2020届高三理科数学模拟试卷(解析版)
广西南宁市2020届高三第二次适应性测试数学(理科)试题(解析版)

2020年广西南宁市高考数学二模试卷(理科)一、选择题(共12小题).1.已知集合A={x|x﹣3<0,x∈N},B={﹣1,0,1,2,3},则A∩B=()A.{0,1,2}B.{0,1,2,3}C.{﹣1,0,1,2}D.{﹣1,0,1,2,3}2.设复数z满足z•(1﹣i)=2+i,则z=()A.12+32i B.12−32i C.1+3i D.1﹣3i3.(1﹣2x)5的展开式中含x3的系数为()A.﹣80B.80C.10D.﹣104.某学校为了解高三年级学生在线学习情况,统计了2020年2月18日﹣27日(共10天)他们在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.根据组合图判断,下列结论正确的是()A.前5天在线学习人数的方差大于后5天在线学习人数的方差B.前5天在线学习人数的增长比例的极差大于后5天的在线学习人数的增长比例的极差C.这10天学生在线学习人数的增长比例在逐日增大D .这10天学生在线学习人数在逐日增加5.已知各项不为0的等差数列{a n }的前n 项和为S n ,若a 5=2a 2,则S 6a 2=( )A .4B .162C .9D .126.若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象是( )A .B .C .D .7.椭圆C :x 2a 2+y 2=1(a >1)的左、右焦点为F 1,F 2,过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为8,则a 为( ) A .√2B .2C .2√2D .48.某同学在课外阅读中国古代数学名著《孙子算经》时,为解决“物不知数”问题,设计了如图所示的程序框图.执行此程序框图,则输出的a 的值为( )A .13B .18C .23D .289.如图,在正方体ABCD﹣A1B1C1D1中,M,N分别为AC,A1B的中点,则下列说法错误的是()A.MN∥平面ADD1A1B.MN⊥ABC.直线MN与平面ABCD所成角为45°D.异面直线MN与DD1所成角为60°10.已知双曲线E:x2a−y2b=1(a>0,b>0)的右焦点为F,以OF(O为原点)为直径的圆与双曲线E的两条渐近线分别交于点M,N(M,N异于点O).若∠MFN=120°,则双曲线E的离心率为()A.4B.2C.43D.2√3311.已知函数f(x)=sin(ωx+φ)(ω≠0)的图象经过点(π24,0),一条对称轴方程为x=π6.则函数f(x)的周期可以是()A.3π4B.π2C.π4D.π1212.已知函数f(x)={lnx,x>0kx+1,x≤0,则当k>0时,函数y=f[f(x)]﹣1的零点个数为()A.4B.3C.2D.1二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(√3,1),向量b →=(−1,−√3),则a →与b →的夹角大小为 . 14.某部门从已参与报名的甲、乙、丙、丁四人中选派1人去参加志愿者服务,结果出来前,甲、乙、丙、丁四人对选派人选做了如下预测: 甲说:丙或丁被选上;乙说:甲和丁均未被选上; 丙说:丁被选上;丁说:丙被选上.若这四人中有且只有2人说的话正确,则被选派参加志愿者服务的是 . 15.已知数列{a n }中,a 1=2,且对于任意正整数m ,n 都有a m +n =a m a n ,则数列{a n }的通项公式是 .16.如图,正方形ABCD 中,E ,F 分别是BC ,CD 的中点,沿AE ,EF ,AF 把这个正方形折成一个四面体,使B ,C ,D 三点重合,重合后的点记为G .若四面体A ﹣EFG 外接球的表面积为π4,则正方形ABCD 的边长为 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生依据要求作答.(一)必考题:共60分.17.如图,在平面四边形ABCD 中,∠B =120°,AB =2.∠BAC 的平分线与BC 交于点E ,且AE =√6. (1)求∠BEA 及AC ;(2)若∠ADC =60°,求四边形ABCD 周长的最大值.18.红铃虫(Pectinophoragossypiella)是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数y(个)和温度x(℃)的8组观测数据,制成图1所示的散点图.现用两种模型①y=e bx+a,②y=cx2+d分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图.根据收集到的数据,计算得到如表值:x z t∑8i=1(x i−x)2∑8i=1(t i−t)2∑8i=1(z i−z)(x i−x)∑8i=1(y i−y)(t i−t)25 2.8964616842268848.4870308表中z i=lny i;z=18∑8i=1z i;t i=x i2;t=18∑8i=1t i;(1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?