LTE 最新网络优化案例

合集下载

LTE网络掉线问题优化处理案例

LTE网络掉线问题优化处理案例

LTE网络掉线问题优化案例摘要:高掉线严重影响用户业务连续性感知,日常优化中遇到的高掉线问题主要是由于:邻区缺失、干扰、弱覆盖、导频污染等问题引起的。

通过合理的RF优化调整、PCI规划、功率调整等手段可有效解决掉线问题。

关键字:掉线率、Mod3干扰、天馈接反、超远切换、邻区漏配、旁瓣覆盖。

掉线率指标主要影响用户业务连续性指标,高掉线小区的特征主要表现在以下几个方面:小区的连续性覆盖、小区的邻区配置合理性、小区覆盖距离、小区干扰水平、小区的参数规划配置等。

日常优化中,需要把握小区掉线特性,有针对性处掉线问题。

本案例从天馈、干扰、邻区等几个方面进行举例。

1.天馈接反导致掉线1.1问题描述通过网优平台对全区LTE掉线率指标统计分析中,发现锡西新城医院_51扇区持续掉线率较高,其他类指标正常。

1.2问题分析1、通过对周围站点分布分析,发现TOP掉话小区:锡西新城医院_51扇区,与胡埭电信支局54扇区存在Mod3干扰,Mod3余值2。

2、通过对胡埭区域的前台测试分析,了解两个扇区覆盖情况。

通过测试数据分析,两扇区主覆盖范围无交叉覆盖区域,两站点间的主要道路由胡埭电信支局_53扇区覆盖。

两个扇区主覆盖方向两扇区之间道路的主覆盖扇区3、在对周围道路分析过程中发现,滨湖_胡埭老桥50与51扇区天馈接反,且两扇区存在交叉覆盖区域。

从PCI分布上分析,两个扇区均为Mod3余2,存在干扰。

路段扇区覆盖图扇区PCI分布1.3问题解决1.3.1 解决方案问题定位后,对滨湖_胡埭老桥50与51扇区天馈进行整改。

1.3.2 测试结果1、整改后现场测试情况对WXL2HTC滨湖_胡埭老桥_51扇区进行整改,整改前后覆盖情况对比如下:整改前整改后2、整改后KPI指标对比2.超远切换导致掉线2.1问题描述日常TOP小区优化中发现5月4日“WXL2HMB新区_旺庄立交_51“E-RAB掉线异常恶化,由之前的0.15%抬升至7.24%,掉线次数达到240次,同时LTE系统内切换成功率从99%下降至83%:2.2问题分析E-RAB高掉线主要通过硬件故障排查->干扰排查->切换问题分析,一步步分析可能存在的异常,直至定位最终问题点,解决问题:2.3问题解决2.3.1 解决方案1、硬件排查;通过华为U2000网管平台查询小区5月4日的告警信息,未发现异常:2、干扰排查;上行干扰查询,通过网优平台查询小区上行RB干扰平均值,近一周上行平均干扰为-119dbm,未发现异常:下行干扰查询,通过MAPinfo查询PCI规划,是否存在MOD3对打现象,与周边小区未发现MOD3干扰:3、E-RAB异常释放COUNTER定位;通过网优平台查询E-RAB异常释放具体counter。

LTE网络优化

LTE网络优化
《LTE网络优化》
xx年xx月xx日
contents
目录
• LTE网络优化概述 • LTE网络优化技术 • LTE网络优化工具与平台 • LTE网络优化实践案例 • LTE网络优化趋势与挑战
01
LTE网络优化概述
定义与目标
定义
LTE网络优化是指通过调整LTE网络参数、配置和性能指标, 以提高网络性能和用户满意度。它是无线网络优化的一部分 ,是确保LTE网络高效运行的关键过程。
05
LTE网络优化趋势与挑战
5G时代的LTE网络优化策略
5G与LTE并存
在5G时代,LTE网络仍将发挥重要作用,因此需要制定优化策略 以保证LTE网络的性能和效率。
多模态网络优化
针对5G与LTE共存的情况,需要进行多模态网络优化,包括协同 优化、负载均衡等。
频谱共享与重用
通过频谱共享与重用技术,可实现5G与LTE的高效共存,提高频 谱利用率。
详细描述
某地区LTE网络存在容量不足和覆盖不均的问题。为了解决这些问题,网络优化工程师采用了多频段协 同优化的方案,通过对不同频段的协调调度,实现了网络容量的提升和覆盖的均衡,大大提高了用户 满意度。
案例四:某运营商跨域LTE网络优化实践
总结词
跨域协同优化,提升用户感知
详细描述
某运营商的LTE网络跨越多个地区,存在复杂的网络环境和用户需求。为了提升用户感知,网络优化工程师采 用了跨域协同优化的方案,通过对不同地区的网络进行协调调度,实现了资源的优化配置和用户需求的满足, 显著提升了用户满意度。
02
LTE网络优化技术
频谱优化
频谱效率优化
通过优化频谱使用效率,提高网络容量和数据传 输速率。
频谱灵活利用

