全国中等职业技术学校通用教材(第五版)数学教案-第1章

合集下载

全国中等职业技术学校通用教材(第五版)数学教案_第1章

全国中等职业技术学校通用教材(第五版)数学教案_第1章
如:
根据公式 ,上式可变为
即:
可直接开方方法求解,求得解为
③因式分解法
什么样的一元二次方程适合运用此种方法求解?
如:
即有a+b=-3;a×b=2,解得
a=-1;b=-2 ,则原式可变为
(x-1)(x-2)=0
求得解为x=1,或x=2。
学生听课做笔记
思考:为什么要这样?
教师活动
学生活动
④公式法
什么样的一元二次方程适合运用此种方法求解?
学生思考做练习
教师活动
学生活动
小结:(5分钟)
幂的运算法则
常用乘法公式
因式分解
课后作业:
练习册P2 A组,
板书设计
教学随笔
第一章数式与方程第一节数式的运算二
一、幂的运算法则(其中a、b不为0,m、n是整数)
二、常用乘法公式
三、因式分解
多项式的因式分解就是把一个多项式化为几个整式的积,多项式的因式分解和整式的乘法是相反方向的变换。
学生听课做笔记
教师活动
学生活动
解-8的立方根为
16的四次方根为
小结:(5分钟)
指数幂、根、根式
课后作业:
练习册P4 B组
板书设计
教学随笔
第一章数式与方程第一节数式的运算四
一、指数幂
1.正整数幂
2.零指数幂
3.负整数指数幂
二、根
1.平方根若 ,则称x为a的平方根(二次方根)。
2.立方根若 ,则称x为a的立方根(三次方根)。
3.n次方根若 (a是一个实数,n是大于1的正整数)则称数x为a的一个n次方根。
三、n次根式
我们把形如 (有意义时)的式子称为n次根式,其中n称为根指数,a称为被开方数,正的n次方根 称为a的n次算术根,并且 (n>1,n是正整数)

高教版中职数学基础模块上册 电子教案

高教版中职数学基础模块上册 电子教案

说明:教参里的参考教案,供大家参考。

【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素的概念及其关系,掌握常用数集的字母表示;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养分类思维和有序思维,从而提升数学思维能力.情感目标:(1)接受集合语言,经历利用集合语言描述元素与集合间关系的过程,养成规范意识,发展严谨的作风。

(2)感受利用数学知识描述和研究实际问题的乐趣,发展学好数学课程的信心。

(3)经历合作学习的过程,树立团队合作意识。

【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】利用元素特征性质来表示集合的方法在花括号【课题】1.2 集合之间的关系【教学目标】知识目标:掌握集合之间的关系(子集、真子集、相等)的概念,会判断集合之间的关系.能力目标:(1)通过集合语言的学习与运用,培养学生的数学思维能力;(2)通过集合的关系的图形分析,培养学生的观察能力.情感目标:(1)经历利用集合语言描述集合与集合间的关系的过程,养成规范意识,发展严谨的作风;(2)经历利用图形研究集合间关系的过程,体验“数形结合”的探究方法.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】1.3集合的运算(1)【教学目标】知识目标:理解并集与交集的概念,会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.情感目标:(1)经历利用集合语言描述集合运算的过程,养成规范意识,发展严谨的作风。

全国中等职业技术学校通用教材-数学(上)-1

全国中等职业技术学校通用教材-数学(上)-1

15x 2 23x 8 0
解得
x1
1
或 x2

8 15
将x1、x2分别代入(3),求得
y1
1
或 y2

1 15
所以,原方程组的解为

x1 y1

1 1


x2


8 15

y2

1 15
单击鼠标继续
1.解方程:(1)3x 5 2x 10 (2)3 - x = x - 4
例2 求-8的立方根,16的四次方根。 解 -8的立方根为 3 - 8 = - 2
16的四次方根为 ±4 16 = ±2
单击鼠标继续
例题解析
例 计算(用计算器运算):
(1)2215 (用科学计数法表示,保留4位有效数字) (2)(1.052)10(保留4位有效数字) (3)10×(1.052)10(保留4位有效数字) (4)10 6(保留4位有效数字) (5)100(10 6 - 1)(保留4位有效数字) (6)7 - 56.456(精确到0.001)
(x y 1)(x y 1)
(3)原式 (x 3)(x 5)
单击鼠标继续
1.计算 (x 2x2 5) (3 4x2 6x)
2.计算 (3ab 7) (4a2 6ab 7)
3.分解因式:
(1)36a2bc 48ab2c 24abc2 12abc( ) (2)a 2 ac ab bc (3) x 2 6x 8 (4) 2x2 - 3x - 5 =
指数的运算
有理指数幂
一般地,我们规定
m
a n=n am

