电机制动方式

合集下载

电动机的制动方式有哪些

电动机的制动方式有哪些

电动机的制动方式有哪些
三相感应电动机电气制动方式有:能耗制动、反接制动、再生制动三种。

(1)能耗制动时切断电动机的三相交流电源,将直流电送入定子绕组。

在切断交流电源的瞬间,由于惯性作用,电动机仍按原来方向转动,这种方式的特点是制动平稳,但需直流电源、大功率电动机,所需直流设备成本大,低速时制动力小。

(2)反接制动又分负载反接制动和电源反接制动两种。

1)负载反接制动又称负载倒拉反接制动。

此转矩使重物以稳定的速度缓慢下降。

这种制动的特点是:电源不用反接,不需要专用的制动设备,而且还可以调节制动速度,但只适用于绕线型电动机,其转子电路需串入大电阻,使转差率大于1。

2)电源反接制动当电动机需制动时,只要任意对调两相电源线,使旋转磁场相反就能很快制动。

当电动机转速等于零时,立即切断电源。

这种制动的特点是:停车快,制动力较强,无需制动设备。

但制动时由于电流大,冲击力也大,易使电动机过热,或损伤传动部分的零部件。

(3)再生制动又称回馈制动,在重物的作用下(当起重机电动机下放重物),电动机的转速高于旋转磁场的同步转速。

这时转子导体产生感应电流,在旋转磁场的作用下产生反旋转方向转矩,但电动机转速高,需用变速装置减速。

(资料来源:中国联保网)。

电动机几种制动方式

电动机几种制动方式

电动机的制动方式电动机的制动方式主要有机械制动和电气制动,机械制动是通过机械装置来卡住电机主轴,使其减速,如电磁抱闸、电磁离合器等电磁铁制动器。

电气制动时在应用中多采用电气制动,常用的电气制动方式有:1. 短接制动制动时将电机的绕组短接,利用绕组自身的电阻消耗能量。

由于绕组的电阻较小,耗能很快,有一定的危险性,可能烧毁电机。

2. 反接制动直流电机制动,将电机的电源正负极反接,改变电枢电流的方向,这样转矩的方向也改变,使得转速与转矩的方向相反。

交流电机制动采用改变相序的方法产生反向转矩,原理类似。

反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。

3. 能耗制动制动时在电机的绕组中串接电阻,电动机相当于发电机,将拥有的能量转换成电能消耗在所串接电阻上。

这种方法在各种电机制动中广泛应用,变频控制也用到了。

从高速到低速(零速),这时电气的频率变化很快,但电动机的转子带着负载(生产机械)有较大的机械惯性,不可能很快的停止,这样就产生反电势EU(端电压)电动机处于发电状态,其产生反向电压转矩与原电动状态转矩相反,而使电动机具有较强的制动力矩,迫使转子较快停下来但由于通常变频器是交-直-交主电力AC/DC整流电路是不可逆的因此无法回馈到电网上去,结果造成主电路电容器二端电压升高,称泵升电压,当超过设定上限值电压时,制动回路导通,这就是制动单元的工作过程,制动电阻流过电源,从而将动能变热能消耗电压随之下降,待到设定下限值时即断.这种制动方法属不可控,制动力矩有波动,制动时间是可人为设定的。

制动电阻的选取经验:1、电阻值越小,制动力矩越大,流过制动单元的电流越大;2、不可以使制动单元的工作电流大于其允许最大电流,否则要损坏器件;3、制动时间可人为选择;4、小容量变频器(≤7.5KW)一般是内接制动单元和制动电阻的; <BR><BR><BR>5、当在快速制动出现过电压时说明电阻值过大来不及放电,应减少电阻值.4. 直流制动主要用于变频控制中。

