初中数学专题第二章图形与变换教案

合集下载

初中图形变化教案

初中图形变化教案

初中图形变化教案教学目标:1. 了解平移、旋转和轴对称的概念及其在实际中的应用。

2. 学会使用平移、旋转和轴对称对图形进行变换。

3. 培养学生的观察能力、操作能力和解决问题的能力。

教学重点:1. 平移、旋转和轴对称的概念及性质。

2. 平移、旋转和轴对称在实际中的应用。

教学难点:1. 平移、旋转和轴对称的计算。

2. 灵活运用平移、旋转和轴对称解决实际问题。

教学准备:1. 教学课件或黑板。

2. 图形模板。

3. 练习题。

教学过程:一、导入(5分钟)1. 引导学生观察教室里的物体,如桌子、椅子、黑板等,找出它们之间的平移、旋转和轴对称关系。

2. 学生分享观察结果,教师点评并总结。

二、新课讲解(15分钟)1. 讲解平移的概念和性质,如平移的定义、平移的方向和距离等。

2. 讲解旋转的概念和性质,如旋转的定义、旋转的中心和角度等。

3. 讲解轴对称的概念和性质,如轴对称的定义、对称轴等。

三、实例演示(10分钟)1. 教师用图形模板进行实例演示,展示平移、旋转和轴对称的变换过程。

2. 学生跟随教师一起操作,体会平移、旋转和轴对称的性质。

四、练习巩固(10分钟)1. 学生独立完成练习题,巩固平移、旋转和轴对称的知识。

2. 教师选取部分学生的作业进行点评,解答学生的疑问。

五、应用拓展(5分钟)1. 学生分组讨论,思考平移、旋转和轴对称在实际中的应用,如设计图案、解决几何问题等。

2. 每组选代表进行分享,教师点评并总结。

六、课堂小结(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。

2. 学生分享学习收获,教师给予鼓励和评价。

教学反思:本节课通过引导学生观察生活中的实例,让学生了解平移、旋转和轴对称的概念和性质,学会运用这些知识进行图形的变换。

在教学过程中,注意调动学生的积极性,鼓励学生参与课堂讨论,提高学生的观察能力和操作能力。

同时,通过练习题和应用拓展环节,让学生巩固所学知识,提高解决问题的能力。

在今后的教学中,可以尝试引入更多实际应用案例,让学生更好地理解和运用图形变化知识。

《图形与变换》集体备课单元教学设计五篇

《图形与变换》集体备课单元教学设计五篇

《图形与变换》集体备课单元教学设计五篇第一篇:《图形与变换》集体备课单元教学设计一、本单元知识框架二、本单元学习内容的前后联系三、与本单元相关知识学生的学习情况分析1.学生已初步理解角的意义,能用尺子画出一个角,正确率是97%。

认识了三角板的特点并能用它判断与画出直角,正确率是96%。

2.学生能把生活的现象与简单的数学知识联系起来,有了初步的几何感受。

3.对于本单元所学的知识,学生在生活中已有了大量的感性认识,在教学中加强与生活的联系,给学生更多的操作机会,将会在很大程度上帮助学生更易于理解知识。

四、本单元教学目标1.会辨认直角、锐角、钝角。

2.初步感知平移、旋转的现象,能正确分辨出平移和旋转现象。

3.按一定的要求在方格上画出沿水平方向、竖直方向平移后的图形。

4.初步渗透变换的数学思想方法。

五、本单元教学重点、难点重点:1、直角、锐角、钝角的认识与判断。

2、认识平移与旋转的现象,能画出平移图。

难点:按一定要求画出平移后的图形(移动几格)。

六、本单元评价要点 1.会辨认锐角、钝角。

2.能规范地画出直角、锐角和钝角。

3.能正确分辨出平移与旋转的现象。

4.能在方格纸上按要求画出平移后的图形。

七、各小节教学目标及课时安排本单元计划课时数: 6 节教学内容教学目标计划课时授课日期备注锐角与钝角(第37~40页)1、能分辨锐角、直角和钝角,并能用按要求画出这些角。