中职数学第一章《集合》导学案

中职数学第一章《集合》导学案

数学第一册导学案第一章集合 1.1集合及表示方法班级姓名【学习目标】通过本次课的学习探究,我能:1.理解集合的概念,熟练掌握常见数集。

2.掌握表示集合的常用方法:列举法和性质描述法。

【重点难点】教学重点:集合中的元素的特性和表示方法。

教学难点:各种数集的符号应用。

【使用说明与学法指导】1.依据导学案的要求,预习本节内容,完成自主学习。

2.在完成自主学习的基础上,根据要求认真思考合作探究题目,并形成答案。

3.做好总结与反思,提高自己的学习能力。

【知识链接】【课前导学】一、依案预习(通过预习,能列举其他的几个例子吗?有什么共同特点?)赠言:数学是科学的大门和钥匙;没有强有力的数学就不可能有强有力的科学。

定义概述:1.集合:符号表示:2.元素:符号表示:拓展提升:二者的关系如何用数学方式表示?二、探究质疑(通过预习,我的问题和疑问?)1.集合有什么特性?2.能完成“想一想”中的问题吗?有什么特点?三、小组合作(将自学所得在小组内交流)请问常见的数集有哪些?四、班级展示(分组展示学习成果)对比各组的结果,看看哪个组的成果更完善,并评论五、迁移提升(迁移知识,提高能力)列举法:{(1,2)}={1,2}?{(1,2)}={(x,y)|x=1且y=2}?注意:能区分0;{0};Ø 的不同吗?请用列举法写正偶数集:性质描述法:请用性质描述法写正偶数集:提醒:列举法和性质描述法的异同点?六、目标检测(知识回顾)1.完成练习1-1和练习1-22.选做练习册A组和B组的练习题【学后反思】1.集合和2.常见的和3.表示方法和【自我评价】数学第一册导学案第一章集合 1.2集合之间的关系班级姓名【学习目标】通过本次课的学习探究,我能:1.掌握空集、子集、真子集、集合相等的概念。

2.会正确判断集合与集合之间的关系。

【重点难点】教学重点:子集和集合相等。

教学难点:集合之间的关系判断。

【使用说明与学法指导】1.依据导学案的要求,预习本节内容,完成自主学习。

中职数学说课稿(5篇)

中职数学说课稿(5篇)

中职数学说课稿(5篇)中职数学说课稿1我说课的内容是湖南省中等职业教育规划新教材基础模块第一册第一章《集合》中的第三节“集合的运算”的第三课时-----补集,下面我的说课将从以下几个方面进行阐述:一、说大纲与教材集合是一种重要的数学工具,许多重要的数学分支都是建立在集合理论的基础之上的。

通过本章的学习,使学生学会使用最基本的集合语言表示有关数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,发展运用集合语言进行交流的能力。

为学生进一步学习后续内容以及现代科学知识打下良好的基础。

本章节计划教学时间10课时,已完成教学6课时,已掌握集合、子集、真子集、空集的概念,集合的表示法(列举法、描述法等),会进行集合的交、并运算,初步会用韦恩图和数轴等来解答集合问题。

对于本课时内容,大纲要求能在具体的情境中了解全集的含义,理解在给定的集合的一个子集的补集的含义,会求给定子集的补集,能使用韦恩图表达集合的关系和运算,体会直观图示对理解抽象概念的作用。

教材通过在有理数范围和实数范围内的解的情况,引入全集的概念,然后用三种形式对补集的概念进行描述,这是教材的主体。

接着通过三道例题介绍了补集的求法,其中第三个例题综合训练了集合的交、并、补运算,并且让学生了解“对偶律”。

二、说教学目标教学目标的确定,考虑了以下几点:(1)、通过前面的子集、真子集的概念的学习和求交、并运算的学习,暴露出职高学生数学学习的薄弱之处:对抽象概念理解不透,不会复述概念;对不等式内容的学习有畏难情绪,甚至不能正确用数轴表示交、并运算等。

所以本堂课重视概念的教学,要求学生能识记补集的定义。

(2)、本堂课重点训练学生运用韦恩图和数轴,紧紧抓住集合运算的两个重要工具。

(3)、学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法的掌握。

根据教学大纲的要求以及本教材的地位和作用,结合学生的认知特点和现实情况确定教学目标如下:(1)、知识层面:了解全集的定义,知道全集是一个相对概念;记住补集的的定义,会用三种形式叙述补集的概念;会进行求补集的运算。