并说明理由;(2)根据(1)中所选择的模型,求出y关于x的回归方程(系数精确到0.01),并求温度为34℃时,产卵数y的预报值.(参考数据:e5.18≈178,e5.46≈235,e5.52≈250,e5.83≈340)附:对于一组数据(ω1,v1),(ω2,v2),…,(ωn,v n),其回归直线v=α+βω的斜率和截距的最小二乘估计分别为β=∑ n i=1(ωi −ω)(v i −v)∑ ni=1(ωi −ω)2,α=v −βω.19.如图,在四棱锥S ﹣ABCD 中,四边形ABCD 是等腰梯形,AD ∥BC ,AD =DC ,∠ADC =120°,三角形SAB 是等边三角形,平面SAB ⊥平面ABCD ,E ,F 分别为AB ,AD 的中点.(1)求证:平面SCD ⊥平面SEF ;(2)若AB =2,求直线SF 与平面SCD 所成角的正弦值.20.已知函数f (x )=e x ﹣a •x ,其中e 是自然对数的底数. (1)若a =e ,证明:f (x )≥0;(2)若x ∈[0,+∞)时,都有f (x )≥f (﹣x ),求实数a 的取值范围.21.已知抛物线C :x 2=2y ,过点A (1,1)且互相垂直的两条动直线l 1,l 2与抛物线C 分别交于P ,Q 和M ,N .(1)求四边形MPNQ 面积的取值范围;(2)记线段PQ 和MN 的中点分别为E ,F ,求证:直线EF 恒过定点.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,已知曲线C 1:{x =−2+t 1cosθ1y =t 1sinθ1(t 1为参数),曲线C 2:{x =2+t 2cosθ2y =t 2sinθ2(t 2为参数),且tan θ1tan θ2=﹣1,点P 为曲线C 1与C 2的公共点. (1)求动点P 的轨迹方程;(2)在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为2ρcosθ﹣ρsinθ+10=0,求动点P到直线l的距离的取值范围.[选修4-5:不等式选讲]23.已知a,b,c都为正实数,且a+b+c=3.证明:(1)√2a+1+√2b+1+√2c+1≤3√3;(2)(1a−13)(1b−13)(1c−13)≥827.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x﹣3<0,x∈N},B={﹣1,0,1,2,3},则A∩B=()A.{0,1,2}B.{0,1,2,3}C.{﹣1,0,1,2}D.{﹣1,0,1,2,3}【分析】求出集合A,由此能求出A∩B.解:由集合A={x|x﹣3<0,x∈N}={0,1,2},所以A∩B={0,1,2}.故选:A.【点评】本小题主要考查一元一次不等式的自然数解和集合的交集运算等基础知识,考查交集定义等基础知识,考查运算求解能力,是基础题.2.设复数z满足z•(1﹣i)=2+i,则z=()A.12+32i B.12−32i C.1+3i D.1﹣3i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:∵z=2+i1−i=(2+i)⋅(1+i)2=12+32i,∴z=12−32i.故选:B.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(1﹣2x)5的展开式中含x3的系数为()A.﹣80B.80C.10D.﹣10【分析】根据二项式展开式的通项公式,令x的指数为3,求出展开式中x3的系数.解:(1﹣2x)5展开式的通项公式为T r+1=C5r•(﹣2x)r,令r=3,得(1﹣2x)5展开式中x3的系数为C53•(﹣2)3=﹣80.故选:A.【点评】本题考查了二项式展开式通项公式的应用问题,是基础题.4.某学校为了解高三年级学生在线学习情况,统计了2020年2月18日﹣27日(共10天)他们在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.根据组合图判断,下列结论正确的是()A.前5天在线学习人数的方差大于后5天在线学习人数的方差B.前5天在线学习人数的增长比例的极差大于后5天的在线学习人数的增长比例的极差C.这10天学生在线学习人数的增长比例在逐日增大D.这10天学生在线学习人数在逐日增加【分析】根据图象逐一进行分析即可解:对于A,由柱状图可得前5天学习人数的变化幅度明显比后5天的小,故方差也小,故A错误对于B:前5天的增长比例极差约为15%﹣5%=10%,后5天增长比例极差约为40%﹣20%=20%,故B错误;对于C:由折线图很明显,23﹣24的增长比例在下降,故C错误;对于D:由柱状图,可得学习人数在逐日增加,故D正确,故选:D.【点评】本小题考查统计图表等基础知识,考查统计思想以及学生数据处理等能力和应用意识.5.已知各项不为0的等差数列{a n}的前n项和为S n,若a5=2a2,则S6a2=()A.4B.162C.9D.12【分析】利用等差数列通项公式和前n项和公式即可得出.解:由题S6a2=S6a2=3(a1+a6)a2=3(a2+a5)a2=3(a2+2a2)a2=9.故选:C.【点评】本小题主要考查等差数列通项公式和前n项和公式等基础知识,考查运算求解等数学能力,属于基础题.6.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=log a|x|的图象是()A.B.C .D .