海洋生物活性物质和其研究进展
海洋生物活性物质的提取和研究

海洋生物活性物质的提取和研究海洋是地球上最为广阔的生态系统之一,其中包含着丰富的生物资源。
其中,海洋生物中的活性物质吸引着人们越来越多的注意力。
活性物质众多,包括皮肤护理、药物、食品添加剂等多个应用领域,这些应用价值将活性物质提取和研究的需求推上了一个新的高度。
本篇文章将探讨海洋生物活性物质的提取和研究。
一、海洋生物活性物质的种类提到活性物质,人们首先想到的便是多肽、蛋白质等有机化合物。
除此之外,海洋生物中的活性物质也包括糖类、生物碱、酚类等多种物质。
因此,海洋生物活性物质是一类多样化的化学物质。
二、海洋生物活性物质的应用海洋生物活性物质的应用很广泛。
在医药领域,多肽和蛋白质等生物活性物质被用于生产药物,例如头孢菌素。
此外,海洋多肽还可以被用于口服药物、外用药物、化妆品等多个领域。
在饲料领域,鱼肉中蛋白质含量较低,人们可以添加海洋多肽来提高养殖效果。
此外,海洋生物活性物质还可以用于开发食品添加剂。
三、海洋生物活性物质的提取方法海洋生物活性物质的提取需要通过一定的实验方法。
在海洋生物活性物质提取中,现代科学技术可以支持以下两种提取方式:1. 生物方法生物方法是使用生物工程技术,利用菌株发酵海洋生物样品,并在后续提取过程中,采用某些方法来分离和纯化目标化学物质。
其中,酵母发酵法、细胞培养法和酶法是最常用的。
2. 化学方法化学方法使用有机溶剂如甲醇、乙醇等来提取目标成分,包括超声波法、萃取法、减压蒸馏法、超临界萃取法等多种方法。
四、海洋生物活性物质的研究进展随着科学技术和人类认知的提高,对海洋生物活性物质的研究也更加深入了解。
在提取和研究活性物质领域,人们通过分离和纯化海洋生物样品,以期发现新的活性物质。
在国内外,多位研究者在海洋生物活性物质提取和研究方面取得了重要的进展。
在蛋白质的研究中,研究者们已经建立了高效的蛋白质提取技术。
此外,活性物质的研究也借鉴了药物研发中的计算及模拟技术。
五、结论总的来说,海洋生物活性物质的提取和研究涉及到多个领域。
海洋生物活性化合物的开发与应用研究

海洋生物活性化合物的开发与应用研究近年来,随着科学技术的发展和人们对海洋资源的日益关注,海洋生物活性化合物的开发与应用研究日益受到重视。
海洋生物活性化合物是指从海洋中提取的具有生物活性的化学物质,具有广泛的应用价值和开发潜力。
本文将从海洋生物源、活性化合物的开发方法、应用领域和挑战等方面进行讨论。
一、海洋生物源海洋是地球上最大的生物圈,拥有丰富的生物资源。
海洋中的动物、植物和微生物都是海洋生物资源的重要来源。
其中,海洋藻类、海绵、珊瑚等动植物是研究海洋生物活性化合物的主要对象。
海洋藻类富含多种活性化合物,如聚醣、多肽和次级代谢物等,具有抗氧化、抗肿瘤、抗炎等活性。
海绵则是海洋生物活性化合物研究的热点之一,海绵中的次级代谢物具有广泛的抗菌、抗肿瘤、抗炎等活性。
珊瑚多寡肤质中含有丰富的天然色素、植物固醇、酚类物质等,这些物质具有抗氧化、抗菌、抗炎等多种活性。
二、活性化合物的开发方法海洋生物活性化合物的开发一直是一个具有挑战性的任务。
研究人员采用了多种方法来开发海洋生物活性化合物,包括生物导向的活性筛选、化学合成和基因工程等。
生物导向的活性筛选是最常用的方法之一,通过筛选生物样本中的活性成分,对其结构和活性进行鉴定和分析。