2、在实际操作中促进空间观念的发展。

2平移和旋转(第41~45页)1、感受生活中平移与旋转的现象,初步认识它们的特点。

2、能在方格纸上画出相应的平移图。

3、在实际操作中促进空间观念的发展。

3 剪一剪(第46~47页)1、能够剪出连续的对称图案,培养动手操作能力。

2、通过观察图形的形成过程,找出规律,培养形象思维能力和逻辑思维能力。

3、体验数学美和乐趣以及成功的喜悦。

1 单元测试检测本单元的学生学习情况,及时进行查漏补1 测试情况反馈1 合计6八、各课时教学设计第1节锐角与钝角教学目标1、初步认识锐角和钝角,能辨认锐角和钝角。

图形与变换初中数学教案

图形与变换初中数学教案

图形与变换初中数学教案教学目标:1. 理解图形变换的概念,掌握平移、旋转、轴对称等基本变换的性质和特点。

2. 能够运用图形变换解决实际问题,提高空间思维能力和逻辑思维能力。

3. 培养学生的观察能力、动手操作能力和创新能力。

教学重点:1. 图形变换的概念和性质。

2. 运用图形变换解决实际问题。

教学难点:1. 图形变换的性质和特点。

2. 运用图形变换解决实际问题。

教学准备:1. 教学课件或黑板。

2. 图形变换的相关教具,如拼图、模型等。

3. 练习题和实际问题。

教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的几何知识,如点、线、面的基本概念。

2. 提问:同学们,你们认为图形可以进行哪些变换呢?二、新课讲解(20分钟)1. 讲解图形变换的概念,介绍平移、旋转、轴对称等基本变换的定义和性质。

2. 通过示例和教具演示,让学生直观地感受图形变换的过程和效果。

3. 讲解图形变换的性质,如变换前后图形的形状和大小不变,对应点、对应线段、对应角相等等。

4. 引导学生总结图形变换的特点,如平移是沿直线移动,旋转是绕某点旋转等。

三、课堂练习(15分钟)1. 给出练习题,让学生独立完成,巩固对图形变换的理解和应用。

2. 选取部分学生的作业进行点评,讲解正确答案和解题思路。

四、实际问题解决(10分钟)1. 给出一个实际问题,如设计一个平面布局,让学生运用图形变换知识进行解决。

2. 引导学生分组讨论,合作完成问题。

3. 选取部分学生的解题结果进行展示和讲解。

五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结图形变换的概念、性质和特点。

2. 提问:同学们,你们认为图形变换在实际生活中有哪些应用呢?教学延伸:1. 布置课后作业,让学生巩固图形变换的知识。

2. 开展图形变换的主题活动,如制作拼图、设计变换图案等。

教学反思:本节课通过讲解图形变换的概念、性质和特点,让学生掌握了图形变换的基本知识。

在实际问题解决环节,学生能够运用所学知识进行问题分析和解答,提高了空间思维能力和逻辑思维能力。

《图形和变换》数学教案

《图形和变换》数学教案

《图形和变换》数学教案
标题:《图形和变换》数学教案
一、教学目标:
1. 学生能够理解和掌握图形的基本概念和分类。

2. 学生能够掌握图形变换的基本方法,包括平移、旋转和反射。

3. 通过实际操作,提高学生的空间观念和几何思维能力。

二、教学内容:
1. 图形的基本概念和分类
- 点、线、面的概念
- 常见的二维图形(如圆形、正方形、长方形等)和三维图形(如球体、立方体等)
2. 图形的变换
- 平移:定义、特点和操作方法
- 旋转:定义、特点和操作方法
- 反射:定义、特点和操作方法
三、教学过程:
1. 引入新课:教师可以通过实物或者图片展示各种图形,引导学生观察并提问:“这些图形有什么共同点?我们可以怎样将它们进行分类?”以此引入图形的基本概念和分类。

