SPICE器件模型

合集下载

Ch06集成电路器件及SPICE模型

Ch06集成电路器件及SPICE模型

Ch06集成电路器件及SPICE模型第6章集成电路器件及SPICE模型6.1 无源器件结构及模型6.2 二极管电流方程及SPICE模型6.3 双极型晶体管电流方程及SPICE模型6.4 结型场效应管JFET 模型6.5 MESFET模型6.6 MOS管电流方程及SPICE模型6.1 无源器件结构及模型集成电路中的无源元件包括:互连线、电阻、电容、电感、传输线等6.1.1 互连线互连线设计应该注意以下方面:大多数连线应该尽量短最小宽度保留足够的电流裕量多层金属趋肤效应和寄生参数(微波和毫米波)寄生效应图6.1 简单长导线的寄生模型图6.2 简单并联寄生电容图6.3 复杂互连线的寄生电容6.1.2 电阻实现电阻有三种方式:1.晶体管结构中不同材料层的片式电阻(不准确)2.专门加工制造的高质量高精度电阻3.互连线的传导电阻图6.4 (a)单线和U -型电阻结构(b)它们的等效电路阻值计算最小宽度图6.5栅漏短接的MOS 有源电阻及其I-V 曲线R on 2TN ox n ox )(2GS V V V W L t I V V ?εμ==11ox GS DS ds GS GS L t V V r V V V V ??==?=?===直流电阻R on >交流电阻r ds 1. 栅、漏短接并工作在饱和区的MOS 有源电阻o ′o图6.6饱和区的NMOS 有源电阻示意图直流电阻R on <交流电阻r ds条件:V GS 保持不变2. V GS 保持不变的饱和区有源电阻对于理想情况,Oˊ点的交流电阻应为无穷大,实际上因为沟道长度调制效应,交流电阻为一个有限值,但远大于在该工作点上的直流电阻。

在这个工作区域,当漏源电压变化时,只要器件仍工作在饱和区,它所表现出来的交流电阻几乎不变,直流电阻则将随着漏源电压变大而变大。

总结:有源电阻的几种形式( a ) ( d ) 和( c )直流电阻R on<交流电阻r ds ( b )和( e ) 直流电阻R on>交流电阻r ds6.1.3 电容在高速集成电路中,有多种实现电容的方法:1)利用二极管和三极管的结电容;2)利用图8所示的叉指金属结构;3)利用图6.9所示的金属-绝缘体-金属(MIM)结构;4)利用类似于图6.9的多晶硅/金属-绝缘体-多晶硅结构;图6.9叉指结构电容和图6.10MIM 结构电容电容平板电容公式高频等效模型自谐振频率f0品质因数Q LCfπ21=dlwC r0εε=f < f/ 36.1.4 电感引言集总电感单匝线圈版图)(pH]2)/8[ln(26.1?=waaLπa,w 取微米单位式中:r i =螺旋的内半径,微米,r 0=螺旋的外半径,微米,N=匝数。

SPICE的器件模型教材

SPICE的器件模型教材

SPICE的器件模型在介绍SPICE基础知识时介绍了最复杂和重要的电路描述语句,其中就包括元器件描述语句。

许多元器件(如二极管、晶体管等)的描述语句中都有模型关键字,而电阻、电容、电源等的描述语句中也有模型名可选项,这些都要求后面配以.MODEL起始的模型描述语句,对这些特殊器件的参数做详细描述。

电阻、电容、电源等的模型描述语句语句比较简单,也比较容易理解,在SPICE基础中已介绍,就不再重复了;二极管、双极型晶体管的模型虽也做了些介绍,但不够详细,是本文介绍的重点,以便可以自己制作器件模型;场效应管、数字器件的模型过于复杂,太专业,一般用户自己难以制作模型,只做简单介绍。