(完整版)TDD_LTE无线网络优化案例

(完整版)TDD_LTE无线网络优化案例

TDD_LTE无线网络优化案例一、浦东大道福山路道路优化案例1. 测试环境【路测设备】:JDSU W1314A—E01 Receiver【路测软件】:JDSU E6474A-X【测试路段】:浦东大道、源深路及福山路周边路段【测试环境】:从前期的测试中发现在浦东大道福山路附近路段存在弱覆盖情况,SINR在道路上分布不满足测试需求,通过RF手段进行优化后进行前后对比。

图1浦东大道福山路附近无线环境图浦东大道福山路周边无线环境图中看出,该区域由密集居民区、高层商务写字楼、厂房及学校组成,浦东大道北侧无线环境良好,南侧道路两旁有较多建筑,对无线信号有较强的阻挡,周边主要由利男居、浦福昌、钱栖站点覆盖周边道路。

2. 优化前覆盖情况图2浦东大道福山路优化前RSRP覆盖图图3浦东大道福山路优化前CINR覆盖图从优化前的测试数据中看出浦东大道福山路附近路段RSRP值主要在-90dbm左右,但是CINR覆盖较差,浦东大道福山路至源深路之间普遍在15dB以下,不能满足道路覆盖要求,该路段主要由利男居站点覆盖,但是从该站RSRP分布情况看出,该站在浦东大道上没有出现强信号,考虑对该站重点优化。

3. 优化思路及方案图4利男居站点平面图利男居各小区照片问题路段主覆盖站点为利男居,该站点位于浦东大道44号林顿酒店7楼,天馈采用抱杆安装,挂高24米,从利男居站点各小区安装位置中看出,该站3个小区天馈周边都有阻挡物,而按照当前设计方位角,利男居_1小区的天线方位角0°,在浦东大道上是旁瓣信号覆盖,而利男居_3小区天线方位角240°覆盖方向也存在自身楼面建筑的阻挡,从而得出浦东大道该站点信号偏弱的原因,通过实际情况看中看出,利男居_1小区50°方向角有自身建筑的阻挡,往该方向调整不但不能改善浦东大道的覆盖,反而会使得信号反射而出现在背面区域,于是考虑将利男居_1调整为280°、根据挂高计算出该小区下倾调整为2°覆盖效果为最佳;利男居_2主覆盖方向由两栋高楼阻挡,导致在源深路段覆盖较差,由于建筑的阴影效果通过调整天馈是无法改善覆盖,建议该小区调整为50°来覆盖浦东大道东侧路段、利男居_3当前信号阻挡明显,调整为180°可以很好的避开阻挡物,达到最佳的覆盖效果,同时为了改善福山路近浦东大道覆盖,调整浦福昌2、钱栖1小区天馈来避免由于利男居下倾角增大后出现的弱覆盖路段,综合路测情况分析,得出具体调整方案如下:SiteNameCN CellNameCN初始值调整后Height azimuth MDownTilt azimuth MDownTilt利男居利男居_1240—22802利男居_224170050—4利男居_3242403180-4浦福昌浦福昌_121030—4浦福昌_2211001110-1浦福昌_3212401240—4钱栖钱栖_1270230—4钱栖_2271207120—4钱栖_3272402240—24. 优化后覆盖情况图5浦东大道福山路优化后RSRP覆盖图图6浦东大道福山路优化后CINR覆盖图图7浦东大道福山路优化后CELL_Identity分布图5. 优化小结从优化后的测试数据中看出,利男居_1、2小区在浦东大道上RSRP有较大幅度的提升,其主覆盖方向CINR基本能达到30的极好点,浦福昌2小区在昌邑路福山路良好,钱栖1小区天馈调整后在福山路近浦东大道信号也有所提升,从调整后的整体效果中看出,此次优化达到优化目的,当前浦东大道福山路段信号覆盖良好,各小区信号分布合理,信号满足道路覆盖指标要求。

LTE无线接通率优化提升案例

LTE无线接通率优化提升案例

无线接通率低优化案例一、问题描述西安长庆宾馆-HLH-XAAO133TL-2无线接通率指标7月24号开始严重下滑,根据失败counter主要是由于RRC重建失败较高造成,其中该小区接入失败主要集中在早晚忙时间段。