电动机的制动方法

电动机的制动方法

电动机的制动方法
电动机的制动方法可以分为以下几种:
1. 机械制动:通过机械装置使电动机停止运转,常见的机械制动方法包括刹车踏板制动和手动刹车制动。

2. 动态制动:将电动机的绕组对电源进行短接或连接电阻等,使电动机变为发电机运转,将电能转化为热能或反馈到电网中。

3. 降压制动:通过降低电动机的供电电压来减小电动机的转矩,从而实现制动目的。

4. 反接制动:改变电动机的电源接法,通过调换电动机绕组接线来改变电动机的旋转方向,从而制动电动机旋转。

5. 逆能制动:利用电机的逆变操作,将电机转换为发电机,将旋转能量转化为电能,并反馈到电网中。

需要注意的是,不同类型的电动机(如直流电动机、交流异步电动机等)可以使用不同的制动方法,具体选择适合的制动方法需要根据电动机的类型和实际需求进行确定。

电机的制动方式及注意事项

电机的制动方式及注意事项

电机的制动方式及注意事项电动机在应用中需要完成启动、运转、停止等动作。

其中停止是电机应用过程中非常重要的一部分,因为不恰当的停止方式可能会对电机设备产生不良影响,甚至危及人身安全。

因此,了解电机制动方式及注意事项,是非常有必要的。

电机的制动方式动态制动所谓动态制动,就是利用电动机的惯性,把电机刹停。

这种方式适用于负载较轻、电机转速较高时的停车制动。

动态刹车时,应将电机的电源关闭,以削弱电机的励磁磁场,同时适当调整电机刹车点的位置,使停车点尽量靠近电机强磁场区,这样可使制动效果不易受外界因素的影响,实现更好的制动效果。

动态反接制动动态反接制动的原理是通过改变电机的电源接线方式,使之变为发电机,通过电路对其进行负载,使电机慢慢地停止。

动态反接制动需要注意的是,该种制动方式会产生比较大的电流,因此在实现的过程中,需要使用带有抑制电流的电路。

机械制动机械制动是指通过机械部件对电机进行刹车,从而达到安全停机的目的。

机械制动方式包括手动刹车、摆锤式刹车、电磁式刹车等方式。

手动刹车是通过人工操作使用刹车片对电机进行刹车;摆锤式刹车是利用摆锤的重力使电机的转子停下来。

电磁式刹车是将电磁铁安装在电机轴上,通过断电使电机停止工作,实现刹车的目的。

制动时需要注意的事项无论采用哪种制动方式,我们都需要注意一些事项,从而确保制动的顺利进行。

制动前的准备在对电机进行制动前,我们需要进行一些必要的准备工作,以确保制动的成功。

制动前,应停止电机的供电,同时检查电机系统的电源接线、保险丝、接线端子等是否有老化、缺损等情况,如发现问题应及时处理。

另外,还应检查电机的制动器是否正常。

制动后的注意事项在电机完成制动后,我们还需要注意一些事项。

刹车结束后,应检查制动系统是否正常;待电机完全停下来后,应先解除机械制动系统,再恢复电源;同时,需要注意防护措施,避免对设备和人员造成伤害。

结论电机的制动方式有多种,每种制动方式都有其适用范围以及需要注意的事项。

直流电机制动方式

直流电机制动方式

直流电机制动方式直流电机的制动,有机械制动,再生制动,能耗制动,反接制动机械制动就是抱闸,是电动的抱闸。

反接制动:当切断正向电源后,立即加上反向电源,使电动机快速停止,当电动机速度降到零时,装在电动机轴上的“反接继电器”立即发出信号,切断反向电源,防止电动机真的反转。

1、能耗制动。

指运行中的直流电机突然断开电枢电源,然后在电枢回路串入制动电阻,使电枢绕组的惯性能量消耗在电阻上,使电机快速制动。

由于电压和输入功率都为0,所以制动平衡,线路简单;2、反接制动。

为了实现快速停车,突然把正在运行的电动机的电枢电压反接,并在电枢回路中串入电阻,称为电源反接制动。

制动期间电源仍输入功率,负载释放的动能和电磁功率均消耗在电阻上,适用于快速停转并反转的场合,对设备冲击力大。

3、倒拉反转反接制动适用于低速下放重物。

制动时在电路串入一个大电阻,此时电枢电流变小,电磁转矩变小。

由于串入电阻很大,可以通过改变串入电阻值的大小来得到不同的下放速度。

反接制动时,切换极性相反的电源电压,使电枢回路内产生反向电流:反接制动时,从电源输入的电功率和从轴上输入的机械功率转变成的电功率一起消耗在电枢回路制动电阻上。

4、回馈制动。

电动状态下运行的电动机,在某种条件下会出现由负载拖动电机运行的情况,此时出现 n &gt;n0、Ea &gt;U、 Ia 反向,电机由驱动变为制动。

从能量方向看,电机处于发电状态——回馈制动状态。

正向回馈:当电机减速时,电机转速从高到低所释放的动能转变为电能,一部分消耗在电枢回路的电阻上,一部分返回电源;反向回馈:电机拖位能负载(如下放重物)时,可能会出现这种状态。