2. 新知讲解:在讲解图形变换时,教师可以先让学生观察一个图形经过平移、旋转或反射后的变化,然后引导学生总结出每种变换的特点和操作方法。

3. 实践操作:设计一些实践活动,如让学生用纸片制作一个简单的图形,然后尝试对其进行平移、旋转和反射。

4. 巩固练习:设计一些习题,让学生通过解答来巩固所学的知识。

四、教学评价:
1. 过程评价:在实践操作环节,教师可以通过观察学生的表现,了解他们对图形变换的理解程度。

2. 结果评价:通过检查学生的作业和测试成绩,评估他们的学习效果。

五、教学反思:
1. 对于学生在课堂上的反应和反馈进行分析,找出教学中的问题和不足,以便改进教学方法。

2. 对于学生的学习成果进行评估,看看是否达到了预期的教学目标。

图形的变换数学教案

图形的变换数学教案

图形的变换数学教案
标题:图形变换数学教案
一、教学目标
1. 理解图形变换的基本概念。

2. 掌握图形平移、旋转、对称、放缩等基本变换方法。

3. 能够运用图形变换解决实际问题。

二、教学重点与难点
1. 重点:理解图形变换的基本概念,掌握图形变换的基本方法。

2. 难点:灵活运用图形变换解决实际问题。

三、教学过程
1. 引入新课:
通过一些有趣的图片或者动画展示图形变换的效果,引起学生的兴趣和好奇心,引入本节课的主题——图形变换。

2. 讲授新课:
(1)图形变换的基本概念:解释什么是图形变换,以及它在生活中的应用。

(2)图形变换的基本类型:讲解平移、旋转、对称、放缩等基本图形变换,并用具体的例子进行说明。

(3)图形变换的基本方法:详细讲解如何进行各种图形变换,包括步骤和注意事项。

3. 练习与实践:
设计一些练习题让学生自己尝试进行图形变换,检查他们是否真正理解和掌握了图形变换的方法。

4. 拓展与提高:
介绍一些复杂的图形变换,比如复合变换,引导学生思考如何将多个基本变换组合起来进行更复杂的变换。

5. 小结与作业:
回顾本节课的主要内容,布置一些相关的课后作业,要求学生在课后继续思考和练习图形变换。

四、教学评价
通过课堂练习和课后作业的反馈,了解学生对图形变换的理解程度和操作能力,及时给予指导和帮助。

五、教学反思
总结本节课的教学效果,反思教学过程中的优点和不足,以便改进和优化后续的教学。

初中数学教案:平面图形与变换

初中数学教案:平面图形与变换

初中数学教案:平面图形与变换一、概述平面图形与变换是初中数学的重要内容之一,它涉及到几何形状的特征以及形状在不同变换下的性质。

通过学习平面图形与变换,学生能够深入理解几何知识,并能够应用于实际问题中。

本教案将以平面图形和常见的变换(平移、旋转、翻转和对称)为主线,设计了一系列具体的教学活动和练习题,帮助学生逐步掌握相关概念和技能,并培养其数学思维和解决实际问题的能力。