高教版中职数学(基础模块)目录

高教版中职数学(基础模块)目录

高教版中职数学(基础模块)课时安排及目录课时安排第三版上册第1章集合与充要条件1.1 集合的概念1.2 集合之间的关系1.3 集合的运算1.4 充要条件复习题1现代信息技术应用1 如何在Word文档中录入数学公式阅读与欣赏康托尔与集合论第2章不等式2.1 不等式的基本性质2.2 区间2.3 一元二次不等式2.4 含绝对值的不等式复习题2现代信息技术应用2 利用Excel软件解一元二次方程阅读与欣赏数学家华罗庚第3章函数3.1 函数的概念及表示法3.2 函数的性质3.3 函数的实际应用举例复习题3现代信息技术应用3 利用几何画板作函数图像(静态)阅读与欣赏个人所得税计算方法解析第4章指数函数与对数函数4.1 实数指数幂4.2 指数函数4.3 对数4.4 对数函数复习题4现代信息技术应用4 利用几何画板作函数图像(动态)阅读与欣赏声音的计量及噪音第5章三角函数5.1. 角的概念推广5.2 弧度制5.3 任意角的正弦函数、余弦函数和正切函数5.4 同角三角函数的基本关系5.5 诱导公式5.6 三角函数的图像和性质5.7 已知三角函数值求角复习题5现代信息技术应用5 利用几何画板作函数图像(从轨迹角度)阅读与欣赏光周期现象及其应用附录1 预备知识附录2 教材使用的部分数学符号下册第6 章数列6.1 数列的概念6.2 等差数列6.3 等比数列复习题6现代信息技术应用6 编制利用Excel软件进行数列相关计算的工作表阅读与欣赏堆垛中的数学计算第7章平面向量7.1 平面向量的概念及线性运算7.2 平面向量的坐标表示7.3 平面向量的内积复习题7现代信息技术应用7 利用几何画板软件绘图1阅读与欣赏牛顿第8章直线和圆的方程8.1 两点间的距离与线段中点的坐标8.2 直线的方程8.3 两条直线的位置关系8.4 圆复习题8现代信息技术应用8 利用几何画板软件绘图2阅读与欣赏解析几何的创始人———笛卡儿第9 章立体几何9.1 平面的基本性质9.2 直线与直线、直线与平面、平面与平面平行的判定与性质绪言第1章集合1.1 集合及其表示1.1.1 集合的概念1.1.2 集合的表示法1.2 集合之间的关系1.3 集合的运算1.3.1 交集1.3.2 并集1.3.3 补集趣味数学神奇的心灵魔术数学文化无限集的奥秘信息技术应用元素与集合(列表) 第2章不等式2.1 不等式的基本性质2.1.1 实数的大小2.1.2 不等式的性质数学文化从弦图看基本不等式2.2 区间2.3 一元二次不等式2.4 含绝对值的不等式2.5 不等式应用举例数学文化等号与不等号的来历信息技术应用四个“二次”第3章函数3.1 函数的概念3.2 函数的表示方法3.3 函数的性质3.3.1 函数的单调性3.3.2 函数的奇偶性3.3.3 几种常见的函数信息技术应用“心形”曲线与函数3.4 函数的应用趣味数学百钱买百鸡数学文化中国古代数学的发展期——魏晋南北朝第4章三角函数4.1 角的概念的推广4.1.1 任意角4.1.2 终边相同的角4.2 弧度制4.3 任意角的三角函数4.3.1 任意角的三角函数定义4.3.2 单位圆与三角函数4.4 同角三角函数的基本关系4.5 诱导公式4.6 正弦函数的图像和性质4.6.1 正弦函数的图像4.6.2 正弦函数的性质4.7 余弦函数的图像和性质4.8 已知三角函数值求角趣味数学地球的周长数学文化sin 的由来信息技术应用三角函数的定义域新版下册课时安排第5章指数函数与对数函数5.1 实数指数幂5.1.1 有理数指数幂5.1.2 实数指数幂5.2 指数函数5.3对数5.3.1对数的概念5.3.2 积、商、幂的对数数学文化对数简史5.4 对数函数5.5 指数函数与对数函数的应用趣味数学神奇的对数速算信息技术应用运用指数函数比较值的大小第6章直线与圆的方程6.1 两点间距离公式和线段的中点坐标公式6.2 直线的方程6.2.1 直线的倾斜角与斜率6.2.2 直线的点斜式方程与斜截式方程6.2.3 直线的一般式方程6.3 两条直线的位置关系6.3.1 两条直线平行6.3.2 两条直线相交6.3.3 点到直线的距离6.4 圆6.4.1 圆的标准方程6.4.2 圆的一般方程6.5 直线与圆的位置关系6.6 直线与圆的方程应用举例趣味数学数形结合,相辅相成数学文化笛卡儿坐标系的产生信息技术应用用GeoGebra判断直线与圆的位置关系第7章简单几何体7.1.1 棱柱7.1.2 直观图的画法7.1.3 棱锥7.2 旋转体7.2.1 圆柱7.2.2 圆锥7.2.3 球7.3 简单几何体的三视图数学文化祖暅原理信息技术应用正方体的十一种平面展开图第8章概率与统计初步8.1 随机事件8.1.1 随机事件的概念8.1.2 频率与概率8.3 概率的简单性质8.4 抽样方法8.4.1 简单随机抽样8.4.2 系统抽样8.4.3 分层抽样8.5 统计图表8.6 样本的均值和标准差趣味数学圆周率π中各数码出现的概率相同吗?拓展延伸大数据信息技术应用数据统计分析。