重物拖动电机超过给定速度运行,电机处于发电状态。

电磁功率反向,功率回馈电源。

电机的制动方式及注意事项

电机的制动方式及注意事项

电机的制动方式及注意事项1.机械制动机械制动是指通过机械装置来实现电机的制动。

常见的机械制动方式有刹车制动、摩擦制动和反作用制动。

(1)刹车制动:刹车制动是通过刹车片与刹车盘之间的摩擦来实现制动。

它具有制动力矩大、制动效果稳定等优点,常用于需要快速停止电机转动的场合。

使用刹车制动时需要注意刹车片的磨损情况,防止过度磨损导致制动效果下降或失效。

(2)摩擦制动:摩擦制动是通过松动储能装置,使制动摩擦片与制动轮摩擦产生制动力矩。

摩擦制动具有简单可靠的优点,但制动效果比较受制动片与制动轮之间的摩擦系数影响。

因此,在使用摩擦制动时需要控制好制动片与制动轮之间的间隙,并注意保持制动片与制动轮的清洁。

(3)反作用制动:反作用制动是通过改变电动机的供电方式来实现制动,即改变电机的电流方向,使电机产生逆转力矩来实现制动。

反作用制动具有无磨损、制动效果好等优点,常用于对刹车装置要求很高或需要反复制动的场合。

2.电磁制动电磁制动是通过电磁装置来实现电机的制动。

常见的电磁制动方式有电磁制动器和电磁刹车器。

(1)电磁制动器:电磁制动器是利用电磁线圈产生的电磁力来实现制动。

它具有制动力矩大、制动效果稳定等优点。

使用电磁制动器时需要注意保持电磁线圈的正常工作状态,防止因电磁线圈故障导致制动失效。

(2)电磁刹车器:电磁刹车器是利用电磁线圈产生的电磁力来实现制动的一种特殊形式。

它主要用于需要定时刹车或需要持续制动的场合,如升降机、起重机等。

在使用电磁刹车器时需要注意线圈的绝缘状态,避免因绝缘损坏导致刹车器失效。

3.回馈能量制动回馈能量制动是通过将电机产生的能量回馈给电网来实现制动。

它主要用于大型电机的制动,可以减少能量浪费。

使用回馈能量制动时需要注意控制回馈功率,避免对电网造成影响。

在使用电机制动时需要注意以下几点:(1)制动器的选择:根据电机的转动惯量、制动时长和制动力矩要求,选择适合的制动方式和制动器。

(2)制动器的安装:制动器的安装位置应易于操作和维修,并注意固定牢固,防止在制动时产生振动。

三相异步交流电动机制动的常用方法

三相异步交流电动机制动的常用方法

三相异步交流电动机制动的常用方法
三相异步交流电动机的制动是指将电动机的转速减缓或停止,常用的方法有以下几种:
1. 直接制动法:即将电动机的电源直接切断,电动机的转子惯性使其继续转动,由于没有电源给它提供能量,电动机会逐渐减速直至停止。

2. 反接制动法:将电动机的两条相线交换接线,使电动机变成发电机,将其与外部电阻负载相连,电动机继续转动,通过外部电阻的消耗,将电动机的能量转化为热能散失,从而达到制动的目的。

3. 动态制动法:在电动机运行时,通过改变电动机的电源参数,如改变电源电压、频率等,使电动机的电磁能转化为机械能,使其减速或停止运转。

4. 电磁制动法:在电动机转速较高时,通过向电动机的绕组通电,产生电磁力,使电动机的转子减速或停止,这种方法适用于制动力较大的场合,如起重机、卷扬机等。

5. 转矩控制制动法:通过控制电动机的电源,使电机产生逆转矩,对电动机进行制动,这种方法适用于制动精度要求较高的场合,如卷板机、拉拔机等。

- 1 -。

直流电机与交流电机的制动方法

直流电机与交流电机的制动方法

直流电机与交流电机的制动方法
直流电机与交流电机的制动方法主要包括以下几种:
1. 能耗制动:这是一种电制动方式,通过将运转中的电动机与电源断开并改接为发电机,使电能在其绕组中消耗(必要时还可消耗在外接电阻中)来产生制动转矩。