化学合成是指通过合成化学方法来获取具有特定活性的化合物。
基因工程技术则是通过对海洋生物的基因进行调控和改造,使其产生特定的活性成分。
三、应用领域海洋生物活性化合物具有广泛的应用领域。
其中,医药领域是应用最广泛的领域之一。
海洋生物活性化合物具有抗菌、抗肿瘤、抗炎、抗氧化等多种活性,可以作为药物的候选化合物,用于治疗各种疾病。
此外,海洋生物活性化合物还可应用于水产养殖、食品工业、环境保护等领域。
比如,一些海洋生物活性化合物可以作为水产养殖中的抗病药物,用于预防和治疗水产养殖中的疾病。
四、挑战与展望海洋生物活性化合物的开发与应用在一定程度上面临着一些挑战。
首先,海洋生物资源的获取困难和成本较高,限制了海洋生物活性化合物的研究和开发。
海洋生物活性肽生物学和功能特性的研究进展

海洋生物活性肽生物学和功能特性的研究进展广州华银医学检验中心有限公司摘要:目前国际市场上已经出现了含有生物活性肽的产品。
作为新型功能性食品的潜在来源,生物活性肽等生物活性化合物引起了众多研究者的兴趣。
生物活性肽是一种对身体功能有积极影响并可能影响健康的特定氨基酸片段,是由几个至十几个氨基酸通过共价键连接而成的有机物质,虽然不同分子片段的复杂程度有所差异,但生物活性肽的分子质量都在6000Da以下。
本文主要对海洋生物活性肽生物学和功能特性的研究进展进行论述,详情如下。
关键词:海洋生物;活性肽;生物学;功能特性引言近年来,海洋生物活性肽成为研究热点,其抗氧化、抗高血压和抗动脉粥样硬化等生物学特性以及溶解性、起泡性和乳化性等功能特性被广泛关注,这些特性缘于其化学组成和物理结构。
目前生物活性肽最常用的制备方法是酶解法,其中应用较多的酶是胃肠酶。
海洋资源是新型功能性成分的良好来源,如多糖、矿物质、维生素、抗氧化剂和多肽等。
海洋生物活性肽可被应用于功能食品、药品或化妆品领域。
1海洋生物活性肽生物活性多肽的来源非常广泛,主要有动物源和植物源。
海洋生物被认为是生物活性肽的重要来源,可以发挥生物功能来预防和治疗各种疾病。
最近的药理学研究报道了海洋生物活性肽的心脏保护、抗肿瘤、抗氧化、抗糖尿病等作用。
海洋衍生生物活性肽是有助于消费者健康的合成成分的替代来源,是营养药品和功能性食品的一部分,得到了市场的广泛认可。
对大鲵肉进行酶解,提取到的大鲵肉酶解肽分子量分布在5kDa以下,具有免疫调节活性和抗氧化活性。
采用体外胃肠消化法从牡蛎蛋白质中提取出分子量为1.60kDa的强抗氧化肽,纯化后能有效地清除自由基,并能有效地防止因羟基自由基所致DNA损伤。
利用酶解法从大眼金枪鱼暗肌中纯化出一种分子量为1222Da的抗氧化肽,可以有效清除自由基并抑制脂质过氧化,还能显著地清除细胞ROS,增强细胞活性。
观察到分子量为928Da的康格海鳗抗氧化肽对自由基有较强的清除作用,比α-生育酚有更强的活性。
海洋微生物活性代谢产物研究进展

海洋微生物活性代谢产物研究进展摘要:由于海洋环境的特殊性,从海洋微生物中筛选生物活性物质具有广阔的开发应用前景。
本文综述了近年来产生活性物质海洋微生物代谢产物的研究进展情况。