二、问题分析针对该项指标进行相关的counter指标提取,发现问题主要集中在“小区内因为无上下文导致的RRC重建拒绝的次数(无) ”和“UE无应答而导致RRC重建失败次数(无)”这两个counter,结合现场情况需逐步排查分析。

➢用户接入失败分析过程:➢基站告警核查当前无告警,历时告警无。

➢基础参数核查(随机接入、上行功控、重选)◆SRI自适应开关,自适应调整SRI调度周期◆小区级子帧树重配开关,根据小区资源使用情况,动态调整SRS的子帧配置◆PUCCH算法开关,当PUCCH资源不足时可以发起资源配置调整◆将SRS资源配置方式的接入优先◆上行功控参数路径损耗因子、PUSCH标称P0值提升UE发射功率➢PRB上行干扰核查无干扰,全天均值-118左右。

➢是否存在弱覆盖核查该站位置,怀疑是由于周边楼宇比较密集有阻挡导致覆盖不足以及深度覆盖不够,需提升调整上行功控参数路径损耗因子以及PUSCH标称P0值提升UE发射功率以及由于资源分配不足导致的RRC失败。

三、解决方案SRS/PUCCH资源分配而导致RRC连接建立失败1.打开SRI自适应开关,自适应调整SRI调度周期MOD GLOBALPROCSWITCH: SRIADAPTIVESWITCH=ON;2.打开小区级子帧树重配开关,根据小区资源使用情况,动态调整SRS的子帧配置MOD CELLALGOSWITCH: SRSALGOSWITCH=SrsSubframeRecfSwitch-1;3.打开PUCCH算法开关,当PUCCH资源不足时可以发起资源配置调整MOD CELLALGOSWITCH: LOCALCELLID=2, PUCCHALGOSWITCH=PucchSwitch-1;4.将SRS资源配置方式修改为接入优先MODSRSCFG:LOCALCELLID=0,SRSCFGIND=BOOLEAN_TRUE,TDDSRSCFGMODE=ACCESS_FIRST;UE无应答导致RRC建立失败调整上行功控参数路径损耗因子、PUSCH标称P0值提升UE发射功率MOD CELLULPCCOMM:LOCALCELLID=2,PASSLOSSCOEFF=0.8,P0NOMINALPUCCH=-105;四、实施效果对比7月27日对该小区进行参数调整,调整后指标明显提升,如下图:五、总结a)在问题分析过程中若发现失败次数集中在某个counter,需考虑整体性的原因,如是否存在故障以及干扰或者某类参数设置不当导致等。

案例集-TD-LTE网络优化经典案例

案例集-TD-LTE网络优化经典案例

案例集-TD-LTE网络优化经典案例案例集-TD-LTE网络优化经典案例TD-LTE网络优化案例目录1112 概述TD-LTE无线网络要实现系统的高性能指标, 需要有合理的网络规划设计、稳定的产品性能、良好的施工工艺以及高质量的网络优化,几者缺一不可。

本报告收录了XX市TD-LTE试验网建网以来遇到的一些典型优化案例,旨在为后续优化工作提供帮助和参考。

3 D频段优化案例3.1 重叠覆盖优化【问题描述】在华兴街靠近中和路区域测试时,UE驻留在华安证券_3(频点:38050,PCI:88),RSRP:-71dBm左右,SINR:25dB左右,但DL Throughput=31Mbps。

【问题分析】分析路测数据,发现在华兴街靠近中和路的区域,华安证券_2、华安证券_3小区RSRP电平值较接近,如上图所示,对该路段形成了重叠覆盖。

而该区域规划的1主覆盖小区为华安证券_3,现场勘察发现,华安证券_2信号经周边楼宇反射至该区域,2、3小区形成重叠覆盖,造成吞吐速率降低。

【解决措施】调整华安证券_2方位角由120°调至155°,机械下倾角由12°调至6°。

【处理效果】调整小区方位角后,重叠覆盖问题得到较好解决,下载速率明显提升。

小区名称方位角PCI RSRP SINR 下载速率(Mbps) 华安证券3 调整前88 -71.1 25.9 31.5华安证券3 调整后88 -69.2 27.1 59.623.2 PCI优化【问题描述】在九华中路测试中,UE驻留在新都快捷酒店_1(频点:38050,PCI:51),RSRP:-74dbm左右,SINR:5db左右,下载速率:7Mbps左右。