二、教学目标1. 理解平面图形的基本特征,包括边长、角度、对称性等。

2. 掌握平面图形在不同变换下的性质和特点。

3. 能够进行简单的平移、旋转、翻转和对称操作,并理解其几何意义。

4. 运用所学知识解决实际问题,如判断物体是否对称或进行简单模型制作等。

三、教学过程1. 平面图形基本特征的认识(20分钟)a) 引导学生回顾直线段、角度、多边形等基本概念,让学生通过观察和描述图形,总结平面图形的基本特征。

b) 让学生分组讨论一个平面图形的特征,并展示给全班同学,大家一起探讨讨论。

c) 教师总结各组的发言,将平面图形的基本特征进行概括和归纳。

2. 平移、旋转和翻转的认识与操作(40分钟)a) 介绍平移、旋转和翻转的概念及其几何意义。

b) 向学生展示具体的平移、旋转和翻转操作,并引导他们观察变换前后的规律性变化。

c) 让学生自己尝试进行简单的平移、旋转和翻转操作,并互相交流经验和发现。

d) 教师总结这些变换对边长、角度、对称性等方面产生的影响,并强调它们之间的联系与区别。

3. 对称性及对称图形(30分钟)a) 引导学生理解对称线或轴对称性,并找出具有轴对称性质的图形样例。

b) 让学生比较不同图形上对称线或轴线数量和位置的异同,引导他们总结出规律。

c) 学生根据所学知识自行判断给定图形是否具有轴对称性,并进行讨论和验证。

4. 实际问题解决与应用(30分钟)a) 提供一些实际场景的问题,如选择最短路径、确定图案的对称中心等,让学生运用所学知识进行求解。

图形的变换与坐标教案

图形的变换与坐标教案

图形的变换与坐标教案一、教学目标1. 让学生理解图形变换的概念,掌握图形变换的基本方法。

2. 让学生掌握坐标系中图形的变换规律,能够运用坐标解决实际问题。

3. 培养学生的观察能力、动手操作能力和逻辑思维能力。

二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的变换规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的变换规律。

2. 教学难点:图形变换在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。

2. 利用多媒体辅助教学,直观展示图形变换过程。

3. 结合实际例子,让学生动手操作,加深对图形变换的理解。

五、教学准备1. 教学课件:图形变换的动画演示。

2. 教学素材:纸张、剪刀、直尺等。

3. 练习题:巩固所学知识。

教案内容请参考下述示例:教案示例:一、教学目标1. 让学生了解图形变换的概念,掌握图形变换的基本方法。

2. 让学生掌握坐标系中图形的平移和旋转规律。

3. 培养学生的观察能力、动手操作能力和逻辑思维能力。

二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的平移和旋转规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的平移和旋转规律。

2. 教学难点:图形变换在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。

2. 利用多媒体辅助教学,直观展示图形变换过程。

3. 结合实际例子,让学生动手操作,加深对图形变换的理解。

五、教学准备1. 教学课件:图形变换的动画演示。

2. 教学素材:纸张、剪刀、直尺等。

3. 练习题:巩固所学知识。

六、教学内容1. 图形缩放的概念及方法2. 坐标系中图形的缩放规律3. 实际问题中的图形缩放应用七、教学重点与难点1. 教学重点:图形缩放的概念,坐标系中图形的缩放规律。

2. 教学难点:图形缩放在实际问题中的应用。

初中数学《图形与变换》单元教学设计以及思维导图

初中数学《图形与变换》单元教学设计以及思维导图

图形与变换适用年九年级级所需时课内6课时,课外3课时间主题单元学习概述(图形与变换这一主题单元,与轴对称、中心对称一样,图形的平移、旋转和位似也都是现实生活中广泛存在的现象。

它们不仅为现实世界增添了绚丽的光彩,也装点着人们的生活。

因引,图形有平移、旋转和位似是“图形与几何”的重要内容。

探索平面图形的平移、旋转和位似的性质,体验平面图形的变换和在现实生活中的广泛应用,发展学生的空间观念,是本章学习的重要目标。

坐标和图形变换是《数学课程标准》规定的“图形与坐标”的重要内容。

“图形与坐标”将图形放入直角坐标系中,通过量化的方式研究图形和图形之间的关系,体现了数形的统一,是用。

代数方法研究图形的基础。

因此,本章中的坐标和图形变换是数形结合思想的直接体现,是几何图形与代数问题相结合的纽带和桥梁。

本单元的重点是平面图形的平移、旋转的基本性质,位似的概念及性质,直角坐标第中多边形的平移和位似。

难点是平面图形的平移、旋转的基本性质。

在本主题单元的学习中,我们把图形与变换设计成三个专题来组织学习活动。

第一专题是平面图形的平移。

这一专题主要是通过多媒体演示,通过学生的动手演示,合作探究,最后探索出平移的基本性质,并且能画出平移后的图形,解决有关的实际问题。

第二专题是平面图形的旋转。

这一专题主要也是通过多媒体演示,通过学生的动手演示,合作探究,最后探索出颤动的基本性质,并且能在平面内画出旋转任一角度后的图形,解决有关的实际问题。

第三专题是平面图形的位似。

这一专题主要是通过多媒体演示,通过学生的动手演示,合作探究,最后探索出用位似可以将一个图形放大或缩小,在直角坐标系中,探索并了解一个多边形(有一个项点在原点,有一条边在x轴上)的顶点坐标分别扩大或缩小相同倍数时,所得的图形与原多边形相位似。