关键词:海洋微生物;活性物质;代谢产物;筛选方法Research progress on secondary metabolites of marine microorganism(1. Shaoyang Environmental Protection Research Institute, Shaoyang422000,China 2. Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093,China;) ABSTRACT:It has powerful potential to produce bioactive substances from marine microbe owing to the special ocean condition.This artice summarized the development of study on marine microbe bioactive substances.KEY WORDS:marine microorganism; bioactive substances; secondary metabolites; method of screening一、前言海洋是地球上最大的生态环境,具有丰富的环境资源,占有约80%的地球生物。
相比陆地微生物,海洋微生物是地球上尚未充分开发的自然环境。
经过几十年的开发,现在要从陆地微生物找到新的活性物质的几率正逐渐下降,并且开发的重复率几近95%,转向从海洋微生物环境中寻找新的活性物质不失为一个很好的解决方法,还有众多类似的现象迫切需要大力开发海洋微生物[1,2]。
海洋生物活性物质降血糖作用研究进展

海洋生物活性物质降血糖作用研究进展近年来,高血糖已经成为全球范围内的一种常见疾病。
高血糖会引起许多健康问题,如心血管疾病、肾病、神经病变等,给患者带来重大的健康风险。
因此,预防和治疗高血糖已经成为医学界关注的研究热点。
近年来,越来越多的研究表明,海洋生物中的活性物质可以对高血糖产生降血糖作用,这给高血糖患者带来了新的治疗希望。
本文就海洋生物活性物质降血糖作用的研究进展进行综述。
海洋生物中的活性物质海洋生物中含有丰富的活性物质,如多糖、蛋白质、多肽、生物碱、皂甙、酚类等。
这些活性物质具有丰富的生物活性和良好的药理学活性,已经成为制药和化妆品工业的重要原材料。
研究表明,一部分海洋生物活性物质可以通过不同的途径降低血糖水平,从而为治疗高血糖提供新的思路和方法。
海洋生物活性物质的降血糖作用研究进展海藻多糖类海藻多糖是一种复杂的多糖类物质,广泛分布于海洋中的各种藻类中。
有研究表明,海藻多糖可以通过抑制α-葡萄糖苷酶、促进胰岛素分泌、激活AMPK信号通路等多种途径降低血糖水平,从而起到降血糖作用。
红藻多糖的血糖降低作用尤为明显,其中的寡糖和巨大多糖具有更好的糖尿病治疗潜力。
海洋生物蛋白质海洋生物水母、海胆、贻贝等蛋白质中含有更好糖尿病修复作用的成分,且不同物种的蛋白质还具有不同的峰区。
据研究,从海洋生物提取蛋白AQPs,可有效降低血糖。
微藻胆固醇胆固醇可以起到抗炎和保护β细胞的作用,而微藻中的胆固醇主要来源于海洋浮游植物。
研究表明,微藻中提取的胆固醇可以提高胰岛素敏感度,促进葡萄糖的利用,从而起到降低血糖的作用。
海洋生物活性物质在糖尿病治疗中的应用前景通过对海洋生物活性物质的研究,发现其在治疗糖尿病方面具有重要潜力。
因为海洋生物活性物质来源广泛,不同物种的活性物质糖尿病方面表现出的作用和特性各不相同。
通过研究不同的海洋生物活性物质,可以为糖尿病的治疗提供更多新的可能性。