中职教育-数学(基础模块)上册课件:第一章.ppt

中职教育-数学(基础模块)上册课件:第一章.ppt
特别地,不含任何元素的集合称为空集,记作 .例如, 方程 x2 1 0 在实数范围内的解集就是空集.
例1 下列对象能否组成一个集合? (1)所有短发的女生; (2)小于10的正奇数; (3)方程x2-9=0的所有解; (4)不等式x-7>0的所有解.
解 (1)由于短发没有具体的标准,表述的对象是不确 定的,所以不能构成一个集合.
例 指出条件p是结论q的什么条件. (1)p :x 1 ,q :| x| 1; (2)p :x 5 ,q :x 0; (3)p :x 4 ,q :(x 4)2 0 ; (4)p :x 0 ,q :xy 0; (5)p :x2 49,q :x 7 0; (6)p : 4x 12 0 ,q :x 3 .
g ,o ,d.
(2)解方程x2 2x 3 0 得
所以该方程的解集为
x1 3,x2 1,
3,1 .
例4 用描述法表示下列集合: (1)大于3的所有奇数组成的集合; (2)不等式3x 1…0 的解集; (3)直线 y 2x 1 上的点组成的集合.
解 (1)该集合中元素的共同属性可以描述为 x 3,且x 2k 1,k Z ,
(2)由于小于10的正奇数包括1,3,5,7,9五个数, 它们是确定的对象,因此可以构成一个集合.
(3)方程 x2 9 0 的解为3和-3 ,它们是确定的对象, 因此可以构成一个集合.
(4)解不等式x 7 0 ,可得 x 7,它们是确定的对象, 因此可以构成一个集合.由方程的所有解组成的集合称为这个 方程的解集;由不等式的所有解组成的集合称为这个不等式的 解集.显然,方程的解集和不等式的解集都是数集.
它的真子集.
1.2.2 集合相等
一般地,如果两个集合的元素完全相同,那么就说这两个 集合相等.集合A等于集合B,记作 ,读作“A等于B”.