这三个专题中,第三个专题是在前两个专题之后,又一种图形变换,但位似与轴对称、中心对称、平移和旋转不同,位似变换改变图形的位置和大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章图形与变换教案(共6课时)2.1轴对称图形(教参)2.2轴对称变换2.3平移变换2.4旋转变换2.5 相似变换2.6图形变换的简单应用2.1 轴对称图形(教参)【教学目标】1.通过具体实例认识轴对称图形、对称轴,能画出简单轴对称图形的对称轴.2.探索轴对称图形的基本性质,理解“对称轴垂直平分连结两个对称点之间的线段”的性质.3.会用对折的方法判断轴对称图形,理解作对称轴的方法.4.通过丰富的情境,使学生体验丰富的文化价值与广泛的运用价值.【教学重点、难点】1.本节教学的重点是认识轴对称图形,会作对称轴.2.轴对称图形的性质的得出需要一个比较复杂的探索过程,其中包括推理和表述,是本节教学的难点.【教学准备】学生:复习小学学过的轴对称图形,从现实生活中找4-5个轴对称图形.教师:准备教学活动材料,收集轴对称图形,可上互联网查询www.Oh1l00.com.【教学过程】一、回顾交流,列举识别1.怎样又快又好地剪出这个“王”宇.说明:让学生用纸、剪刀剪一剪.2.这个“工”字有什么特征?说明:对折后能够互相重合,具有这种特征的图形叫轴对称图形,这条折痕所在的直线叫做对称轴.3.在小学时,我们已经学过轴对称图形,请例举一些数学、生活中的轴对称图形.说明:让学生举例以回顾小学所学的知识,丰富学习情境,但要注意学生所举的例子会存在思路偏窄,教师要注意引导拓宽.4.教师展示教学多媒体:指出下列图片中,哪些是轴对称图形.说明:进一步丰富情境,体验轴对称的丰富的文化价值与广泛的运用价值. 二、合作探索,明晰性质 1.发给学生活动材料12.交流归纳,总结如下:(1)可用对折的方法判断一个图形是否是轴对称图形;(2)轴对称图形中互相对应的点称为对称点;(3)对称轴垂直平分连结两个对称点之间的线段.三、运用性质,内化方法1.分发教学活动材料2,学生独立思考.2.同伴交流.画对称轴 例1 如下各图的梯形ABCD 是轴对称图形,你有哪些方法画出它的对称轴? 教学活动材料1 1. 下列图形是轴对称图形吗?你是怎样判别的?讲给同伴听. 2.上述图形中,是轴对称图形的,找出对称轴. 3.在上述图形中,任选一个轴对称图形,绕着对称轴对折重合后,任选一 对重合的点作上记号,如点A ,A ’,问: (1)点A ,A ’与对称轴有什么关系? (2)再任选另外一对重合的点,试一试,上述关系还成立吗?同桌或小组交流各自的画法.3.交流归纳,总结方法如下:方法1:过线段AB ,CD 的中点画直线;方法2:作线段AB 的垂直平分线;方法3:作线段CD 的垂直平分线.4.分发教学活动材料3,学生独立或小组合作完成.说明:画一个点M 关于对称轴l 的对称点的方法是:作点M 到对称轴l 的垂线段MO 并延长,在延长线上找一点N ,使NO=MO ,则点N 就是已知点M 的对称点.四、总结提高,课内练习1.本课知识要点:(1)如果把一个图形沿着一条直线折起来,直线两侧的部分能够__________,那 么这个图形叫做轴对称图形,这条直线叫做_______________.(2)轴对称图形的性质:____________________________________________________.(3)作出一个轴对称图形的对称轴的常用方法:_______________________________________________________________(4)举几个轴对称图形的实例,并指出对称轴.______________________________________________________________.2.课内练习:见课本课内练习.五、布置作业1.见课本作业题.2.剪一个“ ”字.想一想,你有哪些方法?2.2 轴对称变换【教学目标】1、了解轴对称变换的概念。