【分析】根据指数函数的图象和性质求出0<a <1,利用对数函数的图象和性质进行判断即可.解:∵|x |≥0,∴若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1}, ∴0<a <1,当x >0时,数y =log a |x |=log a x ,为减函数,当x <0时,数y =log a |x |=log a (﹣x ),为增函数,且函数是偶函数,关于y 轴对称, 故选:A .【点评】本题主要考查函数图象的识别和判断,根据指数函数的图象和性质求出a 的取值范围是解决本题的关键.7.椭圆C :x 2a +y 2=1(a >1)的左、右焦点为F 1,F 2,过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为8,则a 为( ) A .√2B .2C .2√2D .4【分析】由椭圆的定义可得:|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,即可得出答案. 解:由椭圆C :x 2a 2+y 2=1(a >1)的焦点在x 轴上,则椭圆的定义可得:|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a .∴△ABF 2的周长=|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=8=4a .解得a =2. 故选:B .【点评】本题考查椭圆的定义、方程和性质,主要考查椭圆的定义的运用,考查运算能力,属于基础题.8.某同学在课外阅读中国古代数学名著《孙子算经》时,为解决“物不知数”问题,设计了如图所示的程序框图.执行此程序框图,则输出的a 的值为( )A .13B .18C .23D .28【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 解:模拟程序的运行,可得 n =1,得a =8, 不满足a−221∈Z ,n =2,得a =13,不满足a−221∈Z ,n =3,得a =18,不满足a−221∈Z ,n =4,得a =23,此时,满足a−221∈Z ,退出循环,输出a 的值为23.故选:C .【点评】本小题主要考查程序框图的应用等基础知识,考查阅读理解能力、运算求解能力、数据处理能力以及应用意识,属于基础题.9.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为AC ,A 1B 的中点,则下列说法错误的是( )A.MN∥平面ADD1A1B.MN⊥ABC.直线MN与平面ABCD所成角为45°D.异面直线MN与DD1所成角为60°【分析】连结BD,A1D,可得MN∥A1D,得到MN∥平面ADD1A1,判定A正确;证明AB⊥平面ADD1A1,得AB⊥A1D,结合MN∥A1D,得MN⊥AB,判断B正确;求出直线MN与平面ABCD所成角判断C正确;求出异面直线MN与DD1所成角判断D错误.解:如图,连结BD,A1D,由M,N分别为AC,A1B的中点,知MN∥A1D,而MN⊄平面ADD1A1,A1D⊂平面ADD1A1,∴MN∥平面ADD1A1,故A正确;在正方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,则AB⊥A1D,∵MN∥A1D,∴MN⊥AB,故B正确;直线MN与平面ABCD所成角等于A1D与平面ABCD所成角等于45°,故C正确;而∠A1DD1为异面直线MN与DD1所成角,应为45°,故D错误.故选:D.【点评】本题主要考查直线与平面平行、垂直的判定与性质、直线与平面所成角、异面直线所成角等基础知识;考查空间想象能力、论证推理能力,是中档题.10.已知双曲线E:x2a−y2b=1(a>0,b>0)的右焦点为F,以OF(O为原点)为直径的圆与双曲线E的两条渐近线分别交于点M,N(M,N异于点O).若∠MFN=120°,则双曲线E的离心率为()A.4B.2C.43D.2√33【分析】画出图形,结合圆的对称性,求出∠MOF=30°.然后求解双曲线的离心率即可.解:因为OF为直径,点M在圆上,所以OM⊥MF.又∠MFN=120°,由圆的对称性,有∠MFO=60°,所以∠MOF=30°.由渐近线斜率tan∠MOF=ba=√33,所以离心率为e=√1+(ba)2=2√33.故选:D.【点评】本小题主要考查双曲线及其性质等基础知识;考查运算求解、推理论证能力;考查数形结合等数学思想.11.已知函数f(x)=sin(ωx+φ)(ω≠0)的图象经过点(π24,0),一条对称轴方程为x=π6.则函数f(x)的周期可以是()A.3π4B.π2C.π4D.π12【分析】直接根据对称中心和对称轴之间的距离即可求解结论.解:由π6−π24=2k+14T,则T=π4k+2,k∈Z,当k=0时,T=π2.故选:B.【点评】本小题主要考查三角函数的图象和性质、正弦型函数f(x)=sin(ωx+φ)图象和性质等基本知识;考查推理论证等数学能力,化归与转化等数学思想.12.已知函数f(x)={lnx,x>0kx+1,x≤0,则当k>0时,函数y=f[f(x)]﹣1的零点个数为()A.4B.3C.2D.1【分析】先作出函数的图象,然后结合图象即可求解函数的零点个数.