【问题分析】分析路测数据,覆盖该路段的小区为新都快捷酒店_1和盛峰商贸_3,二者的PCI分别为51和18,经计算,两小区间存在模三冲突。

【解决措施】将盛峰商贸_2与盛峰商贸_3的PCI对调。

【处理效果】调整PCI后,模三冲突问题得到较好解决,下载速率明显提升。

LTE案例---无线接通率低优化案例

LTE案例---无线接通率低优化案例

E-RAB无线接通率低优化案例
一.故障描述
三水西南全球通室分站点为满足客户需求,进行了小区分裂,分裂后进行话务指标统计发现该站两个小区E-RAB 无线接通率低。

二.故障分析
针对该项指标进行相关的counter指标提取,发现问题主要集中在“pmErabEstabAttAdded ”和“pmErabEstabSuccAdded”这两个counter,E-RAB added 一次成功次数都没有,因此怀疑multierab feature未开启,经核实发现该feature 的state 为0(关闭)。

三.故障解决方案
在网管把featureStateMultiErabsPerUser设置为1(开启).
四.故障实施效果
把该feature开启后,观察话统指标E-RAB SSR恢复正常,问题得到解决。

五.案例总结
A、分析过程中若发现失败次数集中在某个counter,需考虑整体性的原因,如
是否相关的功能未开启,某类参数设置不当导致等。

B、若对站点进行数据重做时,需要把重做数据前的相关参数、feature开启情况、
邻区情况等进行备份,以便重做数据后进行核查。

C、每周的参数一致性核查时需要把此类影响性能指标的功能开关纳入核查内
容中。

LTE系统的网络优化方法与案例

LTE系统的网络优化方法与案例

LTE系统的网络优化方法与案例LTE(Long Term Evolution)是第四代移动通信技术,具有更高的峰值终端速率、更低的时延和更好的系统容量,能够更好地满足日益增加的移动宽带数据业务需求。

然而,在实际应用中,由于网络复杂性和用户需求的多样性,LTE系统的网络优化仍然是一个重要的挑战。

下面将介绍LTE系统的网络优化方法以及一些优化案例。

一、LTE系统的网络优化方法1.频谱资源优化频谱资源是LTE系统的宝贵资源,优化频谱使用效率对于提高用户体验很重要。

通过有效地分配和管理频谱资源,可以提高系统容量和覆盖范围。

一些常见的频谱资源优化方法包括:-优化载波配置和带宽分配,根据实际需求对不同载波进行合理配置,避免资源浪费;-优化频谱重用技术,合理选择重用模式和距离边界,减少干扰;-引入高阶调制和波束赋形等技术,提高频谱利用率。

2.数据传输优化-使用调度算法来优化资源分配,根据用户的实际需求和网络条件,合理分配资源;-使用流量控制技术来控制网络拥塞,避免数据丢失和时延增加;-使用拥塞控制技术来调整传输速率,减少干扰和时延。

3.邻区优化-优化邻区规划,根据实际需求和网络条件选择合适的邻区关系;-优化邻区间距,避免干扰区域的重叠;-优化邻区参数设置,调整切换参数和邻区重选参数,提高切换效率。

4.基站布局优化基站布局的合理性对LTE系统的性能起着决定性作用。

一些常见的基站布局优化方法包括:-预测和模拟技术,通过场地勘查和模拟分析来选择最佳的基站位置;-覆盖调试技术,通过实际测试和调整来优化基站的干扰覆盖和服务范围;-小区参数优化,调整小区配置和射频参数,提高系统容量和覆盖范围。

二、LTE系统网络优化案例1.AT&T的LTE覆盖优化案例AT&T是美国一家大型移动通信运营商,它通过对LTE网络进行频谱规划和小区优化,成功提高了网络覆盖和用户体验。