中职数学(基础模块)教案

中职数学(基础模块)教案

中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1.2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1.3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“”的正确使用.教学难ZYB重油煤焦油专用泵点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合高温导热油泵的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2.4含绝对值的不等式知识目标:(1)理解含绝对值不等式或的解法;(2)了解或的解法.能力目标:(1)通过含绝对值不等式的学习;培风冷式离心油泵养学生的计算技能与数学思维能力;(2)通过数形结合的研究问题,培养学生的观察能力.教学重点:(1)不等式或的解法.(2)利用变量替换解不等式或.教学难点:利用变量替换解不等式或.课时安排:2课时.3.1函数的概念及其表示法知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.教学重点:(1)函数的概念;(2)利用“描点法”描绘函数图像.教学难点:(1)对函数的概念及记号的理解;(2)利用“描点法”描绘函数图像.课时安排:2课时.3.2函数的性质知识目标:⑴理解函数的单BWCB沥青泵调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴通过利用函数图像研究函数性质,培养学生的观察能力;⑵通过函数奇偶性的判断,培养学生的数学思维能力.教学重点:⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.教学难点:函数奇偶性的判断.(*函数单调性的判断)课时安排:2课时.3.3函数的实际应用举例知识目标:(1)理解分段函数的概念;(2)理解分段函数的图像;(3)了解实际问题中的分段函数问题.能力目标:(1)会求分段函数的定义域和分YHB立式齿轮泵段函数在点处的函数值;(2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.教学重点:(1)分段函数的概念;(2)分段函数的图像.教学难点:(1)建立实际问题的分段函数关系;(2)分段函数的图像.课时安排:2课时.4.1实数指数幂(1)知识目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.能力目标:⑴掌握根式与分数指数幂之间的转化;⑵会利用计算器求根式和分数指数幂的值;⑶培养计算工具使用技能.教学重点:分数指数幂的定义.教学难点:根式和分数YHB轴头齿轮油泵指数幂的互化.课时安排:2课时.4.1实数指数幂(2)知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.4.2指数函数知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.教学重点:⑴指数函数的概念、图像和性质;⑵指数沥青拌合站增压泵函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.4.3对数知识目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.能力目标:⑴会进行指数式与对数式之间的互化;⑵会运用函数型计算器计算对数值;⑶培养计算工具的使用技能.教学重点:指数式与对数式的关系.教学难点:对数的YCB齿轮泵概念.课时安排:2课时.4.4对数函数知识目标:⑴了解对数函数的图像及性质特征;⑵了解对数函数的实际应用. 能力目标:⑴观察对数函数的图像,总结对数函数的性质,培养观察能力;⑵通过应用实例的介绍,培养学生数学思维能力和分析与解决问题能力.教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际ZYB-33.3A问题的题意分析.课时安排:2课时.5.1角的概念推广知识目标:⑴了解角的概念推广的实际背景意义;⑵理解任意角、象限角、界限角、终边相同的角的概念.能力目标:(1)会判断角所在的象限;(2)会求指定范围内与已知角终边相同的角;(3)培养观察能力和计算技能.教学重点:终边相同角的概念.教学难点:终边相同角的表示和确定.课时安排:2课时.5.2弧度制知识目标:⑴理解弧度制的概念;⑵理解角度制与弧度制的换算关系.能力目标:(1)会进行角度制与弧度制的换算;(2)会利用计算器进行角度制与弧度制的换算;(3)培养学生的计算技能与计算工具使用技能.教学重点:弧度制的概念,弧度与角度的换算.教学难点:弧度制的概念.课时安排:2课时.5.3任意角的正弦函数、余弦函数和正切函数知识目标:⑴理解任意角的三角函数的定义及定义域;⑵理解三角函数在各象限的正负号;⑶掌握界限角的三ZYB系列渣油泵角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.教学重点:⑴任意角的三角函数的概念;⑵三角函数在各象限的符号;⑶特殊角的三角函数值.教学难点:任意角的三角函数值符号的确定.课时安排:2课时.5.4同角三角函数的基本关系知识目标:理解同角的三角函数基本关系式.能力目标:⑴已知一个三角函数值,会利用同角三角函数的基本关系式求其他的三角函数值;⑵会利用同角三角函数的基本关系式求三角式的值.教学重点:同角的三角函数基本关系式的应用.教学难点:应用平方关系求正弦或余弦值时,正负号的确定.课时安排:2课时.5.5诱导公式知识目标:了解“”、“”、“180°”的诱导公式.能力目标:(1)会利用简化公式搅拌站渣油泵将任意角的三角函数的转化为锐角的三角函数;(2)会利用计算器求任意角的三角函数值;(3)培养学生的数学思维能力及应用计算工具的能力.教学重点:三个诱导公式.教学难点:诱导公式的应用.课时安排:2课时.5.6三角函数的图像和性质知识目标:(1)理解正弦函数的图像和性质;(2)理解用“五点法”画正弦函数的简图的方法;(3)了解余弦函数的图像和性质.能力目标:(1)认识周期现象,以正弦ZYB型增压渣油泵函数、余弦函数为载体,理解周期函数;(2)会用“五点法”作出正弦函数、余弦函数的简图;(3)通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.教学重点:(1)正弦函数的图像及性质;(2)用“五点法”作出函数y=sinx在上的简图.教学难点:周期性的理解.课时安排:2课时.5.7已知三角函数值求角知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.教学重点:已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.教学难点:已知三角函数值,利用计算器求指定范围内的角.课时安排:2课时.6.1数列的概念知识目标:(1)了解数列的有关ZYB重油泵概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.教学重点:利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.教学难点:根据数列的前若干项写出它的一个通项公式.课时安排:2课时.6.2等差数列(一)知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.教学重点:等差数列的通项公式.教学难点:等差数列通项公式的推导.课时安排:2课时.6.2等差数列知识目标:理解等差数列通项公式及前项和公式.能力目标:通过学习前项和公ZYB煤焦油泵式,培养学生处理数据的能力.教学重点:等差数列的前项和的公式.教学难点:等差数列前项和公式的推导.课时安排:2课时.6.3等比数列知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力.教学重点:等比数列的通项公式.教学难点:等比数列通项公式的推导.课时安排:2课时.6.3等比数列知识目标:理解等比数列前项和公式.