虽然海洋生物活性物质在降血糖方面具有重要的应用前景,但其在实际应用中也存在一些问题。
海洋生物活性成分的药理学研究

海洋生物活性成分的药理学研究海洋生物是丰富多样的生态系统,其中包含着大量的生物活性成分。
这些海洋生物活性成分具有广泛的药理学效应,被广泛用于药物开发和治疗。
本文将重点介绍海洋生物活性成分的药理学研究,以及其在不同领域的应用。
一、海洋生物活性成分的药理学研究方法1. 海洋生物样品的收集与提取在海洋生物活性成分的药理学研究中,首先需要对海洋生物样品进行收集和提取。
科研人员可以通过深海潜水、捕捞或人工养殖等方式获取不同种类的海洋生物样品。
随后,将这些样品进行有效提取,通常采用溶剂提取、超声提取或微波辅助提取等方法,以获得含有活性成分的提取物。
2. 活性成分的分离与纯化提取物中通常包含多种活性成分,因此需要进行进一步的分离与纯化。
研究人员可以利用色谱技术,如薄层色谱、柱层析、逆向高效液相色谱等,对提取物进行分离,以得到纯度较高的活性成分。
此外,质谱技术如质谱联用仪也常被用于活性成分的鉴定与分析。
3. 活性成分的生物学评价在药理学研究中,对活性成分进行生物学评价非常重要。
科研人员可以通过体外实验或体内实验来评估活性成分的药理效应。
体外实验可以使用细胞培养模型,观察活性成分对活细胞的影响。
而体内实验则可以通过动物实验进行,评估活性成分的毒理学和药理学效应。
二、海洋生物活性成分的药理学研究进展1. 抗肿瘤活性成分的研究海洋生物中存在着许多具有抗肿瘤活性的成分。
例如,一些海藻中含有多糖类物质,具有抗肿瘤和免疫调节作用。
此外,一些海洋动物如海绵和珊瑚中也发现了具有抗肿瘤活性的天然产物。
这些活性成分通过抑制肿瘤细胞的增殖和调节癌细胞凋亡等机制,对肿瘤治疗具有潜在的重要意义。
2. 抗炎活性成分的研究海洋生物中还存在着许多具有抗炎活性的成分。
研究发现,一些海洋微生物产生的次级代谢产物具有抗炎作用,能够有效减轻炎症反应。
同时,一些海洋植物如褐藻和红藻中的多糖类物质也具有显著的抗炎效果。
这些活性成分通过抑制炎症因子的释放和调节免疫系统的功能,对炎症相关疾病的治疗具有潜在的应用价值。
海洋生物天然化合物及其生物活性研究进展

海洋生物天然化合物及其生物活性研究进展海洋是地球上最神秘、最绚丽多彩的地方之一。
在大海深处,隐藏着许多奇特的生物,在这些生物的身上,往往存在着丰富多彩的天然化合物。
这些天然化合物因其多样性和复杂性,具有很高的实用价值和开发潜力。
对于这些海洋生物天然化合物及其生物活性的研究,一直是海洋生物学、药学和化学等多个学科的热点和难点。
本文将探讨海洋生物天然化合物及其生物活性研究的最新进展。
一、海洋生物天然化合物的分类和特点海洋生物天然化合物是以海洋生物为原料制备的具有良好生物活性和药用价值的天然化合物,是一类新型和先进的化学物质。
据统计,已经发现的海洋生物天然化合物种类约有10万种,其复杂性和多样性远超陆地生态系统中的物种。
海洋生物天然化合物的分类主要有:萜类、多肽、碳水化合物、酸类、酯类、环烷类、酚类等。
海洋生物天然化合物的特点是复杂性和多样性。
其中,具有完全结构新颖、北极的光学活性、多环和多官能团等特点,是陆地生物不能比拟的。
二、海洋生物天然化合物的生物活性研究进展海洋生物天然化合物具有广泛的生物活性和药用价值,可用于制药和化工等领域。
下面分别介绍将海洋生物,分为海洋藻类、海洋微生物和海洋动物三类的天然产物的研究进展。