解:在平面直角坐标系中作出函数y=f(x)(k>0)的图象如图所示.令f[f(x)]﹣1=0,得f[f(x)]=1,则f(x)=0或f(x)=t(t>1).当f(x)=0时,显然存在2个零点x1=−1k,x2=1;当f(x)=t(t>1)时,存在1个零点x3.故函数y=f[f(x)]﹣1的零点个数为3.故选:B .【点评】本小题主要考查分段函数的图象,函数的零点等基础知识;考查逻辑推理能力,分类讨论思想,数形结合思想,方程思想, 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(√3,1),向量b →=(−1,−√3),则a →与b →的夹角大小为 150° .【分析】根据向量a →,b →的坐标即可得出a →⋅b →,|a →|和|b →|的值,从而可得出cos <a →,b →>=−√32,从而可得出a →,b →夹角的大小.解:∵cos <a →,b →>=a →⋅b→|a →||b →|=−√3−√32×2=−√32,且0≤<a →,b →>≤π, ∴a →与b →的夹角为150°. 故答案为:150°.【点评】本小题主要考查平面向量的数量积,两个向量的夹角等基础知识,考查运算求解能力,属于基础题.14.某部门从已参与报名的甲、乙、丙、丁四人中选派1人去参加志愿者服务,结果出来前,甲、乙、丙、丁四人对选派人选做了如下预测: 甲说:丙或丁被选上;乙说:甲和丁均未被选上; 丙说:丁被选上;丁说:丙被选上.若这四人中有且只有2人说的话正确,则被选派参加志愿者服务的是 丁 . 【分析】逐个假设甲,乙,丙,丁被选上,检验是否符合题意即可. 解:若甲被选上,甲、乙、丙、丁错误,不满足条件; 若乙被选上,甲、丙、丁错误,乙正确,不满足条件; 若丙被选上,甲、乙、丁正确,丙错误,不满足条件; 若丁被选上,甲、丙正确,乙、丁错误,满足条件, 所以被选派参加志愿者服务的是丁, 故答案为:丁.【点评】本题主要考查了逻辑推理等基础知识,考查学生逻辑推理能力等能力,是基础题.15.已知数列{a n }中,a 1=2,且对于任意正整数m ,n 都有a m +n =a m a n ,则数列{a n }的通项公式是 a n =2n .【分析】利用数列的递推关系式,通过m =1,推出数列是等比数列,然后求解通项公式即可.解:数列{a n }中,a 1=2,且对于任意正整数m ,n 都有a m +n =a m a n ,令m =1,得a n +1=2a n ,则{a n }是首项和公比均为2的等比数列,则a n =2n . 故答案为:a n =2n .【点评】本小题主要考查数列以及前n 项和等基本知识,考查化归与转化等数学思想以及推理论证、运算求解等数学能力.16.如图,正方形ABCD 中,E ,F 分别是BC ,CD 的中点,沿AE ,EF ,AF 把这个正方形折成一个四面体,使B ,C ,D 三点重合,重合后的点记为G .若四面体A ﹣EFG 外接球的表面积为π4,则正方形ABCD 的边长为 2 .【分析】画出折叠后的四面体图形,利用等积法求出四面体内切球半径,再求内接球的表面积.解:依题意,折叠后的四面体如图1, 设正方形边长为a ,内切球半径为r , 则AG =a ,EG =FG =a2; 记四面体内切球球心为O ,如图2,则V A ﹣EFG =V O ﹣EFG +V O ﹣AEF +V O ﹣AEG +V O ﹣AFG ,即V A−EFG =13(S △EFG +S △AEF +S △ABG +S △AFG )⋅r ,即13×12×a 2×a 2×a =13×a 2×r ,所以a =8r ;又4πr 2=π4,即r =14,所以a =2. 故答案为:2.【点评】本题主要考查了直线与平面垂直的判定、球体表面积公式、几何体切割等基础知识,也考查了空间想象能力与运算求解能力.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生依据要求作答.(一)必考题:共60分.17.如图,在平面四边形ABCD中,∠B=120°,AB=2.∠BAC的平分线与BC交于点E,且AE=√6.(1)求∠BEA及AC;(2)若∠ADC=60°,求四边形ABCD周长的最大值.【分析】(1)在△ABE中,由正弦定理可求sin∠AEB的值,又∠AEB<∠B,可求∠AEB=45°,利用三角形的内角和定理可求∠BAE的值,进而可求∠ACB的值,可得BC=AB=2,在△ABC中,根据余弦定理即可解得AC的值.(2)令AD=m,CD=n,在△ACD中,根据余弦定理,基本不等式可求m+n≤4√3,即可求解四边形ABCD周长的最大值.解:(1)在△ABE中,由正弦定理得:sin∠AEB=ABsinBAE=6=√22.又∠AEB<∠B,则∠AEB=45°,于是∠BAE=180°﹣120°﹣45°=15°,所以∠BAC=30°,∠ACB=180°﹣120°﹣30°=30°.所以BC=AB=2.在△ABC中,根据余弦定理得AC2=22+22﹣2×2×2×cos120°=12,所以AC=2√3.(2)令AD=m,CD=n,在△ACD中,根据余弦定理得(2√3)2=m2+n2−2mncos60°=(m+n)2−3mn,即有(m+n)2=12+3mn≤12+3×(m+n2)2,即(m+n)24≤12,所以m+n≤4√3,当且仅当m=n=2√3时,“=”成立.