对于交流笼型和绕线转子异步电动机,需要在交流供电电源断开后,立即向定子绕组(可取任意两相绕组)通入直流励磁电流If,以便产生制动转矩。

2. 反接制动:这是一种机械制动方式,通过在电动机转子上施加与转动方向相反的转矩来使电动机减速或限速。

3. 回馈制动:也称为再生制动或发电制动,这种制动方法是将电动机的动能转化为电能,并将其回馈给电网或其他负载。

这种制动方法适用于需要快速减速或定位的情况,并且可以减少能量损失。

4. 机械制动:这是一种通过机械摩擦力来阻止电动机转动的制动方式,通常通过在电动机轴上安装刹车片来实现。

需要注意的是,不同的电机和不同的应用场景需要采用不同的制动方法,并且还需要考虑制动的效率和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,速度继电器的释放值调整到90转/分左右,如释 放值调整得太大,反接制动不充分;调整得太小,又不能 及时断开电源而造成短时反转现象。 反接制动制动力强,制动迅速,控制电路简单,设备投资 少,但制动准确性差,制动过程中冲击力强烈,易损坏传 动部件。因此适用于l0kw以下小容量的电动机制动要求迅 速、系统惯性大,不经常启动与制动的设备,如铣床、镗 床、中型车床等主轴的制动控制。
2、电磁抱闸通电制动控制电路
电磁抱闸断电制动其闸瓦紧紧抱住闸 轮,若想手动调整工作是很困难的。 因此,对电动机制动后仍想调整工件 的相对位置的机床设备就不能采用断 电制动,而应采用通电制动控制,其 电路如图3所示。当电动机得电运转时, 电磁抱闸线圈无法得电,闸瓦与闸轮 分开无制动作用;当电动机需停转按 下停止按钮SB2时,复合按钮 SB2的常 闭触头先断开切断KM1线圈,KM1主、 辅触头恢复无电状态,结束正常运行 并为KM2线圈得电作好准备,经过一定 的行程SB2的常开触头接通 KM2线圈, 其主触头闭合电磁抱闸的线圈得电, 使闸瓦紧紧抱住闸轮制动;当电动机 处于停转常态时,电磁抱闸线圈也无 电,闸瓦与闸轮分开,这样操作人员 可扳动主轴调整工件或对刀等。
能耗制动
电动机切断交流电源的同时给定子绕组的任意二相加一直流电 源,以产生静止磁场,依靠转子的惯性转动切割该静止磁场产 生制动力矩的方法。 原理分析:电动机切断电源后,转子仍沿原方向惯性转动,如 图5设为顺时针方向,这时给定子绕组通入直流电,产生一恒定 的静止磁场,转子切割该磁场产生感生电流,用右手定则判断 其方向如图示。该感生电流又受到磁场的作用产生电磁转矩, 由左手定则知其方向正好与电动机的转向相反而使电动机受到 制动迅速停转。可逆运行能耗制动的控制电路如图6所示。KV1、 KV2分别为速度继电器KV的正、反转动作触头,接触器KM1、KM2、 KM3之间互锁,防止交流电源、直流制动电源短路。停车时按下 停止按钮SB3,复合按钮SB3的常闭先断开切断正常运行接触器 KM1或KM2线圈,后接通KM3线圈,KM3主、辅触头闭合,交流电 流经变压器T,全波整流器VC通入V、W相绕组直流电,产生恒定 磁场进行制动。RP调节直流电流的大小,从而调节制动强度。
电动机的制动方式
一、机械制动
1、电磁抱闸断电制动 控制电路
2、电磁抱闸通电 制动控制电路
1、电磁抱闸断电制动控制电路