2、理解轴对称变换的性质:轴对称变换不改变原图形的形状和大小。

教学活动材料3(练习) 1.蝴蝶图片是轴对称图形,点C ,D 为对称点, (1)画出蝴蝶图片的对称轴; (2)找出点E ,F 的对称点. 2.如图,四边形ABCD 为轴对称图形.3、会按要求作出简单平面图形经过一次或两次轴对变换后的图形。

4、探索简单图形之间的轴对称关系。

5、了解并欣赏物体的镜面对称。

【教学重点、难点】1、重点是轴对称变换的概念和作法。

2、难点是课本“合作学习”所要求解决的问题需要从立体图形转化到平面图形。

【教学准备】1、复习上节学习的轴对称图形以及它的基本性质。

2、学生工具准备:一面小镜子。

【教学过程】一、观察、回答、体会下列问题:图2-1 图2-21.请问上面(图2-1)是轴对称图形吗?他的对称轴在哪里?2.现在我们把他沿着对称轴剪开,这样我们把轴对称图形位于对称轴两侧的两个部分看成两个图形了。

这里我们可以说“这两个图形成轴对称”。

3.再观察图2-2中直线a 两边的两个图形,他们就关于直线a 成轴对称。

4.针对图2-2:由左边的“喜”变为右边的“喜”并且这两个“喜”字关于直线a 成轴对称,这样的图形改变叫做图形的“轴对称变换”。

也叫“反射变换”。

(简称反射)经变换所得的新图形叫做原图形的像。

5.反思:轴对称图形与轴对称变换有什么关系?(注意:要从两者涉及的图形个数、后者中对两个图形统一为一个图形来看等几方面说明)6.交流归纳:一个图形经轴对称变换后,图形上的某点与在“像”上的对应点的连线被对称轴垂直平分。

二、动手实践:1.例:如图,已知⊿ABC和直线m。

以直线m 为对称轴,作⊿ABC经轴对称变换后所得的像。

图2-3 图2-4 分析:(1)作图形“像”的过程其实是找到关键点,然后作出关键点的“像”的过程。

(2)操作的依据是“对称轴垂直平分连结两个对称点之间的线段”。

作法:略。

反思:在图2-4中如果把图形沿直线m 折叠,由作法可知:两个三角形会重合吗?如果重合,这说明什么?师生交流归纳:(1)轴对称变换不改变原图形的形状和大小。

(2)经轴对称变换所得的图形和原图形全等。

2.练一练:课本P44 “做一做”。

三、合作学习:1. 如图2-5左边是刻在印章上的“马”,右边是印在纸上的“马”,如果把它们并排放在一起,两者关于怎样的一条直线成轴对称?图2-52.请你在纸上写上数字“23”,把它放在你的小镜子前,在镜子中你看到了什么?交流归纳:实际图形与它在镜子里的像也可以想象成图2-5那样成轴对称关系。

四、总结提高,课堂练习:1.什么是“轴对称变换”?2.怎样作一个图形经轴对称变换后所得的像?3.“轴对称变换”的性质是什么?4.理解并体验镜面对称5.完成课本P45 的练习。

五、作业:1.课本作业本。

2.复习本节课的知识。

3. 阅读课本中的“阅读材料”,了解现实中的轴对称现象。

2.3 平移变换【教学目标】1通过具体实例认识图形的平移;2.了解图形平移变换的概念;3.理解平移变换的性质;4.会按要求作出简单平面图形经平移变换后所得的像。

【教学重点、难点】1.平移变换的概念和性质,探求简单图形经平移变换后所得的像的画法,并掌握根据所提供的平移方向和移动的距离两个条件作图。

2.探求平移变换的性质及探求如何作一个图形经平移变换后所得的像。

【教学过程】一、创设情境,引入新知。

教师以谈话的口吻询问学生:小时候是否滑过滑梯?学生的回答是肯定的,同时此问也必然会引发学生的好奇心去猜测教师提问的意图。

此时,教师安排活动一:看看想想:请学生观察多媒体演示卡通小朋友保持一定的姿势沿一段直行的滑梯滑下的过程,并思考两个问题。

1. 在滑梯过程中,小朋友身体各部分运动的方向相同吗?2. 小朋友各部分的运动距离怎样变化?学生通过观察运动过程并结合自身的体验经历,不难回答以上问题。

紧接着教师继续利用多媒体演示;缆车在直轨上的运动过程;传送带上的箱子的运动过程等并提问:这些图形的运动过程与小朋友滑滑梯的运动过程,是否有共同点?若有是什么? 教师给学生独立思考的空间让学生充分发表自已的意见,只要合理都予以肯定,然后指出这些运动过程中蕴涵了同一种的变换(揭示课题)——平移变换二、师生互动,探索新知。