元器件的模型非常重要,是影响分析精度的重要因素之一。

但模型中涉及太多图表,特别是很多数学公式,都是在WORD下编辑后再转为JEPG图像文件的,很繁琐和耗时,所以只能介绍重点。

一、二极管模型:1.1 理想二极管的I-V特性:1.2 实际硅二极管的I-V特性曲线:折线1.3 DC大信号模型:1.4 电荷存储特性:1.5 大信号模型的电荷存储参数Qd:1.6 温度模型:1.7 二极管模型参数表:二、双极型晶体管BJT模型:2.1 Ebers-Moll静态模型:电流注入模式和传输模式两种2.1.1 电流注入模式:2.1.2 传输模式:2.1.3 在不同的工作区域,极电流Ic Ie的工作范围不同,电流方程也各不相同:2.1.4 Early效应:基区宽度调制效应2.1.5 带Rc、Re、Rb的传输静态模型:正向参数和反向参数是相对的,基极接法不变,而发射极和集电极互换所对应的两种状态,分别称为正向状态和反向状态,与此对应的参数就分别定义为正向参数和反向参数。

2.2 Ebers-Moll大信号模型:2.3 Gummel-Pool静态模型:2.4 Gummel-Pool大信号模型:拓扑结构与Ebers-Moll大信号模型相同,非线性存储元件电压控制电容的方程也相同2.5 BJT晶体管模型总参数表:三、金属氧化物半导体晶体管MOSFET模型:3.1 一级静态模型:Shichman-Hodges模型3.2 二级静态模型(大信号模型):Meyer模型3.2.1 电荷存储效应:3.2.2 PN结电容:3.3 三级静态模型:3.2 MOSFET模型参数表:一级模型理论上复杂,有效参数少,用于精度不高场合,迅速粗略估计电路二级模型可使用复杂程度不同的模型,计算较多,常常不能收敛三级模型精度与二级模型相同,计算时间和重复次数少,某些参数计算比较复杂四级模型BSIM,适用于短沟道(<3um)的分析,Berkley在1987年提出四、结型场效应晶体管JFET模型:基于Shichman-Hodges模型4.1 N沟道JFET静态模型:4.2 JFET大信号模型:4.3 JFET模型参数表:五、GaAs MESFET模型:分两级模型(肖特基结作栅极)GaAs MESFET模型参数表:六、数字器件模型:6.1 标准门的模型语句:.MODEL <(model)name> UGATE [模型参数] 标准门的延迟参数:6.2 三态门的模型语句:.MODEL <(model)name> UTGATE [模型参数]三态门的延迟参数:6.3 边沿触发器的模型语句:.MODEL <(model)name> UEFF [模型参数]边沿触发器参数:JKFF nff preb,clrb,clkb,j*,k*,g*,gb* JK触发器,后沿触发DFF nff preb,clrb,clk,d*,g*,gb* D触发器,前沿触发边沿触发器时间参数:6.4 钟控触发器的模型语句:.MODEL <(model)name> UGFF [模型参数]钟控触发器参数:SRFF nff preb,clrb,gate,s*,r*,q*,qb* SR触发器,时钟高电平触发DLTCH nff preb,clrb,gate,d*,g*,gb* D触发器,时钟高电平触发钟控触发器时间参数:6.5 可编程逻辑阵列器件的语句:U <name> <pld type> (<#inputs>,<#outputs>) <input_node>* <output_node># +<(timing model)name> <(io_model)name> [FILE=<(file name) text value>]+[DATA=<radix flag>$ <program data>$][MNTYMXDLY=<(delay select)value>] +[IOLEVEL=<(interface model level)value>]其中:<pld type>列表<(file name) text value> JEDEC格式文件的名称,含有阵列特定的编程数据JEDEC文件指定时,DATA语句数据可忽略<radix flag> 是下列字母之一:B 二进制 O 八进制 X 十六进制<program data> 程序数据是一个数据序列,初始都为0PLD时间模型参数:七、数字I/O接口子电路:数字电路与模拟电路连接的界面节点,SPICE自动插入此子电路子电路名(AtoDn和DtoAn)在I/O模型中定义,实现逻辑状态与电压、阻抗之间的转换。

