BitTree T;scanf("%d",&data); // 输⼊数据temp=getchar(); // 吸收空格if(data == -1){ // 输⼊-1 代表此节点下⼦树不存数据,也就是不继续递归创建 return NULL; }else{ T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间T->data = data; // 把当前输⼊的数据存⼊当前节点指针的数据域中printf("请输⼊%d 的左⼦树: ",data);T->lchild = CreateLink(); // 开始递归创建左⼦树192021222324printf("请输⼊%d 的右⼦树: ",data);T->rchild = CreateLink(); // 开始到上⼀级节点的右边递归创建左右⼦树return T; // 返回根节点 } }(2)传⼆级参数⽅法123456789101112131415161718192021222324252627282930BitTree CreateLink(BitTree *T) // 次数 T 为指向根节点的指针的地址{ int data; scanf("%d",&data); if(data == -1){*T=NULL; // 结束递归时,让指针当前节点的指针地址的 指针 指向NULL}else{*T = (BitTree)malloc(sizeof(Tree)); // 对指向节点指针地址的指针 分配内存 if(!(*T) ){ // *T = NULL 表⽰分配内存失败,也就是结束递归创建了 printf("内存分配失败\n");exit(-1);}(*T)->data = data; // 给节点指针地址内的数据域,存⼊数据 printf("请输⼊%d 的左⼦树: ",data); CreateLink(&(*T)->lchild); // 开始遍历左⼦树printf("请输⼊%d 的右⼦树: ",data);CreateLink(&(*T)->rchild); // 开始遍历右⼦树,遍历的思想⽂章开头处解释} }1234567891011121314#include<stdio.h>#include<stdlib.h> typedef struct Tree{ int data; // 存放数据域 struct Tree *lchild; // 遍历左⼦树指针 struct Tree *rchild; // 遍历右⼦树指针 }Tree,*BitTree;151617181920212223242526272829303132333435363738394041424344454647484950515253545556BitTree CreateLink(){int data; int temp; BitTree T; scanf("%d",&data); // 输⼊数据 temp=getchar(); // 吸收空格if(data == -1){ // 输⼊-1 代表此节点下⼦树不存数据,也就是不继续递归创建return NULL;}else{T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间 T->data = data; // 把当前输⼊的数据存⼊当前节点指针的数据域中 printf("请输⼊%d 的左⼦树: ",data); T->lchild = CreateLink(); // 开始递归创建左⼦树printf("请输⼊%d 的右⼦树: ",data);T->rchild = CreateLink(); // 开始到上⼀级节点的右边递归创建左右⼦树 return T; // 返回根节点 } } void ShowXianXu(BitTree T) // 先序遍历⼆叉树{if(T==NULL){return; } printf("%d ",T->data);ShowXianXu(T->lchild); // 递归遍历左⼦树ShowXianXu(T->rchild); // 递归遍历右⼦树} int main(){ BitTree S;printf("请输⼊第⼀个节点的数据:\n");S = CreateLink(); // 接受创建⼆叉树完成的根节点ShowXianXu(S); // 先序遍历⼆叉树 return 0; }123456789101112131415#include<stdio.h>#include<stdlib.h>typedef struct Tree{int data;struct Tree *lchild;struct Tree *rchild;}Tree,*BitTree; BitTree CreateLink(BitTree *T) // 次数 T 为指向根节点的指针的地址{ int data;16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 scanf("%d",&data);if(data == -1){*T=NULL; // 结束递归时,让指针当前节点的指针地址的指针指向NULL }else{*T = (BitTree)malloc(sizeof(Tree)); // 对指向节点指针地址的指针分配内存if(!(*T) ){ // *T = NULL 表⽰分配内存失败,也就是结束递归创建了printf("内存分配失败\n");exit(-1);}(*T)->data = data; // 给节点指针地址内的数据域,存⼊数据printf("请输⼊%d的左⼦树: ",data);CreateLink(&(*T)->lchild); // 开始遍历左⼦树printf("请输⼊%d的右⼦树: ",data);CreateLink(&(*T)->rchild); // 开始遍历右⼦树,遍历的思想⽂章开头处解释}}void ShowXianXu(BitTree T) // 先序遍历⼆叉树{if(T==NULL){return;}printf("%d ",T->data);ShowXianXu(T->lchild); // 遍历左⼦树ShowXianXu(T->rchild); // 遍历右⼦树}int main(){BitTree *S; // 创建指向这个结构体指针地址的指针printf("请输⼊第⼀个节点的数据:\n");CreateLink(&S); // 传⼆级指针地址ShowXianXu(S);return0;}到此这篇关于C语⾔数据结构之⼆叉链表创建⼆叉树的⽂章就介绍到这了,更多相关C语⾔⼆叉链表创建⼆叉树内容请搜索以前的⽂章或继续浏览下⾯的相关⽂章希望⼤家以后多多⽀持!。