他们采用了预测和模拟技术来选择合适的基站位置,并通过调整覆盖范围和信号干扰来优化小区布局。

LTE最新网络优化案例

LTE最新网络优化案例

网优案例目录1 分布问题导致下行呑吐率不达标问题 (3)2 高升桥基站热点区域异频优化案例 (6)3 合路接入TD分布系统故障导致下载速率不达标问题 (9)4 下行呑吐率“掉坑“毛刺问题 (14)5 B593 PDN拒绝问题 (21)6 RSRP过高导致下载速率不稳定问题 (23)7 外部小区及邻区冗余导致无法切换问题 (27)分布问题导致下行呑吐率不达标问题 题 目 故分布系统 现 象描 述 T告 警信 无 析 原 因分障类 别: 息 心、1分布问题导致下行呑吐率不达标问题关键字: B593S 、下行呑吐率 宽窄巷子星巴克咖啡室分基站开通后,我们用 B593S 终端进行现场测试发现在 RSRP 和SINR 极好 的情况下下行吞吐率无法达到测试标准,查看基站配置为双流模式基站,下行呑吐率标准为 50M 以上,现场测试最高速率只能达到 47M ,具体情况如下:mm» NJ -i-ID M I ■胡哉汨渕簿4D14 CD WHO HJ K下行呑吐率数据1、通过测试数据分析发现该基站为双通道配置,两个通道口 0和1在输出功率最大时相差 32dBm,怀疑为双通道输岀功率不一致导致下行速率无法达标,如下图所示:曲Paratwdh'G _ M&lDL t«r ;i>ghpvfc)clrt.,5j価|制|IhAmLSNftl^QIWX>xhefc-I伸睡HOP 叶X DNW?£i|>FUSEHHKS I K I 咛f^rriw MT B hfambB-ra RSHIMdhHSftMB' RS9 dbiI 小jP啊P E •如FVG-氏 赫 z ^wr .*r.-TW?rMc?rh-rt--jQt■耳JUL 3 - -LU IJ^oaoaSIhlHufiim 卫如JT -g*Rjrtl S4lf4|dto RinfcJ 貝邮呛吵 Fh 出 3UFL2gtEiEE "An 』MtaaturamfiM:! M*S-1 CTtMJ 鱼j>rfurHu" d Artrft,rMiSfMAminat *即弭讯叩*1〕¥»处 程El KC慣 11IA M 列呻衣応世 M^lVlLrh •皿釜匚曲: 可以看到两个通道的输岀功率相差较大; 1、而后后台配合我们将两个通道分别单开,测试其下行速率,如图: 理过 7T Thr«yg*Mj Milrnc>u通道口 0从上图可以看出通道口 0由于输出功率低导致 RSRPV-100,下载速率平均只有36M;ms d 仪 ArtEigRare ,(iiTiher Sjbf-tvm 叮咒H T 闪加 PD5» TEI Sqa, HH0U 14点处巧■■沖|匸當审bi5IHFWBIFO1ILH^FPk#n ; n*&AaMi勾 oFS5kBra41P'XCH-殆■刖叭RJ L HF K TT "MJi JWtfi : Ixl ^EETHIULOratOut 21K 冋口imout n"Parmuoi Vbdt y 测肚刑RM?5NR B «CR5 DF3 g 鳴砂吟&r : 用鮒H 即 5N=^B :ki 砖叭的REFCHFl 隔咅眄IP JS2** #Owbjfr- F XX ; I* hnW R^H RawEnd&T^心阳*IM F»v ""Mduon 七戏PME H - ULG^t-jwtFDCtw :DL2l:H -_ " _ Ti'ansiddiori 'MadtefW+IShftdBi 印nkMWnij 麻馬曲 SMH3;^hldvl 詡剛理[nflrtlGmRjtS.1 IM J T 為 HRI :xE : rnRrt25NR2M"■£H=2rFK±TE 两即 心虽MEMR5Fcqg^ Mgp NK H IB 氐 MKi HB Ski Pm S-tF'^jrii? luhn-FDKMlKtMFOK-HTB^M FOKH 關W 心OiWfUy 承小哄咱SZCrW 盛齐 LafU-klSWradSi [沖n*Hkt 』■口吹 注曲删B : FWiCorfioiT T^DfjrFdc&i- Ref^ M^fpr OMRS KIPFipLTV Fjpr3; P USCM TH S L MDL Th*DU fLA ; ctrit^KC 对1YwAr 眄瞅 A^lrwpilA^T -NV .2 A4547+灯■Mdh>Hi*l >HtpnrMi3E :ffi 贴FP 旳 IKIS104DAE 田如呻Gn.i>nlf«n•_3C7UMF;问题导致下行呑吐率无法达标 建 议与 总 结 7R “比 M hrtEa prwrt MSIVatu*通道口 1从上图可以看岀通道口 1输岀功率正常,下载速率稳定在 46M 以上,以此确定该站的通道 0输出功率 该问题后经协商后由双通路改为单通路,并将通道0关闭处理,复测结果如下: 下图可以看岀改为单流后下行呑吐率达到测试要求,下载速率稳定在 46M 以上; 恥I 讪=.5HQriE 总却BhJN^n JlTi. JEflMi'ia Wn办 Ffcc Jrtema^UulWi PJ 1 旧 a Ai^ter'i'di MtetrZ JUi3LJCCMV RCMM KCWS1Typ*KC *TTP*«X ?□1珥ex* MRH ㈣H5HP 如射MrtlSiHRklB! 碎碍fL SCb 七xidEn 24 mjOQH ^wklEk ii m IVC HMX 林 邓阳nqi料Rvrii 1rHF3H)F4Q|gc 时[:魄 PQ :Q ・ M 鬥0H X H L E I MT : 取PUSChTSSq? 畑呻i sn 乐IEZU F 」SCM RE 血 i 寻砂卜木•WFfe©1 RMlMFwt 3 U£hF1i 迪F3K-TBT5M lhrid9hA2^0j*1B !i|,1bP3KM ng w*EH. Throu 呂闻ufefkb 辱 a4MnKt*H¥tCCi&HYMAC血.IMax机Pn*%孕・J i^Mi ii mum *砒“ 翊卫MdHK h« stC KC亠伽»cc xc PCI.稈r:汀 HRldBl==E3 =FW K 1 5 FdHAdBI十妙£. I|HSWI^i =!1 11 仙无mfSIUlKSFWCHFmw 曲 C*sfWH25ftH2yfl : F-fcZZH Fz*«n^&i ;>PK?iD3r*ad 立畑 1Ml那刑Z 抽: 磁刊ZB-.?14JF : 1i«"'陆 f Irdzricf"w hsadwKldlj k 丄 c f j-y^.[}wfc5;O1 Fq«d*iO;O :::ni :.:>rTC>™ MU ■P U SCH TB&BP/A E fl^wSHF£-Sl JCX PU5ZH 冃BN9 liartrtW^N^101 函血WWtIM1UI亦阳知违1PDIHTHJiwFlafAj 百用F 囲甸* PDJtHTElNfSltadiB PinrratHfi - MSIT IM Y 琢hum 才 ~3c.|l rurr4t H LK d 七 A TE -KWUIjhi*■UftwreL. AriSir'Bl Krtsnra : A.. CPE.Ry?IW^*V£. -JE=5SHW 阿I 册冃HERQ^H : <TS<13 -525 flSSHflH-USAxotDOt>0t2咼升桥基站热点区域异频优化案例通过分析,3小区调整为异频频点后同 1小区发生的为异频切换,切换类型应为基于A4的切换,然 在邻区列表中都一直无法检测异频邻区(后台已做异频邻区切换参数数据配置),进一步确定可能原 因岀现在终端未上报异频邻区测量,并观察信令及事件窗口,无 A2事件相关消息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网优案例目录1分布问题导致下行呑吐率不达标问题 (3)2高升桥基站热点区域异频优化案例 (6)3合路接入TD分布系统故障导致下载速率不达标问题 (9)4下行呑吐率“掉坑“毛刺问题 (14)5B593 PDN拒绝问题 (21)6RSRP过高导致下载速率不稳定问题 (23)7外部小区及邻区冗余导致无法切换问题 (27)1 分布问题导致下行呑吐率不达标问题象描述:宽窄巷子星巴克咖啡室分基站开通后,我们用B593S终端进行现场测试发现在RSRP和SINR极好的情况下下行吞吐率无法达到测试标准,查看基站配置为双流模式基站,下行呑吐率标准为50M以上,现场测试最高速率只能达到47M,具体情况如下:下行呑吐率数据可以看到两个通道的输出功率相差较大;处1、而后后台配合我们将两个通道分别单开,测试其下行速率,如图:理过程:通道口0从上图可以看出通道口0由于输出功率低导致RSRP<-100,下载速率平均只有36M;通道口1从上图可以看出通道口1输出功率正常,下载速率稳定在46M以上,以此确定该站的通道0输出功率问题导致下行呑吐率无法达标建议与总结:该问题后经协商后由双通路改为单通路,并将通道0关闭处理,复测结果如下:下图可以看出改为单流后下行呑吐率达到测试要求,下载速率稳定在46M以上;2 高升桥基站热点区域异频优化案例程:结合同频切换,在切换时,RSRP在-90dBm以上以及楼层覆盖情况,通知后台将A1停止异频测量门限配置为-75dBm,A2启动异频测量门限配置为-85dBm,A4异频切换门限配置为-90dBm后,异频切换正常,如下:1、3小区间异频切换正常,同时由于进行异频的调整,该区域下载速率得到较大提升,达到预期优化效果。