spice与器件模型

spice与器件模型
美国加州大学伯克利分校以Pederson教授为首的计算机辅助集 成电路设计小组开发的,经过不断的完善和改进, 从20世纪70年 代末开始, Spice向全世界推广。现在, Spice已成为大学、 研究 机构和公司普遍采用的电路分析程序, 甚至把它当作了一种标准。
第七章 Pspice与器件模型
Spice在计算中采用了精确半导体器件模型、 稀疏矩阵等 技术, 在数学和物理上的概念非常清晰并具有很高的精确度, 良 好的通用性, 并能模拟不同类型的电路。 但目前Spice还存在以 下一些不足:
(1) Spice用网表的文本方式输入电路的描述。要构造一个 网表, 设计者首先要数出电路的所有节点, 然后建立文件去描述 电路的连接和元件值。 为此, 用户首先要学会使用计算机的操 作系统和文件编辑器, 还要掌握各种专用命令。所以开始阶段 用户会感到不便。
第七章 Pspice与器件模型
(2) 模拟电路要求的精度高, 所以Spice 中所建模型要精确, 模型参数的赋值也必须非常准确,结果造成Spice中某些元件 有几十个参数。这里所说的模型参数不同于器件出厂时的手册 参数, Spice所给的是反映器件内部物理特性的一些参数。 在使 用时, 要用户自行提供这些参数是很困难的, 通常情况下只好用 Spice程序的缺省值代替, 这往往会导致分析结果不准确。
模型参数 C VC1 VC2 TC1 TC2
单位 F V V ℃ ℃
缺省值 1 0 0 0 0
参数的意义 电容因子 线性电压系数 平方电压系数 线性温度系数 平方温度系数
第七章 Pspice与器件模型 在Pspice中可以采用不同的比例后缀来表示5E6 1.05MEG 1.05E3K 0.00105G
第七章 Pspice与器件模型

第3章 器件的物理基础及其Spice模型

第3章 器件的物理基础及其Spice模型

9
3.1.3 PN结的单向导电性
一、正向偏置的 PN 结 二、反向偏置的 PN 结
正向偏置
耗尽区变窄 正向电流
反向偏置
耗尽区变宽 反向电流
扩散运动加强, 扩散运动加强, 漂移运动减弱
扩散运动减弱, 漂移运动加强
10
2. 外加反向电压, PN结截止 在PN结两端加反向电压,即P区接电源负极,N区接电源 正极,如图3-3(b)所示。在外加反向电压的作用下PN结变宽, 阻碍多数载流子的扩散运动。少数载流子在外加电压作用下形 成微弱电流,由于电流很小,可忽略不计,所以PN结处于截 止状态。 应当指出的是,少数载流子是由于热激发产生的,所以 少数载流子是由于热激发产生的, 少数载流子是由于热激发产生的 PN结的反向电流与温度有关 结的反向电流与温度有关,必须注意较大的温度变化会对 结的反向电流与温度有关 半导体器件有影响。
17
3.2 有源器件 3.2.1 双极型晶体管 及其SPICE模型
npn管的结构 npn管的结构
图3-5 NPN晶体管结构 图
18
2) 横向PNP的结构 横向PNP的特点包括: 的特点包括: 横向 的特点包括 (1) β小(由于工艺限制,基区宽度不可能太小,且有纵向 PNP的作用); (2) 频率响应差(fT小); (3) 载流子是空穴。 改善的方法:在图形设计上减小发射区面积和周长之比。 横向PNP的结构如图3-6所示。
16
1. 双极型晶体管的结构 1) NPN管的结构 图3-5为集成电路中使用的NPN晶体管的平面图和剖面图。 其外延层是一种杂质种类和浓度与衬底不同的半导体结晶薄层。 集成电路内各器件依靠处于反向偏置的PN结相互隔离。 集成电路内各器件依靠处于反向偏置的 结相互隔离。 结相互隔离 包括集电极在内的各个电极均形成在上表面。 隐埋层(N 是在外延之前扩散形成的 是在外延之前扩散形成的, 隐埋层 +)是在外延之前扩散形成的,是为了降低集电极 电流通路的电阻(集电极电阻 而设置的 电流通路的电阻 集电极电阻)而设置的。 集电极电阻 而设置的。