1、海洋藻类天然产物的研究进展海洋藻类是海洋中常见的一种藻类,具有许多生物活性物质。
其主要生物活性物质有多糖、单胺、长链脂肪酸、虾青素和次生代谢产物等。
近年来,国内外学者对海洋藻类生物活性物质进行了广泛的研究。
经过深入探讨,海洋藻类天然产物具有以下生物活性:①抗肿瘤活性:如石角菜、角菜、水杨菜、石楠、傍海红树林等海藻所提取出的藻类多糖可以抑制癌细胞的增殖、诱导肿瘤细胞凋亡,从而发挥抗肿瘤活性。
②抗氧化活性:如小球藻和钩端藻中具有高抗氧化活性的虾青素,可以有效地清除自由基,保护细胞对抗氧化损伤。
③抗炎活性:如褐藻叶中提取的马尾藻多糖具有明显的抗炎活性,可以有效地抑制炎症反应。
2、海洋微生物天然产物的研究进展海洋微生物是海洋中最丰富和多样的生物,是海洋生物天然化合物研究的重点对象之一。
海洋生物活性物质的应用与研究

海洋生物活性物质的应用与研究海洋是一个宝贵的生物资源库,而其中的生物活性物质更是备受研究和应用的关注。
这些活性物质具有广泛的功能和应用,涉及到食品、药品、化妆品、兽药等多个领域。
这篇文章将探讨海洋生物活性物质的应用与研究,介绍海洋生物活性物质的种类和功能,以及近年来的研究进展和前景展望。
一、海洋生物活性物质的种类和功能1.藻类生物活性物质海洋中最常见的生物就是藻类,而藻类又是海洋生物活性物质研究的热点之一。
其中一些藻类含有多种生物活性物质,如叶绿素、多糖、硅酸酯等。
这些物质在抗氧化、抗炎、降血脂、免疫调节、抗癌等方面具有重要的应用价值。
2.海洋动物生物活性物质除了藻类之外,海洋中的动物也是生物活性物质的重要来源。
比如,海螺、海参、海胆、海龙等动物含有丰富的营养成分和生物活性物质,如天然氨基酸、糖蛋白、鱼精蛋白等,这些物质可以用于调节身体机能、促进免疫力等。
其中,海螺的血凝素是一种有潜力的药用活性物质,可以治疗心脑血管疾病。
3.海洋微生物生物活性物质海洋中微生物的生物活性物质是近年来研究的一个热点。
海洋中微生物具有独特的生存环境和代谢途径,因此产生的生物活性物质也非常特殊。
比如,青春素是一种海洋中产生的生物活性物质,可以用于抗病毒、抗肿瘤、降血糖等。
二、海洋生物活性物质的研究进展随着科技的进步,对于海洋生物活性物质的研究也在不断深入。
目前已经有很多研究成果,例如:1.利用藻类制备功能性食品藻类中的多糖可以用于制备功能性食品,如辅助降血脂、降糖等。
目前已经有一些藻类多糖制备的功能性食品上市。
2.开发制备海洋药物海洋中的生物活性物质,特别是微生物的生物活性物质,研究成果已经转化为一些药物。
比如,黄金葡萄球菌聚酮类抗生素是一种由海洋细菌产生的药物,可以用于治疗多种感染病。
3.海洋生物活性物质在日常生活中的应用除了药物之外,海洋生物活性物质还可以应用于化妆品、护肤品等领域。
比如,从海藻中提取的海藻酸钠可以用于制备保湿护肤品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海洋生物活性物质及其研究进展[摘要]广阔的海洋蕴含着丰富的生物资源,特别是高活性的生物活性物质如高不饱和脂肪酸、类胡萝卜素、维生素等,对人类健康和长寿有着重要的作用,它们在未来的医药、食品、保健、畜禽及水产养殖等各个方面必将占据显著地位[1、2]。
鉴于此,本文就主要海洋生物活性物质的分类及特性、当前的研究现状及进展进行了综述,并展望了该领域的发展前景。