3 合路接入TD分布系统故障导致下载速率不达标问题述:武侯办公区室分基站开通后,该基站为单小区配置基站,并下挂2个RRU,通过现场对2个RRU进行测试发现RRU1\RRU2的RSRP以及SINR都比较好,但是RRU2在测试过程中的Transmision Mode为TM2,Rank lndicator为Rank1,具体情况如下:RRU1 Radio ParamrtersRRU1 RSRP走势图RRU1 SINR走势图RRU1下行吞吐率走势图RRU2 Radio ParamrtersRRU2 RSRP走势图RRU2 SINR走势图RRU2下行吞吐率走势图1、经过工程安装人员进行检查发现在耦合器与TD合路的接口未连接:2、与工程安装人员取得联系了解该基站的安装情况得知由于在安装过程中工程队未找到设计图纸中的TD天线,因此RRU2只安装了一路天线,通过这一情况可以将问题定位为RRU2由于天线安装为单通道导致该RRU接收的为Rank1单流;3、由于现场安装与设计不符合,因此告知安装人员对该RRU进行整改4、通过安装人员整改后的复测观察,经过整改RRU2的Rank lndicator模式由Rank1变为Rank2,下载速率有了明显的提升,具体对比如下:RRU2整改前Radio Paramrters RRU2整改后Radio ParamrtersRRU2整改前下行吞吐率走势图RRU2整改后下行吞吐率走势图4 下行呑吐率“掉坑“毛刺问题现象描述:在成都LTE站点“成都分公司”单验过程中,该站5个RRU覆盖的平层,上行数据业务平稳正常,但下行数据业务速率呈现严重的“掉坑”毛刺问题,如例图:对成都分公司的5个RRU覆盖平层进行测试,统计结果如下表:测试地点5个RRU覆盖5个平层(只解闭塞测试楼层RRU)下行吞吐量(Mbps) RSRP(dBm) SINR(dB) CQI PDSCH BLER(%)MCS (code 0) 每子帧平均RB数成都分公司1F 42.8 -68.16 34.16 14.55 #DIV/0! 27.61 64.16 成都分公司2F 42.49 -79.17 35.63 14.45 0.21 27.71 63.41 成都分公司3F 44.48 -65.3 34.79 14.55 #DIV/0! 27.73 65.64 成都分公司4F 44.34 -64.11 35.24 14.82 #DIV/0! 27.8 66 成都分公司5F 43.44 -63.49 34.63 14.42 1.16 27.35 65.87楼层 RRU 框号 小区1F 206 1小区 2F 200 3F 201 4F 207 5F202通过对其中2楼天馈分布系统进行排查,框号为200的RRU 的驻波比消除:1.3/1.1;驻波告警处理好之后,下行业务依然存在“掉坑”毛刺问题。