集成电路器件及SPICE模型

集成电路器件及SPICE模型

12
图6.5 (a)叉指结构电容 (b)MIM 结构电容
13
电容

平板电容公式

d 高频等效模型:并联G、串联L和R。
自谐振频率 f0
f0 1 2 LC
C
r 0lw
f < f0 / 3

品质因数 Q
14
6.1.4 电感
引言 集总电感
L 1.26a[ln(8a / w) 2 ( ] pH)
ZL 60
reff
8h w ln w 4h
ZL
120
w/h<1
w h h reff 2.42 0.44 1 h w w
6


w/h>1

微带线的衰减α由两部分组成:导线损耗和 介质损耗 形成微带线的基本条件是,介质衬底的背面 应该完全被低欧姆金属覆盖并接地,从而使 行波的电场主要集中在微带线下面的介质中。
22
3. 共面波导(CPW)---微波平面传输线
在介质基片的一个面上制作出中心导体带,并在 紧邻中心导体带的两侧制作出导体平面
图6.12 (a)常规共面波导
(b)双线共面波导
23

CPW传输TEM波的条件 CPW的阻抗计算
图6.11
(a)典型微带线的剖面图
(b)覆盖钝化膜的微带线
20
TEM波(电磁波的电场和磁场都在垂直于 传播方向的平面上 ) 传输线的条件
w, h 0 /(40 r )
1/ 2
GaAs衬底的厚度<200um
21

微带线设计需要的电参数主要是阻抗、衰减、 无载QDS

spice模型

spice模型
SPICE中将MOS场效应管模型分成不同级别, 并用变量LEVEL来指定所用的模型。
1)LEVEL=1
级别为1的MOS管模型又称MOS1模型,这是 最简单的模型,适用于手工计算。MOS1模型是 MOS晶体管的一阶模型,描述了MOS管电流 电压的平方率特性,考虑了衬底调制效应和沟 道长度调制效应,适用于精度要求不高的长沟 道MOS晶体管。
4)LEVEL=4 级别为4的MOS4模型又称BSIM(Berkeley short-channel IGFET model)模型。该模型 是由美国伯克利大学1984年专门为短沟道MOS 场效应晶体管而开发的模型,是AT&T Bell实验 室简练短沟道IGFET模型的改进型。模型是在 物理基础上建立的,模型参数由工艺文件经模 型参数提取程序自动产生,适用于数字电路和 模拟电路,而且运行时间比二级模型平均缩短 一半左右。现已发表的有BSIM1、BSIM2、 BSIM3和BSIM4等模型。
Cd

dQ dVD
τT
dI D dVD
τT I D
n Vt
二极管模型参数对照表
参数名
饱和电流 发射系数 串联体电阻 渡越时间 零偏置时的势垒
电容 梯度因子
PN结内建势垒
公式中符号
IS n RS τT Cj0 m V0
SPICE中符号
IS N RS TT CJ0 M VJ
单位
A Ω Sec F V
SPICE中缺省 值
1.0E-14 1 0 0
0
0.5
1
二极管的噪声模型
热噪声:
In2
4kTA RS
闪烁(1/f)噪声和散粒噪声:
In2