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告二叉树是一种重要的数据结构,在计算机科学领域中被广泛应用。

本实验将介绍二叉树的基本操作与实现,并给出相应的实验报告。

一、引言二叉树是一种特殊的树状结构,每个节点至多有两个子节点。

二叉树有许多重要的特性,如平衡二叉树、二叉树等,应用广泛。

在本实验中,我们将介绍二叉树的基本操作和实现。

二、实验目的1.掌握二叉树的基本概念和特性;2.熟悉二叉树的基本操作,包括创建、插入、删除、遍历等;3.学会使用编程语言实现二叉树的基本操作。

三、实验内容本实验主要包括以下内容:1.二叉树的定义和基本概念;2.二叉树的基本操作,包括创建、插入、删除、遍历等;3.使用编程语言实现二叉树的基本操作;4.测试和验证二叉树的基本操作的正确性。

四、实验步骤1.二叉树的定义和基本概念二叉树是一种树状结构,每个节点至多有两个子节点。

二叉树的每个节点包含一个数据项和指向左子树和右子树的指针。

二叉树的特性有很多,如完全二叉树、平衡二叉树、二叉树等。

2.二叉树的基本操作(1)创建二叉树:可以通过手动输入节点数据来创建二叉树,也可以通过读取文件中的数据来创建二叉树。

(2)插入节点:在指定位置插入一个新节点。

(3)删除节点:删除指定位置的节点。

(4)遍历二叉树:有前序遍历、中序遍历和后序遍历三种遍历方式。

3.使用编程语言实现二叉树的基本操作实现二叉树的基本操作可以使用编程语言来完成。

我们可以定义一个二叉树的结构体,包含节点数据和指向左右子树的指针。

然后根据具体的需求,实现相应的操作函数。

4.测试和验证二叉树的基本操作的正确性在完成二叉树的基本操作后,我们可以编写测试代码来验证操作的正确性。

通过创建二叉树,并进行插入、删除和遍历操作,观察输出结果是否符合预期。

五、实验结果与分析在完成二叉树的基本操作后,我们可以进行测试和验证。

通过输出二叉树的遍历结果,比对预期结果来判断操作是否正确。

同时,我们还可以观察二叉树的结构和特性,如是否满足平衡二叉树或二叉树的条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念模型
精选ppt
14
模块设计
精选ppt
15
函数或类的具体定义和功能
DFSTraverse()
// 图的深度优先遍历
BFS()
// 对图进行广度优先遍历
CBNode dfsTraverseTree() // 图的深度优先生成树
PathJudgement() // 图的路径操作
精选ppt
16
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选ppt
6、就地逆置
3
主要的成员方法:
//创建链表 public DoubleLinkedList() {}
//插入一个节点 public void add(AnyType x) {}
// 删除第i个元素
public AnyType remove(int idx) {} //就地逆置
int a = lengh + 2; int b = 0; for(lengh = lengh+1;lengh > 0;lengh--){
数据结构课程设计 成果展示
姓名:姜吉磊 学号:20121113017 班级:网络121
精选ppt
1
所选题目:
1.双向循环链表 2.二叉树 3.树 4. 图的相关操作
精选ppt
2
双向循环链表实现的功能:
1、建立一个空表;
2、插入第i个节点;
3、删除第i个节点;
4、插入第一个节点;
5、插入最后一个节点;
dl.add(b, dl.get(a-1)); b++; dl.remove(a); }
精选ppt
4
模块设计
精选ppt
5
模块划分
建表
精选ppt
6
插入数据
模块划分
精选ppt
7
删除元素
模块划分
精选ppt
8
二叉树&树实现的功能:
一.统计二叉树叶子结点的个数 二.孩子-兄弟表示法
①树的先根遍历 ②树的后根遍历 ③树的层次遍历;
//树的前根遍历
Behind( CSNode t)
//树的后根遍历
levelTravel(CSNode root)
//层次遍历
精选ppt
10
模块设计(二叉树)
总体思路:通过递归来实现操作
精选ppt
11
模块设计(树)
执行步骤:
创建孩子兄弟树→ 实现树的前根遍历→ 树的后根遍历→ 实现层次遍历 → void类型直接输出
精选ppt
9
主要的成员方法:
①二叉树
BTNode<AnyType> CreateBT(AnyType[] arr)
//先序创建二叉树

countNode()
//统计叶子节点个数
②树
CSNode CSNodeCreateBinaryTree(AnyType[] st) //孩子兄弟树的创建
FontOrder(CSNode t)
精选ppt
12
图的基本操作
1.完成图的深度优先遍历和广度优先遍历;
2.求图的深度优先或广度优先的生成树(或 生成森林)(存储结构为孩子-兄弟链表), 并对生成树进行遍历;
3.对于图(不是网),求顶点u到v的一条 简单路径;
精选ppt
13
总体思路
通过深度遍历、递归、Dijkstra、Floyd、 prim思想来操作。
相关文档
最新文档