电磁抱闸断电制动控制电路如图1所 示。合上电源开关QS和开关K,电动 机接通电源,同时电磁抱闸线圈YB得 电,衔铁吸合,克服弹簧的拉力使制 动器的闸瓦与闸轮分开,电动机正常 运转。断开开关电动机失电,同时电 磁抱闸线圈YB也失电,衔铁在弹簧拉 力作用下与铁芯分开,并使制动器的 闸瓦紧紧抱住闸轮,电动机被制动而 停转。图中开关K可采用倒顺开关、 主令控制器、交流接触器等控制电动 机的正反转,满足控制要求。倒顺开 关接线示意图如图2所示。这种制动 方法在起重机械上广泛应用,如行车、 卷扬机、电动葫芦(大多采用电磁离 合器制动)等。其优点是能准确定位, 可防止电动机突然断电时重物自行坠 落而造成事故。
直流制动 主要用于变频控制中。在电动机定子加直流电压, 此时变频器的输出频率为零,这时定子产生静止 的恒定磁场,转动着的转子切割此磁场产生制动 力矩,迫使电动机转子较快的停止,这样电动机 存诸的动能换成电能消耗于步电动机的转子电路 中。
能量回馈制动
当采用有源逆变技术控制电机时,将制动时再生电能 逆变为与电网同频率同相位的交流电回送电网,并将 电能消耗在电网上从而实现制动。能量回馈装置系统 具有的优越性远胜过能耗制动和直流制动所以近年来 不少使用单位结合使用设备的特点纷纷提出要求配备 能量回馈装置的要求国外也仅有ABB、西门子、富士、 安川、芬兰Vacon等少数不多的公司能提供产品国内几 乎空白
反接制动分析:停车时按下停止按钮SB2,复合按钮SB2的 常闭先断开切断KM1线圈,KM1主、辅触头恢复无电状态, 结束正常运行并为反接制动作好准备,后接通KM2线圈(KV 常开触头在正常运转时已经闭合),其主触头闭合,电动机 改变相序进入反接制动状态,辅助触头闭合自锁持续制动, 当电动机的转速下降到设定的释放值时,KV触头释放,切 断KM2线圈,反接制动结束。
并联电容制动
一种电容放电式三相单相伺服电机电制动方法,其特 征在于:在旋转的电机需要制动时,将原电源输入断 开,并同时将充有电能的电容连接在伺服电机绕组上, 通过电机绕组放电,在电机内产生直流磁场,在直流 磁场作用下,使电机转子制动,进行电机制动,同时 电容的电能消耗,当电机制动后,电容的电能耗尽。 其方法能耗温升小,防止电机烧毁,电机寿命长,制 动效果好。该结构便于现场更换,提高电制动效果, 提高了电动执行器的可靠性
二、电力制动
反接制动 能耗制动 短接制动 直流制动 能量回馈制动 并联电容制动 串电阻制动
反接制动
在电动机切断正常运转电源的同时 改变电动机定子绕组的电源相序, 使之有反转趋势而产生较大的制动 力矩的方法。反接制动的实质:使 电动机欲反转而制动,因此当电动 机的转速接近零时,应立即切断反 接转制动电源,否则电动机会反转。 实际控制中采用速度继电器来自动 切除制动电源。 反接制动控制电路如图4所示。其主 电路和正反转电路相同。由于反接 制动时转子与旋转磁场的相对转速 较高,约为启动时的2倍,致使定子、 转子中的电流会很大,大约是额定 值的10倍。因此反接制动电路增加 了限流电阻R。KM1为运转接触器, KM2为反接制动接触器,KV为速度 继电器,其与电动机联轴,当电动 机的转速上升到约为100转/分的动 作值时.KV常开触头闭合为制动作 好准备。
能耗制动平稳、准确,能量消耗小,
但需附加直流电源装置,设备投资 较高,制动力较弱,在低速时制动 力矩小。主要用于容量较大的电动 机制动或制动频繁的场合及制动准 确、平稳的设备,如磨床、立式铣 床等的控制,但不适合用于紧急制 动停车。
短接制动
制动时将电机的绕组短接,利用绕组自身的电 阻消耗能量。由于绕组的电阻较小,耗能很快, Байду номын сангаас一定的危险性,可能烧毁电机。
相关文档
最新文档