KF I D AF

第5章集成电路元器件及其SPICE模型ppt课件

第5章集成电路元器件及其SPICE模型ppt课件
任何电容仅在低于f0的频率上才会起电容作用。 经验准则是让电容工作在f0/3以下。
金属叉指结构电容
优点:不需要额 外的工艺。
特征尺寸急剧降 低,金属线条的 宽度和厚度之比 大大减小,叉指 的侧面电容占主 导地位。
PN结电容
❖ 利用PN结电容的优点也是不需要额外的工艺,但所 实现的电容有一个极性问题。
❖耗尽区
❖反型区
G
Co 沟道 Cdep
Vss
G ++++++
沟道 耗尽层 P型衬底
Vss
(a)物理结构
tox d
Cgb Co 积累区
耗尽区
1.0
反型区
(b)电容与Vgs的函数关系 0.2
0
Vgs
三、集成电感
在集成电路开始出现以后很长一段时间内, 人们一直认为电感是不能集成在芯片上的。因 为那时集成电路工作的最高频率在兆赫量级, 芯片上金属线的电感效应非常小。现在的情况 就不同了,首先,近二十年来集成电路的速度 越来越高,射频集成电路(RFIC)已经有了很 大的发展,芯片上金属结构的电感效应变得越 来越明显。芯片电感的实现成为可能。
在设计电路的时候需要非常准确地 预测出电路的性能。为了做到这一点, 需要对电路尽可能地进行精确的性能分 析(Analysis)。因为集成电路元器件 无法用实物构建,必须首先建立器件模 型,然后对用这些元器件模型所设计的 集成电路进行以分析计算为基础的电路 仿真(Simulation)。
在集成电路的晶体管级仿真方面, SPICE是主要的电路仿真程序,并已成为 工业标准。因此,集成电路设计工程师, 特别是模拟和数字混合信号集成电路设计 工程师必须掌握SPICE的应用。

第二讲-PSpice中的器件模型和模型参数

第二讲-PSpice中的器件模型和模型参数

PSpice中的模型和模型参数库一.PSpice中的模型参数库二.模型描述格式半导体器件模型描述格式子电路模型描述格式三.以已有模型为基础新建模型描述四.为实际元器件提取模型参数、建立模型描述3.模型类别(按照建模方式划分)(1) 元器件物理模型(2) 子电路宏模型(3) 黑匣子宏模型4. 目前研究的问题(1) 提高模型精度。

(2) 建立新器件的模型。

(3) 提高模型参数提取精度。

5.PSpice中的模型参数库(1) PSpice软件数据库中提供有三万多个元器件的模型参数;分别存放在一百多个模型参数库文件(扩展名为LIB);一.PSpice中的模型参数库5.PSpice中的模型参数库(1) PSpice软件数据库中提供有三万多个元器件的模型参数;分别存放在一百多个模型参数库文件(扩展名为LIB);每个模型参数库文件都对应有一个元器件符号库文件(以OLB为扩展名),存放不同元器件的符号图。

一.PSpice中的模型参数库5.PSpice中的模型参数库(1) PSpice软件数据库中提供有三万多个元器件的模型参数;分别存放在一百多个模型参数库文件(扩展名为LIB);每个模型参数库文件都对应有一个元器件符号库文件(以OLB为扩展名),存放不同元器件的符号图。

注意:这两类库文件存放的子目录不相同。

元器件符号库文件所在的路径元器件模型参数库文件所在的路径注意:只有上述库文件中的元器件符号才配置有模型参数一.PSpice中的模型参数库5.PSpice中的模型参数库(1) PSpice软件数据库中提供有三万多个元器件的模型参数;分别存放在一百多个模型参数库文件(扩展名为LIB);每个模型参数库文件都对应有一个元器件符号库文件(以OLB为扩展名),存放不同元器件的符号图。

注意:这两类库文件存放的子目录不相同。

(2) 用户绘制电路图时实际调用的是元器件符号库中的元器件符号图。

调用PSpice进行模拟仿真时软件自动从对应的模型参数库中调用相应的模型参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPICE的器件模型在介绍SPICE基础知识时介绍了最复杂和重要的电路描述语句,其中就包括元器件描述语句。

许多元器件(如二极管、晶体管等)的描述语句中都有模型关键字,而电阻、电容、电源等的描述语句中也有模型名可选项,这些都要求后面配以.MODEL起始的模型描述语句,对这些特殊器件的参数做详细描述。