能力目标:通过学习等沥青拌合站重油泵比数列前项和公式,培养学生处理数据的能力.教学重点:等比数列的前项和的公式.教学难点:等比数列前项和公式的推导.课时安排:3课时.7.1平面向量的概念及线性运算知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.教学重点:向量的线性运算.教学难点:已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.课时安排:2课时.7.2平面向量的坐标表示知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.教学重点:向量线性运算的坐标表高温导热油泵示及运算法则.教学难点:向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键. 课时安排:2课时.7.3平面向量的内积知识目标:(1)了解平面向量内积的概念及其几何意义;(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础.能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力.教学重点:平面向量数量积的概念及计算公式.教学难点:数量积的概念及利用数量积来计算两个非零向量的夹角.课时安排:2课时.8.1两点间的距离与线段中点的坐标知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.教学重点:两点间的距离公式与YHB润滑齿轮泵线段中点的坐标公式的运用教学难点:两点间的距离公式的理解课时安排:2课时.8.2直线的方程知识目标:(1)理解直线的倾角、斜率的概念;(2)掌握直线的倾角、斜率的计算方法.能力目标:采用“数形结合”的方法,培养学生有条理地思考问题.教学重点:直线的斜率公式的应用.教学难点:直线的斜率概念和公式的理解.课时安排:2课时.8.2直线的方程(二)知识目标:(1)了解直线与方程的关系;(2)掌握直线的点斜式方程、斜截式方程,理解直线的一般式方程.能力目标:培养学生解决问题的能沥青拌合站增压泵力与计算能力.教学重点:直线方程的点斜式、斜截式方程.教学难点:根据已知条件,选择直线方程的适当形式求直线方程.课时安排:2课时.8.3两条直线的位置关系(一)知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线平行的条件.教学难点:两条直线平行的判断及应用.课时安排:2课时.8.3两条直线的位置关系(二)知识目标:(1)掌握两条直线平行的条件;(2)能应用点到直线的距离公式解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线的位置关系,点到直线的距离公式.教学难点:两条直线的位置关系的ZYB点火增压燃油泵判断及应用.课时安排:2课时.8.4圆(一)知识目标:(1)了解圆的定义;(2)掌握圆的标准方程和一般方程.能力目标:培养学生解决问题的能力与计算能力.教学重点:圆的标准方程和一般方程的理解与应用.教学难点:对圆的标准方程和一般方程的正确认识.课时安排:2课时.8.4圆(二)知识目标:(1)理解直线和圆的位置关系;(2)了解直线与圆相切在实际中的应用.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:直线与圆的位置关系的理解和掌握.教学难点:直线与圆的位置关系的判定.课时安排:2课时.9.1平面的基本性质知识目标:(1)了解平面的概念、平面的基本性质;(2)掌握平面的表示法与画法.能力目标:培养学生的空间想象能3GR普通型三螺杆泵力和数学思维能力.教学重点:平面的表示法与画法.教学难点:对平面的概念及平面的基本性质的理解.课时安排:2课时.9.2直线与直线、直线与平面、平面与平面平行的判定与性质知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与直线、直线与平面、平面与平面平行的判定与性质.教学难点:异面直线的想象与理YCB齿轮泵解.课时安排:2课时.9.3直线与直线、直线与平面、平面与平面所成的角知识目标:(1)了解两条异面直线所成的角的概念;(2)理解直线与平面垂直、直线与平面所成的角的概念,二面角及其平面角的概念.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.教学难点:两条异面直线所成的角的概念、二面角的平面角的确定.课时安排:2课时.9.4直线与直线、直线与平面、平面与平面垂直的判定与性质知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与平面、平面与平面垂直的判定方法与性质.教学难点:判定空间直线与直KCB型不锈钢齿轮泵线、直线与平面、平面与平面垂直.课时安排:2课时.9.5柱、锥、球及其简单组合体(一)知识目标:(1)了解棱柱、棱锥的结构特征;(2)掌握棱柱、棱锥面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:正棱柱、正棱锥的结构特征及相关的计算.教学难点:正棱柱、正棱锥的相关计算.课时安排:2课时.9.5柱、锥、球及其简单组合体(二)知识目标:(1)了解圆柱、圆锥、球的结构特征;(2)掌握圆柱、圆锥、球的面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:圆柱、圆锥、球的结构特征及相关的计算.教学难点:简单组合体的结构特征及其面积、体积的计算.课时安排:2课时.10.1计数原理知识目标:掌握分类计数原理和分步计数原理.能力目标:培养学生的观察、分析能力.教学重点:掌握分类计数原理和分步计数原理.教学难点:区别与运用分类计数原理RYB电动齿轮泵和分步计数原理.课时安排:2课时.10.2概率(一)知识目标:(1)理解必然事件、不可能事件、随机事件的意义;(2)理解事件的频率与概率的意义以及二者的区别与联系.能力目标:培养学生的观察、分析能力.教学重点:事件的概率的定义.教学难点:概率的计算.课时安排:2课时.10.2概率(二)知识目标:掌握古典概型,互斥事件的概念.能力目标:培养学生的观察、分析能力.教学重点:运用公式计算等可能事件的概率.教学难点:概率的计算.课时安排:2课时.10.3总体、样本与抽样方法(一)知识目标:理解总体、个体、样本等概念.能力目标:培养学生认识世界、探ZYB增压燃油泵索世界的辩证唯物观.教学重点:总体、个体、样本、样本的容量的概念.教学难点:总体、个体、样本之间的关系.课时安排:2课时.10.3总体、样本与抽样方法(二)知识目标:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.教学难点:对简单随机抽样、系统抽样、分层抽样等三种抽样方法的理解.课时安排:2课时.10.4用样本估计总体知识目标:(1)了解用样本的频率分布估计总体;(2)掌握用样本均值、方差和标准差估计总体的均值、方差和标准差.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:计算样本均值、样NYP高粘度保温泵本方差及样本标准差.教学难点:列频率分布表,绘频率分布直方图.课时安排:2课时.10.5一元线性回归知识目标:(1)了解相关关系的概念;(2)掌握一元线性回归思想及回归方程的建立.能力目标:增强学生的数据处理能力,计算工具的使用能力,分析问题和解决问题的能力,培养严谨、CYB稠油泵细致的学习和工作作风.教学重点:掌握一元回归方程.教学难点:理解相关关系、回归分析概念.课时安排:2课时/ktyzyb/KZYB.html//七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国中等职业技术学校通用教材(第五版)数学教案-第1章教案课题第一章数式与方程数式的运算一教学目标数的基本知识有理数、无理数、实数等的基本知识教学重点有理数无理数实数绝对值教学难点数之间的关系绝对值的含义教学时间2课时教具准备无周次第一周教学组织与实施教师活动学生活动引入(10分钟)回顾初中数学知识。