[关键词]海洋生物活性物质高不饱和脂肪酸 EPA DHA 类胡萝卜素维生素引言地球约有71%的表面是水,而海水总体积占地球总水量97%的海洋,生物资源丰富、种类繁多。
据统计,大约有着4O多万种动、植物和上亿种微生物生存在其中。
如此众多的海洋资源是我们开发医药、食品、化工产品的巨大宝库。
海洋中的生物为了生存繁衍,在竞争中取胜并使自己适应海洋的独特环境,如高压、低营养、低温(特别是深海)、无光照、以及局部的高温、高盐等所谓生命极限环境,在漫长的进化中各自形成了特殊的结掏和奇妙的生理功能.为人类提供了众多结构新颖、功能独特和生理活性很强的活性物质,包括萜类、甾醇类、生物碱、甙类、多糖、肽类、核酸、蛋白质、酶等,这些生物活性物质的主要药理作用包括抗细菌、抗病毒、抗肿瘤、防治心血管疾病、延缓衰老及免疫调节等作用[1、2]。
所谓生物活性物质,是指来自生物体内的对生命现象具有影响的微量或少量物质。
海洋生物活性物质,则是指海洋生物体内所含有的对生命现象具有影响的微量或少量物质、主要包括海洋药用物质、生物信息物质、海洋生物毒素产生物功能材料等海洋生物体内的天然产物[3]。
随着环境污染的加剧和人类寿命的延长,心脑血管疾病、恶性肿瘤、糖尿病、老年性痴呆症等疾病日益严重地威胁着人类健康,艾滋病、玛尔堡病毒病、伊博拉出血热等新的疾病又不断出现,仅病毒病世界上平均每年就新增2-3种。
人类迫切需要寻找新的、特效的药物来治疗这些疾病。
人们纷纷将目光投向海洋。
此外,人们还希望利用海洋生物活性物质开发出增进健康、预防疾病的营养食品、保健食品,有些海洋生物活性物质还可用于化妆品中,有的可制成特殊的生物功能材料,使得海洋生物活性物质成了研究热点[3、4]。
1.海洋生物活性物质主要类别代表及性质、功用1.1 高不饱和脂肪酸及多不饱和脂肪酸海洋生物,尤其海藻,含有大量的多不饱和脂肪酸(polyunsaturated fatty acids,PUFAs),其中包括链长C16(有两到四个双键),C18(有两到五个双键),C20(有两到五个双键),C22(有两到六个双键)。
尽管存在n-6系列和在C16中的n-1系列,但是多不饱和脂肪酸一般主要为n-3系列。
而在鱼类中主要多不饱和脂肪酸为20:4n-6(花生四烯酸arachidonic acid;AA)与其代谢前体18:2n-6(亚油酸linoleic acid;LA)和20:5n-3(二十碳五烯酸eicosapentaenoic acid;EPA)与22:6n-3(二十二碳六烯酸docosahexaenoic acid;DHA)以及它们的代谢前体18:3n-3(亚麻酸linolenic acid;LNA)。
在水产养殖的通常使用HUFA这一命名,其为高不饱和脂肪酸(highly unsaturated fatty acids,HUFAs)的简写。
两者虽然没有明显定义来区分使用,但是一般把碳链长≥C20,带三个或更多双键的不饱和脂肪酸定义为PUFA[5]。
DHA具有抗衰老、提高大脑记忆、防止大脑衰退、降血脂、降血压、抗栓、降血黏度、抗癌等多种作用。
EPA则用于治疗动脉硬化和脑血栓还有增强免疫力的功能。
此外,从鲨鱼、海兔、鲸、海马、海龙等体内也获得多种不饱和脂肪酸,实验表明,它们均具有一定的药理活性。
DHA和EPA是人体不能自行合成、只能从食物中摄取的必需高度不饱和脂肪酸(HUFAs) 。