1.概括形成平移变换的概念。

教师在学生观察分析描述以上所演示的各运动过程的共同点的基础上锁定传送带上箱子的运动为例展开计论,以两个问题来引导学生探索:议一议:(1).为若传送带上的箱子的某个顶点(可在图中指定)向前移动50cm ,则箱子的其他部位会向什么方向移动?移动了多少距离?(2).上的观察和讨论,你认为我们应从哪几方面来说明平移变换?在学生计论的基础上师生共同概括出平移变换的概念:(板书)由一个图形改变为另一个图形,在改变的过程中,原图形上所有的点都沿同一个方向运动,且运动相等的距离,这样的图形改变叫做图形的平移变换,简称平移。

提问:由平移变换的意义,你认为描述一个平移变换需要几个条件?学生回答。

教师肯定:描述一个平移变换必须指出两个要素平移的方向和平移的距离。

P 59做一做1、2(先学生独立思考,再与同伴交流,评价时注重生生互评)2.探求平移变换的性质。

教师仍锁定传送带上的箱子的运动,通过几个间题来引导学生继续探索。

议一议(1)送带上的箱子在运动过程中,什么改变?什么仍不变?(2)如果把移动前后同一箱子的某同一面记作四边形ABCD 和四边形EFGH 那么它们的形状,大小是否相同。

(3)(结合图形来说明)图中点A 经平移到了点E ,则点A 和点E 是一对对应点,你能在图中找出其他各对对应点吗?H(4)请连结各对对应点得线段,这些线段之间有什么关系?你可从哪些方面来说明。

请简述理由。

通过学生的独立思考及相互之间的讨论,师生可共同总结平移变换的性质(板书)平移变换不改变图形的形状、大小和方向;连结对应点的线段平行且相等。

提问:平移变换不改变图形的形状、大小,这意味着平移前后两图形具有怎样的图形关系?3.求图形经平移变换后的图形的作法做一做(1)已知一条线段(如图),请作出它向上平移3cm后的图形。

(2)已知一个长方形(如图),请作出它向右平移2cm后的图形。

教师指出,某一个图形经平移变换后所得图形称作原图形经平移变换后所得的像。

想一想,做一做 A . D 如图:经过平移,线段AB的端点A移动到了D点,你能作出线段AB经过这一平移变换后的像吗?你有哪些方法? B通过作图方案的探讨,可使学生了解到利用平移变换的性质就可以完成简单图形的平移作图。

而作图过程中只要能找出几个关键的点的对应点问题就能解决。

p例题讲解:49学生有了“想想做做”活动获得的经验,解决这一间题的难度就降低了,学生有了一定的思维导向,教师以几个问题引导学生分析作图思路并总结作图步骤思考并回答:(1)成一个长方形哪几个点是最关键的点?(2)这些长形经平移变换后的像的问题能否转化为先找些长方形的4个顶点的对应点的问题?(3)已知一个顶点的对应点,你能否由些确定图形平移的方向和移动的距离?(4)确定了图形的移动方向和移动的距离,如何作出其他3个顶点各自的对应点呢?(5)找出各顶点的对应点后如何得出原图形经平移后的像呢?为什么你能肯定所作图形为所求的像?解(略)见P50教师请学生观察已作出的平移变换前后的图形,问:(1)认为要作出某已知图形经平移后的像,必须具备哪些条件才能够作图?(2)谁能说出本例的平移方向和平移的距离?(3)你还有别的方法可作图吗?请发表自已的意见。

相关文档
最新文档