2、小区检查(子帧配置:1/7配比)、终端检查、空口无线质量检查,根据上述分析步骤逐步核查,通过网管(LMT )进行上行干扰检测以及无线空口质量排查,进行定点CQT 测试,问题依然存在。

3、通过2副小天线分别接到RRU 通道口进行验证测试,通过排除室分分布系统的问题,但通过现场选择好点(RSRP :-72.17dBm 、RSRQ :35.63dB )测试验证,问题依然存在:4、PING包,测试传输是否正常:进行ping的命令操作(PING: SN=6, SRCIP="192.168.200.12", DSTIP="10.254.254.64", PKTSIZE=1460,CONTPING=DISABLE, TIMEOUT=5000, NUM=50, DSCP=18, APPTIF=NO;)(1)未做业务测试时,ping操作(3次ping操作,每次ping“1460”数据包50次),无“Request time out”问题现象;(2)做业务测试时,ping操作(8次ping操作,每次ping“1460”数据包50次),无“Request time out”问题现象。

5、判断是否为TCP问题,通过尝试UDP灌包通过工具Wireshark抓包,文件处理,保存所需数据,打开数据,设置Wireshark,查看抓包统计,流量分析,查看专家信息,tcptrace图分析(发送窗口,接收窗口,RTT,重传等)(1)使用Wireshark抓包(抓包操作步骤不详细阐述)(2)对抓包文件进行处理,过滤TCP连接,保存所需数据(3)重新打开保存后的文件,对Wireshark进行设置(4)查看抓包统计使用tcptrace图进行分析:正常情况下,如果TCP速率稳定,那么在TCP时序图上看到的将是一条笔直上升的斜线,它的斜率等于速率。

tcptrace图中,中间黑色的粗线代表了发送的包,下方浅色的线代表上一个ACK确认的包序号,上方浅色的线代表TCP 接收窗口,等于上一个TCP ACK序号加上win:分析线段斜率发生变化的地方观察线段是否有中断、重复、离散点等情况。

直接点击tcptrace图中出问题的点在Wireshark包列表区中会直接跳转到对应的包。

如下图,远离黑色线段主体的一小段黑色线段是重传包:如下图,从图中可以看出,红色圈中的线段比较平,有较多的重传,需要点击进入Wireshark包列表区中分析重传的原因:如果是重传很少或者没有重传,需要对发送和接收窗口进行分析。

通过对成都分公司LTE基站进行抓包分析,服务侧进行灌包测试:服务器:iperf -c 10.255.255.14 -u -b 70M -i 1 -t 99999 -p 5012 -M 800B 备注:-M :800、1000、1500终端侧:iperf -s -u -i 1 -t 999 -p 5012通过对该基站的抓包数据进行分析,FTP服务器到客户端存在丢包以及重传问题,导致速率波动及“掉坑”毛刺问题。