新课讲授(65分钟)一、数(式)的运算1.有理数概念:整数和分数统称为有理数。

分析:什么是整数?什么是分数?例:整数的概念是:小数点后面为0如1、2、3、3.000等分数的概念是:A/B,有两种情况,一是可以除尽,如1/2=0.5、1/4=0.25、1/25=0.04、1/8=0.125等等;另一种情况是除不尽,如1/3=0.3333…、1/6=0.1666…、1/7=0.142857142857…等等,即判断是不是分数有两个办法,一是小数有限(全是零可不计),二是小数无限,但循环。

学生听课做笔记教师活动学生活动2.无理数概念:无限不循环的小数叫无理数。

如2、3、5、 …分析:两个条件必须同时满足,一是小数,二是不循环。

3.实数概念:有理数和无理数统称为实数分析:包括整数、分数、无限不循环的小数三种数在内。

4.数轴概念:规定了原点、正方向和单位长度的直线叫做数轴。

分析:要有满足四个条件○1原点○2正方向○3单位长度○4直线判断下列是否是数轴:5.倒数概念:乘积是1的两个数互为倒数如3和1/3、4/15和15/4、100/3和3/100…1的倒数是1;0没有倒数。

学生上黑板判断哪条才是真正的数轴0 1 2 3---6.相反数:相反数的概念:只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。

概念的理解:(1)互为相反数的两个数分别在原点的两旁,且到原点的距离相教师活动学生活动等。

(2)一般地,数a 的相反数是 , 不一定是负数。

(3) 在一个数的前面添上“-”号,就表示这个数的相反数如:-3是3的相反数,-a 是a 的相反数,因此,当a 是负数时,-a 是一个正数-(-3)是(-3)的相反数,所以-(-3)=3,于是(4)互为相反数的两个数之和是0即如果x 与y 互为相反数,那么x+y=0;反之,若x+y=0, 则x 与y 互为相反数(5) 相反数是指两个数之间的一种特殊的关系,而不是指一个种类。

如:“-3是一个相反数”这句话是不对的。

例1 求下列各数的相反数: (1)-5 (2)-3 (3)0(4)-3 (5)-2b (6) a-b (7) a+2 例2 判断:(1)-2是相反数(2)-3和+3都是相反数 (3)-3是3的相反数 (4)-3与+3互为相反数(5)+3是-3的相反数(6)一个数的相反数不可能是它本身7.绝对值几何定义:一个数a 的绝对值就是数轴上表示a 的点与原点的距离,数a 的绝对值记做︱a ︱。

代数定义:○1一个整数的绝对值是它本身; ○2一个负数的绝对值是它本身。

○30的绝对值等于0)0()0(0)0(a a a a a a学生思考例题教师活动学生活动小结:(5分钟)有理数,无理数,实数,数轴,倒数,相反数,绝对值课后作业:习题册P1 A组板书设计教学随笔第一章数式与方程数式的运算一一、有理数概念:整数和分数统称为有理数。

二、无理数概念:无限不循环的小数叫无理数。

三、实数概念:有理数和无理数统称为实数四、数轴概念:规定了原点、正方向和单位长度的直线叫做数轴。

五、倒数概念:乘积是1的两个数互为倒数六、相反数概念:只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。

7.绝对值几何定义:一个数a的绝对值就是数轴上表示a的点与原点的距离,数a的绝对值记做︱a︱。

回顾初中知识的时候要慢,学生基础不扎实,要帮助他们重拾知识。

教案课题第一章 数式与方程 第一节 数式的运算二教学目标幂的运算法则 常用乘法公式 因式分解 教学重点幂的运算法则 常用乘法公式 教学难点因式分解 教学时间 2课时 教具准备无 周次第一周 教 学 组 织 与 实 施 教 师 活 动学生活动 回顾知识(10分钟)有理数,无理数,实数,数轴,倒数,相反数,绝对值新课讲授(65分钟) 一、幂的运算法则mn m n a a anm nm a a()nnnba b a ⋅=⋅ nm nm a a a -=其中a 、b 不为0,m 、n 是整数。

举例证明:假设a=2,b=3,n=2,m=3,分别代入以上式子: 1.322232842253232=====⨯=⋅=⋅++m n m n a a a学生听课做笔记2. ()()64226482623223=======••n m nm a a教 师 活 动 学生活动3.()()369432366322222=⨯=⨯=⋅===⋅=⋅nnnb a b a4.2222482212323=======--n m n m a a a二、常用乘法公式 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-举例证明:假设a=3,b=2分别代入以上式子:1.549235)23)(23())((2222=-=-=-==-+=-+b a b a b a 2.2522323225)23()(222222=+⨯⨯+=++==+=+b ab a b a3.12232321)23()(222222=+⨯⨯-=+-==-=-b ab a b a三、因式分解多项式的因式分解就是把一个多项式化为几个整式的积,多项式的因式分解和整式的乘法是相反方向的变换。