所以,四边形ABCD周长的最大值为4+4√3.【点评】本小题主要考查正弦定理、余弦定理等基本知识,考查化归与转化等数学思想以及推理论证、运算求解等数学能力,属于中档题.18.红铃虫(Pectinophoragossypiella)是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数y(个)和温度x(℃)的8组观测数据,制成图1所示的散点图.现用两种模型①y=e bx+a,②y=cx2+d分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图.根据收集到的数据,计算得到如表值:x z t∑8i=1(x i−x)2∑8i=1(t i−t)2∑8i=1(z i−z)(x i−x)∑8i=1(y i−y)(t i−t) 25 2.8964616842268848.4870308表中z i=lny i;z=18∑8i=1z i;t i=x i2;t=18∑8i=1t i;(1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?并说明理由;(2)根据(1)中所选择的模型,求出y关于x的回归方程(系数精确到0.01),并求温度为34℃时,产卵数y的预报值.(参考数据:e5.18≈178,e5.46≈235,e5.52≈250,e5.83≈340)附:对于一组数据(ω1,v1),(ω2,v2),…,(ωn,v n),其回归直线v=α+βω的斜率和截距的最小二乘估计分别为β=∑n i=1(ωi−ω)(v i−v)∑n i=1(ωi−ω)2,α=v−βω.【分析】(1)由模型①残差点比较均匀地落在水平的带状区域中,且带状区域的宽度比模型②带状宽度窄,说明模型①的拟合精度更高,回归方程的预报精度相应就会越高;(2)令z=lny,z与温度x可以用线性回归方程来拟合,则z=a+b x,由已知数据求得b与a的值,可得产卵数y关于温度x的回归方程,取x=34求得y值得结论.解:(1)应该选择模型①.由于模型①残差点比较均匀地落在水平的带状区域中,且带状区域的宽度比模型②带状宽度窄,所以模型①的拟合精度更高,回归方程的预报精度相应就会越高,故选模型①比较合适.(2)令z=lny,z与温度x可以用线性回归方程来拟合,则z=a+b x,b=∑8i=1(z i−z)(x i−x)∑8i=1(x i−x)2=48.48168≈0.289,∴a=z−b x=2.89−0.289×25≈−4.34,则z关于x的线性回归方程为z=0.29x−4.34.于是有lny=0.29x﹣4.34,∴产卵数y关于温度x的回归方程为y=e0.29x−4.34.当x=34时,y=e0.29×34﹣4.34=e5.52≈250(个).∴在气温在34℃时,一个红铃虫的产卵数的预报值为250个.【点评】本题主要考查回归方程、统计案例等基本知识,考查统计基本思想以及抽象概括、数据处理等能力和应用意识,是中档题.19.如图,在四棱锥S﹣ABCD中,四边形ABCD是等腰梯形,AD∥BC,AD=DC,∠ADC =120°,三角形SAB是等边三角形,平面SAB⊥平面ABCD,E,F分别为AB,AD 的中点.(1)求证:平面SCD⊥平面SEF;(2)若AB=2,求直线SF与平面SCD所成角的正弦值.【分析】(1)由已知结合平面与平面垂直的性质可得SE⊥平面ABCD,进一步得到SE ⊥CD.连接BD,得BD∥EF.再证明BD⊥CD,结合BD∥EF,得CD⊥EF.再由直线与平面垂直的判定可得CD⊥平面SEF.进一步得到平面SCD⊥平面SEF;(2)过E作EN∥CD,则ES,EF,EN两两垂直,以E为坐标原点建立空间直角坐标系.求出平面SCD的法向量与SF→的坐标,由两向量所成角的余弦值可得直线SF与平面SCD所成角的正弦值.【解答】(1)证明:∵平面SAB ⊥平面ABCD ,平面SAB ∩平面ABCD =AB , SE ⊂平面SAB ,SE ⊥AB ,∴SE ⊥平面ABCD . 又∵CD ⊂平面ABCD ,∴SE ⊥CD .连接BD ,∵E ,F 分别为AB ,AD 的中点,∴BD ∥EF . ∵AD =DC =AB ,∴∠ABD =∠ADB .又∵∠BAD =∠ADC =120°,∴∠ADB =30°, ∴∠BDC =90°,得BD ⊥CD . 又∵BD ∥EF ,∴CD ⊥EF . 又SE ∩EF =E ,∴CD ⊥平面SEF .又∵CD ⊂平面SCD ,∴平面SCD ⊥平面SEF ;(2)解:过E 作EN ∥CD ,则ES ,EF ,EN 两两垂直, 故可如图建立空间直角坐标系.在△BDC 中,求得BD =2√3,CD =2,BC =4. 则E (0,0,0),F(0,√3,0),S(0,0,√3),C(52,3√32,0),D(12,3√32,0).故SD →=(12,3√32,−√3),SC →=(52,3√32,−√3),SF →=(0,√3,−√3).设平面SCD 的法向量为n →=(x ,y ,z),由{n →⋅SD →=12x +3√32y −√3z =0n →⋅SC →=52x +3√32y −√3z =0,可取n →=(0,2,3). 则|cos〈n →,SF →〉|=|n →⋅SF→n →|⋅|SF →||=√3√6⋅√13=√2626.