电阻、电容、电源等的模型描述语句语句比较简单,也比较容易理解,在SPICE基础中已介绍,就不再重复了;二极管、双极型晶体管的模型虽也做了些介绍,但不够详细,是本文介绍的重点,以便可以自己制作器件模型;场效应管、数字器件的模型过于复杂,太专业,一般用户自己难以制作模型,只做简单介绍。

元器件的模型非常重要,是影响分析精度的重要因素之一。

但模型中涉及太多图表,特别是很多数学公式,都是在WORD下编辑后再转为JEPG图像文件的,很繁琐和耗时,所以只能介绍重点。

一、二极管模型:1.1 理想二极管的I-V特性:1.2 实际硅二极管的I-V特性曲线:折线1.3 DC大信号模型:1.4 电荷存储特性:1.5 大信号模型的电荷存储参数Qd:1.6 温度模型:1.7 二极管模型参数表:二、双极型晶体管BJT模型:2.1 Ebers-Moll静态模型:电流注入模式和传输模式两种2.1.1 电流注入模式:2.1.2 传输模式:2.1.3 在不同的工作区域,极电流Ic Ie的工作范围不同,电流方程也各不相同:2.1.4 Early效应:基区宽度调制效应2.1.5 带Rc、Re、Rb的传输静态模型:正向参数和反向参数是相对的,基极接法不变,而发射极和集电极互换所对应的两种状态,分别称为正向状态和反向状态,与此对应的参数就分别定义为正向参数和反向参数。

2.2 Ebers-Moll大信号模型:2.3 Gummel-Pool静态模型:2.4 Gummel-Pool大信号模型:拓扑结构与Ebers-Moll大信号模型相同,非线性存储元件电压控制电容的方程也相同2.5 BJT晶体管模型总参数表:三、金属氧化物半导体晶体管MOSFET模型:3.1 一级静态模型:Shichman-Hodges模型3.2 二级静态模型(大信号模型):Meyer模型3.2.1 电荷存储效应:3.2.2 PN结电容:3.3 三级静态模型:3.2 MOSFET模型参数表:一级模型理论上复杂,有效参数少,用于精度不高场合,迅速粗略估计电路二级模型可使用复杂程度不同的模型,计算较多,常常不能收敛三级模型精度与二级模型相同,计算时间和重复次数少,某些参数计算比较复杂四级模型BSIM,适用于短沟道(<3um)的分析,Berkley在1987年提出四、结型场效应晶体管JFET模型:基于Shichman-Hodges模型4.1 N沟道JFET静态模型:4.2 JFET大信号模型:4.3 JFET模型参数表:五、GaAs MESFET模型:分两级模型(肖特基结作栅极)GaAs MESFET模型参数表:六、数字器件模型:6.1 标准门的模型语句:.MODEL <(model)name> UGATE [模型参数] 标准门的延迟参数:6.2 三态门的模型语句:.MODEL <(model)name> UTGATE [模型参数]三态门的延迟参数:6.3 边沿触发器的模型语句:.MODEL <(model)name> UEFF [模型参数]边沿触发器参数:JKFF nff preb,clrb,clkb,j*,k*,g*,gb* JK触发器,后沿触发DFF nff preb,clrb,clk,d*,g*,gb* D触发器,前沿触发边沿触发器时间参数:6.4 钟控触发器的模型语句:.MODEL <(model)name> UGFF [模型参数]钟控触发器参数:SRFF nff preb,clrb,gate,s*,r*,q*,qb* SR触发器,时钟高电平触发DLTCH nff preb,clrb,gate,d*,g*,gb* D触发器,时钟高电平触发钟控触发器时间参数:6.5 可编程逻辑阵列器件的语句:U <name> <pld type> (<#inputs>,<#outputs>) <input_node>* <output_node># +<(timing model)name> <(io_model)name> [FILE=<() text value>]+[DATA=<radix flag>$ <program data>$][MNTYMXDLY=<(delay select)value>] +[IOLEVEL=<(interface model level)value>]其中:<pld type>列表<() text value> JEDEC格式文件的名称,含有阵列特定的编程数据JEDEC文件指定时,DATA语句数据可忽略<radix flag> 是下列字母之一:B 二进制 O 八进制 X 十六进制<program data> 程序数据是一个数据序列,初始都为0PLD时间模型参数:七、数字I/O接口子电路:数字电路与模拟电路连接的界面节点,SPICE自动插入此子电路子电路名(AtoDn和DtoAn)在I/O模型中定义,实现逻辑状态与电压、阻抗之间的转换。