自Dyerberg等指出EPA有益于人类健康以来, EPA 和DHA受到广泛的关注,成为研究热点。
对EPA和DHA的功能进行的许多研究表明,适宜的EPA、DHA绝对量和比例在人、动物的正常繁殖、生长、发育中发挥着非常重要的生理作用:(1)降低血脂、胆固醇和血压,预防心血管疾病;(2)抑制血小板凝集,防止血栓形成与中风,预防老年痴呆症;(3)改善视网膜的反射能力,预防视力退化;(4)增强记忆力,提高学习效果;(5)抑制促癌物质一前列腺素的形成,故能防癌(特别是乳腺癌和直肠癌);(6)预防炎症和哮喘;(7)降低血糖,抗糖尿病;(8)抗过敏[6~12]。
脂肪酸在所有生物中一个主要功能就是通过线粒体β-氧化形成ATP 来提供新陈代谢能。
在鱼类中,脂肪酸不单是为鱼类从卵到成体的生长提供主要代谢能,而且为其繁殖提供主要能量。
EPA和别的低饱和脂肪酸一样,在鼠线粒体中能够进行β-氧化,而且还能诱导鼠线粒体的形成。
但是DHA在鼠线粒体中是一个惰性的β-氧化底物,它的催化分解就需要过氧化酶体的β-氧化[26]。
这是因为在DHA中插入△4双键需要一个特殊的机制,同样△4双键的移去也是的。
所以DHA必须先经NADPH依赖性的2,4 -二烯酰-CoA还原酶的还原以及3-顺-2-反-异构酶的异构化之后,才能够进行所有脂肪酸β-氧化的第一步2,3-(α,β)-脱氢,然后进行彻底氧化。
鱼类的肝脏组织中有过氧化酶体,而且普遍认为鱼和鼠在氧化22:6n-3的机制上没什么差别。
此外,在脂肪酸的氧化上存在着选择性的差异。
一般来说,鱼油中EPA的含量要高于DHA,比如,在沙丁鱼、凤尾鱼、鲱鱼的鱼油中EPA:DHA为18:12,这是人类健康所需要的比例。
可以说没有鱼油其DHA 含量明显高于EPA除了金枪鱼的脑鱼油。
这是由于有活动脑和眼睛加温系统的温血鱼类,如金枪鱼和鲭亚目鱼类,更倾向选择氧化饱和以及单不饱和脂肪酸[28];还有鲑鱼在高速游泳的肌肉中也是选择性地氧化低不饱和的脂肪酸[29]。
而鱼类在性腺形成过程中也会选择性地利用EPA,从而也会在鱼卵中造成DHA与EPA比值较身体里的偏高[11]。
1.2 类胡萝卜素一般来说,类胡萝卜素(carotenoid)化合物在生物界分布很广,现在从海洋生物中已发现了数百种结构新颖的类胡萝卜素。
β-胡萝卜素(β-carotene,β-C)是自然界一系列类胡萝卜素中最为人类需要的一种,它是含有11个共轭双键的多烯烃化合物,是维生素A的前体,可对孕妇及儿童起到补充人体维生素A的作用,并不致造成维生素A过量而中毒。
β-C有抗氧化作用,可以用来预防肿瘤、心血管疾病,尤其对防治癌的恶化是有效的。
它还能阻止或延缓因紫外线照射引起的皮肤癌,对慢性萎缩性胃炎和胃溃疡亦有疗效。
Β-C主要从养殖盐生杜氏藻(Dunaliellasalina)中生产,因盐藻所含的β-C要比胡萝卜所含的β-C高出上千倍[13、14]。
鱼类,尤其是鲑科鱼类的存活和质量,如色、味、营养价值等均取决于类胡萝卜素。
由于鱼类不能合成类胡萝卜素,只能从饲料中摄取,因此,鲑科鱼肉的颜色依赖其对摄取类胡萝卜素的吸收和沉积。
类胡萝卜素被消化吸收后主要存积于鲑科鱼肉、卵和皮肤中。
鲑(Salmon)和虹鳟(Oncorhynchus mykiss)鱼肉的明显粉红色是其质量的即时标志,也是其销售的重要影响因素。