故SF 与平面SCD 所成角的正弦值为√2626.【点评】本题主要考查平面与平面垂直的判定、平面与平面垂直的性质、直线与平面所成角、空间向量处理立体几何问题等基础知识;考查空间想象能力、运算求解能力、推理论证能力和创新意识,考查化归与转化等数学思想,是中档题. 20.已知函数f (x )=e x ﹣a •x ,其中e 是自然对数的底数. (1)若a =e ,证明:f (x )≥0;(2)若x ∈[0,+∞)时,都有f (x )≥f (﹣x ),求实数a 的取值范围.【分析】(1)若a =e ,则f (x )=e x ﹣e •x ,所以f ′(x )=e x ﹣e ,再利用导函数f '(x )的正负性与函数f (x )的单调性之间的联系即可得f (x )的单调性,从而确定f (x )min =f (1),而f (1)=0,进而得证;(2)构造函数g (x )=f (x )﹣f (﹣x )=e x ﹣e ﹣x ﹣2ax ,则原问题转化为g (x )≥0在[0,+∞)上恒成立,然后求导g '(x ),令h (x )=g ′(x ),再求导h '(x ),从而可确定g ′(x )在[0,+∞)上单调递增,由于g ′(0)=2﹣2a ,于是分a ≤1和a >1两种情形,讨论函数g (x )的单调性,以便求证g (x )min 与0的关系. 解:(1)若a =e ,则f (x )=e x ﹣e •x ,所以f ′(x )=e x ﹣e , 当x =1时,f ′(x )=0;当x ∈(﹣∞,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增; 所以f (x )在x =1时取得极小值,也是最小值.所以f (x )≥f (1)=0.(2)令g (x )=f (x )﹣f (﹣x )=e x ﹣e ﹣x ﹣2ax ,则原问题转化为g (x )≥0在[0,+∞)上恒成立.由g ′(x )=e x +e ﹣x ﹣2a ,令h (x )=g ′(x ),则h′(x)=e 2x −1ex ≥0在[0,+∞)上恒成立,所以g ′(x )在[0,+∞)上单调递增, 又g ′(0)=2﹣2a ,①当a ≤1时,g ′(x )≥g ′(0)≥0,所以g (x )在[0,+∞)上单调递增, 所以g (x )≥g (0)=0,即f (x )≥f (﹣x ),满足题意.②当a >1时,因为g ′(x )在[0,+∞)上单调递增,所以g ′(x )min =g ′(0)=2﹣2a <0,所以存在t ∈(0,+∞),使得当x ∈(0,t )时,g ′(x )<0,g (x )在(0,t )上单调递减,此时g (x )<g (0)=0,这与g (x )≥0在[0,+∞)上恒成立矛盾. 综上所述,a ≤1,故实数a 的取值范围是(﹣∞,1].【点评】本题主要考查利用导数研究函数的单调性和最值,不等式的恒成立问题等,考查学生分类讨论和转化与化归的思想,以及运算求解能力,属于中档题.21.已知抛物线C :x 2=2y ,过点A (1,1)且互相垂直的两条动直线l 1,l 2与抛物线C 分别交于P ,Q 和M ,N .(1)求四边形MPNQ 面积的取值范围;(2)记线段PQ 和MN 的中点分别为E ,F ,求证:直线EF 恒过定点.【分析】(1)两直线l 1,l 2的斜率一定存在,且不等于0.设l 1:y =k (x ﹣1)+1(k ≠0),P (x 1,y 1),Q (x 2,y 2),则l 2:y =−1k (x −1)+1(k ≠0).联立直线与抛物线方程,利用韦达定理,弦长公式转化求解四边形MPNQ 面积的表达式,利用换元法结合二次函数的求解最小值即可.(2)由(1)求出PQ 中点E 的坐标为(k ,k 2+1),同理点F 的坐标为(−1k ,1k2+1).求出直线EF 的斜率,得到直线EF 的方程,即可求解直线EF 恒过的定点. 解:(1)由题意可知两直线l 1,l 2的斜率一定存在,且不等于0.设l 1:y =k (x ﹣1)+1(k ≠0),P (x 1,y 1),Q (x 2,y 2),则l 2:y =−1k (x −1)+1(k ≠0).因为联立直线l 1与抛物线的方程,有{y =k(x −1)+1#/DEL/#x 2=2y #/DEL/#⇒x 2−2kx +2k −2=0,其中△=4k 2+8>0,由韦达定理,有{x 1+x 2=2kx 1x 2=2k −2.由上可得|PQ|=√1+k 2|x 1−x 2|=√(1+k 2)(8+4k 2),同理|MN|=√(1+1k2)(8+4k2),则四边形MPNQ 面积S =12|PQ||MN|=12√(2+k 2+1k2)(80+32k 2+32k2).令k 2+1k2=t ≥2.则S =12√(2+t)(80+32t)=√8t 2+36t +40.所以,当且仅当t =2,即k =±1时,S 取得最小值12,且当t →+∞时,S →+∞. 故四边形MPNQ 面积的范围是[12,+∞). (2)由(1)有x 1+x 2=2k ,y 1+y 2=2k 2+2,所以PQ 中点E 的坐标为(k ,k 2+1),同理点F 的坐标为(−1k ,1k2+1).于是,直线EF 的斜率为k EF =k 2+1−(1k2+1)k+1k=k 2−1k 2k+1k=k −1k ,则直线EF 的方程为:y −(k 2+1)=(k −1k )(x −k)⇒y =(k −1k )x +2,所以直线EF 恒过定点(0,2).