))((2b x a x ab bx ax x ++⇔+++举例证明:假设x=4a=3,b=2分别代入以上式子: 1.42681216324243422=+++=⨯+⨯+⨯+=+++ab bx ax x2.4267)24)(34())((=⨯=++=++b x a x 四、例题解析学生听课做笔记学生思考做练习例2 把下列各式分解因式: (1)ba b a ba 2322352015+- 解:原式=)134(522---ab bb a4 1 1 -1 =)1)(14(52-+-b b b a教 师 活 动学生活动小结:(5分钟) 幂的运算法则 常用乘法公式 因式分解课后作业:练习册P2 A 组,板 书 设 计教学随笔第一章 数式与方程 第一节 数式的运算二 一、幂的运算法则(其中a 、b 不为0,m 、n 是整数) m n m n a a a +=⋅()nm nm a a •=()nn nba b a ⋅=⋅nm nm a a a -=二、常用乘法公式 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-三、因式分解多项式的因式分解就是把一个多项式化为几个整式的积,多项式的因式分解和整式的乘法是相反方向的变换。

回顾初中知识的时候要慢,学生基础不扎实,要帮助他们重拾知识。

))((2b x a x ab bx ax x ++⇔+++教案课题第一章 数式与方程 第一节 数式的运算三教学 目标分式的基本性质 分式的运算 教学重点分式的基本性质 教学难点分式的运算 教学时间 2课时 教具准备无 周次第二周 教 学 组 织 与 实 施 教 师 活 动学生活动复习回顾(10分钟) 一、幂的运算法则二、常用乘法公式 三、因式分解新课讲授(65分钟) 一、分式概念:A 、B 表示两个整式,A ÷B 就可以表示成BA 的形式,如果B 中含有字母,式子BA 就叫做分式,其中A 叫做分式的分子,B叫做分式的分母。

二、分式的基本性质分式的分子和分母都乘以(或除以)同一个不等于O 的整式,分式的值不变,这个性质叫做分式的基本性质,即MB M A B A M B M A B A ÷÷=⨯⨯=, (M 为不等于零的整学生听课做笔记式)教师活动学生活动三、分式的运算分式的加减运算时使用通分进行的,分式的乘除运算时使用约分进行的。

加:BDBC AD BD BC BD AD D C B A +=+=+减: BDBC AD BD BC BD AD D C B A -=-=-乘:AC DBC BD A D CB B AD =⨯=⨯除:AC DBC BD A D CB B AD CB D B AD =⨯=⨯=÷四、例题解析 例 计算: (1)x a x a ++-11 (2)22211b ab a b a +++- (3)2222221b a b ab b ab a -+÷++分析 分式的加、减法关键是求最小公分母,基本方法: ○1先将各分母分解因式; ○2将所有因式全部取出,公因式应取次数最高的; ○3将取出的因式相乘,积为最小公分母。

在分式的乘除运算中,先要将各分式的分子、分母都因式分解,相乘时约去分子分母的公因式,再化简。

解:(1)原式=222))(())((x a axx a x a x a x a x a x a -=+--++-+(2)原式=222)()()()(1b a ab a b b a b a b b a +=+-+=+-+(3)原式=)()())(()(22b a a bb a b b a b a b a a b -=+-+⋅-学生听课做笔记学生思考做练习学生思考做练习五、课堂练习1.当x= 时,分式xx 3132--没有意义。

分析:要使得分式没有有意义,分母=0 即 1-3x=0解得x=1/3时,该分式没有意义。

教师活动学生活动2.当x= 时,分式xx 3132--的值为0。

分析:要使得分式值为零,即分子为0,但同时须保证分母不为0,即2x-3=0, 解得x=3/2时(分母不为0),该分式的值为0。

3.计算: (1)332113b a ab b a -+ (2))252(423+-+÷--x x x x 分析:分式的加减运算用通分,即查找最小公分母;分式的乘除运算用约分,约去公因式。

解 (1)原式=33222222213ba b a ab b a ab b a ab -⋅+⋅ 33222222221313b a b a ab ab b a b a ab -+=⋅-+=(2)原式=)2524(4232+-+-÷--x x x x x )3(21)3)(3(2)2(2)3(92)2(232+-=+-+⨯---=-+⨯--=x x x x x x x x x x学生思考做练习教 师 活 动学生活动小结:(5分钟) 分式的基本性质 分式的运算课后作业:练习册P3 A 组板 书 设 计教学随笔第一章 数式与方程 第一节 数式的运算三一、分式概念:A 、B 表示两个整式,A ÷B 就可以表示成BA的形式,如果B 中含有字母,式子BA就叫做分式,其中A 叫做分式的分子,B 叫做分式的分母。

相关文档
最新文档