因此,类胡萝卜素是鲑科鱼类的一种最重要的微量成分[15]。
而在水产动物中类胡萝卜素的生理功能主要包括:着色功能;增强对高氨和低氧的耐受性的作用;增强免疫力的作用;促进生长和成熟,改善卵质,提高繁殖力的功能;抗氧化剂,脂质过氧化的抑制剂和抗紫外辐射的光保护作用等[16]。
虾青素是类胡萝卜素中的典型代表,其化学名称是3 , 3’-二羟基-4 , 4′-二酮基-β,β′-胡萝卜素,常为某些海洋微生物和少量酵母菌作为次生代谢物在体内合成。
在虾青素分子中, 不仅同其他类胡萝卜素一样具有很长的共轭双键, 而且在共轭双键链的末端还有不饱和酮基和羟基, 羟基和酮基又构成α-羟基酮。
这些结构都具有较活泼的电子效应, 能向自由基提供电子或吸引自由基的电子, 使其极易与自由基发生反应而清除自由基。
超强的抗氧化活性赋予了虾青素比其他类胡萝卜素更为突出的生理功能, 主要表现在提高动物免疫力、抑制肿瘤、清除自由基和活性氧等方面[17]。
1.3 维生素维生素(vitamin)又名维他命,是维持人体生命活动必需的一类有机物质,也是保持人体健康的重要活性物质。
维生素在体内的含量很少,但在人体生长、代谢、发育过程中却发挥着重要的作用。
各种维生素的化学结构以及性质虽然不同,但它们却有着以下共同点:①维生素均以维生素原(维生素前体)的形式存在于食物中;②维生素不是构成机体组织和细胞的组成成分,它也不会产生能量,它的作用主要是参与机体代谢的调节;③大多数的维生素,机体不能合成或合成量不足,不能满足机体的需要,必须经常通过食物中获得;④人体对维生素的需要量很小,日需要量常以毫克(mg)或微克(ug)计算,但一旦缺乏就会引发相应的维生素缺乏症,对人体健康造成损害。
维生素与碳水化合物、脂肪和蛋白质3大物质不同,在天然食物中仅占极少比例,但又为人体所必需。
维生素大多不能在体内合成,必须从食物中摄取。
其中对于维生素E的研究是近年来的热点。
维生素E是生育酚(tocopherols)和生育三烯酚(tocotrienols)的总称,这两种不同的类维生素具有不同的生物活性,活性最大的是α-生育酚,其中活性比约为α-生育酚:β-生育酚:γ-生育酚:α-生育三烯酚=1:0.5:0.1:0.3。
维生素E是人和动物生殖、生长过程中的必需微量营养物质,具有抗氧化、抗衰老、抗癌和抗热应激反应的作用,能增强动物体的免疫力,改善肌肉品质.还与某些基因相互作用影响转录和表达等。
在吸收利用方面,α-生育酚主要是在十二指肠通过淋巴吸收的,而且约99%是以乳糜微粒的形式吸收的[18。
维生素E的功能是作为存在于细胞膜的抗氧化剂来捕获自由基。
在防止多不饱和脂肪酸被氧自由基破坏方面,维生素E起到极其重要的作用,阻止了多不饱和脂肪酸在细胞膜中发生一连串的氧化破坏。
维生素E的激发态相对来说是不够活跃的,而且能够防止激发态分子的链式反应。
维生素E激发态在失活后,通过与维生素C的反应又可以恢复有活性的激发态。
在谷胱甘肽过氧化酶和超氧化物岐化酶中,维生素E与硒和维生素C共同作用来防止多不饱和脂肪酸一连串的过氧化反应。
生育酚能够防止鱼类发生白肌病[18]。
维生素E与硒和维生素C共同作用来维持动物正常繁殖并且在鸡,鲱鱼,和鲤科鱼类中防止它们肌肉营养失调。
维生素E抗氧化性可以帮助维持毛细血管和心肌正常的渗透性[19]。
2. 研究现状及进展2.1 海洋生物活性物质的筛选筛选是研究和开发海洋生物活性物质的第一步。