【点评】本小题主要考查抛物线及其性质、直线与抛物线的位置关系等基础知识;考查运算求解、推理论证能力和创新意识;考查化归与转化、数形结合等数学思想. 一、选择题22.在直角坐标系xOy 中,已知曲线C 1:{x =−2+t 1cosθ1y =t 1sinθ1(t 1为参数),曲线C 2:{x =2+t 2cosθ2y =t 2sinθ2(t 2为参数),且tan θ1tan θ2=﹣1,点P 为曲线C 1与C 2的公共点. (1)求动点P 的轨迹方程;(2)在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为2ρcos θ﹣ρsin θ+10=0,求动点P 到直线l 的距离的取值范围.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换,进一步利用三角函数关系式的变换和余弦型函数性质的应用求出结果. (2)利用点到直线的距离公式的应用求出结果. 解:(1)设点P 的坐标为(x ,y ). 因为点P 为曲线C 1与C 2的公共点, 所以点P 同时满足曲线C 1与C 2的方程. 曲线C 1消去参数可得tanθ1=yx+2, 曲线C 2消去参数可得tanθ2=y x−2. 由tan θ1tan θ2=﹣1,所以yx+2⋅yx−2=−1.所以点P 的轨迹方程为x 2+y 2=4(x ≠±2).(2)由已知,直线l 的极坐标方程2ρcos θ﹣ρsin θ+10=0,根据x=ρcosθ,y=ρsinθ可化为直角坐标方程:2x﹣y+10=0.因为P的轨迹为圆x2+y2=4(去掉两点(±2,0)),圆心O到直线l的距离为d=5=2√5,所以点P到直线l的距离的取值范围为[2√5−2,2√5+2].【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.[选修4-5:不等式选讲]23.已知a,b,c都为正实数,且a+b+c=3.证明:(1)√2a+1+√2b+1+√2c+1≤3√3;(2)(1a−13)(1b−13)(1c−13)≥827.【分析】(1)由三个数的完全平方公式,结合均值不等式和不等式的性质,即可得证;(2)将1=a+b+c3代入原不等式的左边,化简整理,再由基本不等式和不等式的性质,即可得证.【解答】证明:(1)(√2a+1+√2b+1+√2c+1)2=2(a+b+c)+3+ 2√(2a+1)(2b+1)+2√(2b+1)(2c+1)+2√(2c+1)(2a+1)≤2(a+b+c)+3+(2a+1+2b+1)+(2b+1+2c+1)+(2c+1+2a+1)=6(a+b+c)+9=27(当且仅当a=b=c=1取“=”).所以√2a+1+√2b+1+√2c+1≤3√3;(2)由a,b,c都为正实数,且a+b+c=3,可得(1a−13)(1b−13)(1c−13)=(a+b+c3a−1 3)(a+b+c3b−13)(a+b+c3c−13)=b+c3a ⋅a+c3b⋅a+b3c≥127⋅2√bca⋅2√acb⋅2√abc=827(当且仅当a=b=c=1取“=”).则(1a−13)(1b−13)(1c−13)≥827.【点评】本题主要考查基本不等式、不等式的证明方法、含绝对值的不等式等基本知识,考查化归与转化等数学思想和推理论证等数学能力,是一道中档题.。
2020年高考_理科数学模拟试卷(含答案和解析)

【高仿咫卷•理科数学 笫1页(共4页)】2020年普通高等学校招生全国统一考试高仿密卷理科数学注意事项:L 本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号 厦写在试题卷和答题卡上,并将准考证号条影码粘贴在答勉卡上的曲 定位JL 。
2.选择题的作答:每小题选出答案后•用2B 铅爸把答题卡上对应题目的答案 标号涂浜,写在试晦卷、草稿纭和答题卡上的非答题区域均无殁°3,非选释题的作答:用签字名直报答在卷麴卡上对应的答意区域内。
客在试 场卷、草稿纸和答邈卡上的非答邈.区域均无效。
4.选考题的作冬:先把所选题目的期号在笔超卡上指定的位置用2B 铅笔涂耍.至案写在答题卡上 对应的冬题区域内,写在试题卷、草稿纸和答题卡上的非答麴区域均无效. 5,考试结束后,请将本试四卷和答题于一并上交,一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要 求的61.已知复数2=~<i 为虚数单位八则|片十2| = £ 1 A.ZB.75D.HH IgGr-DV1卜廿二《衣|2炉一9父+4t0},则AD 《C RB>=A. (1,4)B. (y.4)C. (4J + /I^)D. (1,14-710)2 .已知集合A={3 .已知向量:%。
则“E| =㈤"是口一2川=12。
一加”的 A.充分不必要条件 C,充要条件B.必鬟不充分条件 口既不充分也不必要条件4 .我国古代名著仪孙子算经》中有如卜有趣的问题广今有三女,长女五日一归,中女四日一归•少女三日一归.问三女何n 相会之意思是「一家有三个女儿郴已出嫁.大女儿五天回一次娘家9二女儿四天回一 次娘家,小女儿三天回一次娘家,三个女儿从娘冢同一天走后•至少再隔多少天三人可以再次在娘家相 会?:三人再次在娘家相会■则要隔的天数可以为A. 90 天C. 270 天S.执行如图所示的程序框图,则输出S 的值为B. 180天B. 2 020 *2 019 2Q21 '2 020n 2 020I I ------- 276.已知等差数列{。