7.1 N模型:数字输入N模型将逻辑状态(1 0 X Z)转换成相对应的电压、阻抗。

数字模拟器的N模型语句:N <name> <(interface)node> <(low level)node> <(high level)node> <(model)name>+DGTLNET=<(digital net)name> <(digital IO model)name> [IS=(initial state)]数字文件的N模型语句:N <name> <(interface)node> <(low level)node> <(high level)node> <(model)name>+[SIGNAME=<(digital signal)name> [IS=(initial state)]模型语句: .MODEL <(model)name> DINPUT [(模型参数)]模型参数表:7.2 O模型:将模拟电压转换为逻辑状态(1 0 X Z),形成逻辑器件的输入级。

节点状态由接口节点和参考节点之间的电压值决定,将该电压值与当前电压序列进行比较,如果落在当前电压序列中,则新状态与原状态相同;如果不在当前电压序列中,则从S0NAME开始检查,第一个含有该电压值的电压序列可确定为新状态。

如果没有电压序列包含这个电压值,则新状态为?(状态未知)。

数字模拟器的O模型语句:O <name> <(interface)node> <node> <(model)name>+DGTLNET=<(digital net)name> <(digital IO model)name>数字文件的O模型语句:O <name> <(interface)node> <node> <(model)name>+[SIGNAME=<(digital signal)name>模型语句: .MODEL <(model)name> DOUTPUT [(模型参数)]模型参数表:八、数学宏模型:作为电路功能块或实验仪器插入电路系统中,代替或模拟电路系统的部分功能,有24种8.1 电压加法器:8.2 电压乘法器:8.3 电压除法器:8.4 电压平方:基本运算方程:8.5 理想变压器:8.6 电压求平方根:方程8.7 三角波/正弦波转换器:三角波峰-峰值为2V,其中C=PI/28.8 电压相移:8.9 电压积分器:8.10 电压微分器:8.11 电压绝对值:(略)8.12 电压峰值探测器:(略)8.13 频率乘法器:8.14 频率除法器:8.15 频率加法器/减法器:8.16 相位探测器:8.17 传输线:模拟信号延迟(略)8.18 施密特触发器:为避免不收敛,不使用DC扫描,将模型中加入PWL源,产生缓变上升/下降斜波,与瞬态分析效果相同8.19 电压取样-保持电路:(略)8.20 脉冲宽度调制器:(略)8.21 电压幅度调制器:(略)8.22 电压对数放大器:(略)8.23 N次根提取电路:8.24 拉氏变换:(略)九、系统方程宏模型:可作为功能块代替某些未知的电路或不需要分析的电路,插入电路中,使电路系统的分析变得简单明了。

9.1 积分器子电路:作为求解微分方程组的基本运算部件,可在10MHz下工作子电路描述文件:* Integrator Subcircuit. Subckt int 1 2Gi 0 2 1 0 1uCi 2 0 1ufRo 2 0 1000MEG.ENDS INT9.2 电感型微分电路:受控源G的控制电压为Vin,输出电流i9.3 电容型微分电路:9.4 网络函数的SPICE模型:高阶网络函数可分解为几个较简单的一阶、二阶函数,用级联和耦合结构来实现十、非线性器件的模型:10.1 电容型传感器:检测元件是非线性电容10.2 光敏电阻:时变电阻10.3 变容二极管:压控电容。

相关文档
最新文档