根据上述的分析排查,确定传输侧存在问题,协调传输侧进行相应的参数设置核查,经过传输侧核查分析结果:由于该LTE基站(成都分公司)PTN传输到核心机房较远且有2个PTN设备衔接而成,同时,在传输侧也存在一个传输带宽的限制(200M带宽限制)一、通过传输侧进行修改测试验证:(1)将PTN传输带宽不作限制,测试情况:测试地点下行吞吐量(mbps) 上行行吞吐量(mbps) RSRP(dBm) SINR(dB) 备注成都分公司1F 58.384 14.768 -74.034 34.806 速率平稳,无毛刺问题成都分公司2F 57.987 14.681 -76.029 34.9536 速率平稳,无毛刺问题成都分公司3F 59.227 14.885 -70.229 33.796 速率平稳,无毛刺问题成都分公司4F 57.115 14.778 -70.24 35.096 速率平稳,无毛刺问题成都分公司5F 58.975 14.883 -71.071 34.622 速率平稳,无毛刺问题(2)传输侧进行带宽(900M、500M、300M)限制,测试情况如下图:结论:对传输侧进行带宽限制后,为300M带宽时,下载速率存在严重的“毛刺”问题。

二、通过对传输侧带宽不作限制之后,测试效果达到(子帧配比:1/7的下载及上传速率要求且比较稳定)要求,但是通过对LTE的带宽需求分析,100M的足以满足需求,为何200M的带宽限制之后却会导致上述问题?通过传输侧分析及最终的解决方案制定,通过在传输侧进行设置一定的缓存区:(1)、传输侧对设置一定的缓存区(X值,X值设置传输同事未知会)、传输带宽设置为200M带宽限制(SINR:32.49dB;RSRP:-75dBm;PDCP Throughput DL:51.245 mbps)下载测试情况,如图(毛刺):(2)、传输侧对设置一定的缓存区(Y值,Y值设置传输同事未知会)、传输带宽设置为200M带宽限制(SINR:33.86 dB;RSRP:-77.01dBm;PDCP Throughput DL:58.428mbps)下载测试情况,如图(平稳):通过与传输侧协商,最终解决方案为设置一定的缓存区(Y值,Y值设置传输同事未知会),通过现场测试,效果达到预期测试标准,该下行下载业务的“掉坑”毛刺问题得到解决。

5 B593 PDN拒绝问题在页面中配置了非法APN——所以一般就选择Auto APN即可,因为展厅环境没有VOIP,必须要把WEBUI上的VOIP APN信息删除,否则会出现如下PDN建立被拒情况:处理过程:2、如果连接状态变为连接态,则接入成功。

6 RSRP过高导致下载速率不稳定问题音乐公园室分基站开通后,我们用B593S终端进行现场测试发现在RSRP和SINR极好的情况下下行吞吐率出现比较明显和频繁的掉坑现象,下载速率极为不稳定并且在测试过程中较为频繁的出现终端脱网状态,具体情况如下:RSRP走势图SINR走势图下行吞吐率走势图BLER走势图1、通过测试数据分析发现在每次下行吞吐率掉坑的时候均出现较高的BLER,初步怀疑现场存在外部干扰,但是通过在距离该处5M左右距离的地方再次进行测试RSRP、SINR、下行吞吐率均极为稳定,并且BLER值较低,从而排除了外部干扰的问题;2、在测试的过程中我们发现在部分地点终端要出现脱网状态,并且该状态随着距离天线越近越出现频率越频繁,在我们走到天线正下方时候终端彻底脱离网,无法再次进行业务工作:可以看到在天线下方终端无信号;此时已经怀疑到终端接收能力问题,在联系相应人员后得知在输入电平最大值超过-25dbm 时,会导致接收机前段的LNA等器件出现饱和失真,接收通道误码偏高,从而导致吞吐率不稳定;0 39050 -48.94 29.31 56.78 -58.26 33.65 56.75 -52.78 26.46 13.07 RS 1520 39050 -64.59 33.42 57.71 -72.43 32.11 58.78 -68.87 33.77 58.87 RS 62/增加10dbm 衰减器RSRP走势图SINR走势图下行吞吐率走势图BLER走势图7 外部小区及邻区冗余导致无法切换问题述:在对久远饮食基站进行单站点验证过程中,二环路由北向南行驶,终端占用英雄鱼头-3小区(PCI:138)频繁发起向久远饮食-1(PCI:374)的A3切换事件,但无法完成切换,导致掉线。

相关文档
最新文档