2020年高考理科数学模拟试题含答案及解析5套)

绝密 ★ 启用前2020年高考模拟试题(一)理科数学时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为( )A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有( )A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为( )A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为( )A .5B .34C .41D .526. ()()()()sin ,00,xf x x x=∈-ππ大致的图象是( )A .B .C .D .此卷只装订不密封班级 姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为( ) A .14B .15C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为( ) A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是( ) A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==体ABCD 的外接球的表面积为( ) A .2π B .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤+++⎢⎥⎣⎦=( )A .2017B .2018C .2019D .202012.[]0,1上单调递增,则实数a 的取值范围( ) A .()1,1- B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。
2020年高考理科数学模拟卷及答案详细解析

日平均睡眠时间分组
[4,5)
[5,6)
[6,7)
[7,8)
[8,9)
[9,10]
频数
13
28
49
56
42
12
(1)填写下面的列联表,并根据列联表判断是否有99%的把握认为给市20岁至60岁市民的日平均睡眠时间与年龄有关;
年龄在区间[20,40)
绝密★启用前
2020年高考理科数学模拟卷及答案解析
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一.选择题(共12小题)
1.已知集合A={x|x2﹣4x+3≤0},B={x∈N|﹣1<x<3},则A∩B中的元素个数为( )
A.1B.2C.3D.4
2.已知复数1+i是关于x的方程x2+mx+2的一个根,则实数m的值为( )
A.﹣2B.2C.﹣4D.4
3.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )
(1)证明:平面ABB1A1⊥平面ACC1A1;
(2)求平面AB1C1与平面ADE所成角二面角的余弦值.
2020届湖北省高三4月调研考试数学模拟试卷(理)有答案(加精)

湖北省高三四月调考理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若复数1,z i z =+为z 的共轭复数,则z z ⋅= 2 D.2i2.设集合(){}(){},|1,,|1A x y y x B x y x y ==+=+=,则A B I中的元素个数为A.0个B. 1个C. 2个D.无数个3.设等差数列{}n a 的前n 项和为n S ,若12464,30a a a a =++=,则6S = A. 54 B. 44 C. 34 D. 244.已知点()()1,0,1,0A B -为双曲线()222210,0x y a b a b-=>>的左右顶点,点M 在双曲线上,ABM ∆为等腰三角形,且顶角为120o ,则该双曲线的标准方程为A. 2214y x -=B. 2212y x -=C.221x y -=D.2212y x -= 5.621x x ⎛⎫- ⎪⎝⎭的展开式,6x 的系数为A. 15B. 6C. -6D. -156.已知随机变量η满足()()15,15E D ηη-=-=,则下列说法正确的是 A. ()()5,5E D ηη=-= B. ()()4,4E D ηη=-=- C. ()()5,5E D ηη=-=- D. ()()4,5E D ηη=-=7.设,,a b c r r r 均为非零向量,已知命题:p a c =r r是a c b c ⋅=⋅r r r r的必要不充分条件,命题:1q x >是1x >成立的充分不必要条件,则下列命题是真命题的是 A. p q ∧ B. p q ∨ C. ()()p q ⌝∧⌝ D.()p q ∨⌝ 8.已知函数()()cos 0,,2xx f x a R a e ωϕπωϕ+⎛⎫=><∈ ⎪⋅⎝⎭在区间[]3,3-上的图象如图所示,则a ω可取A. 4πB. 2πC.πD.2π9.执行如图所示的程序框图,若输出的值为5y =,则满足条件的实数x 的个数为A. 4B. 3C. 2D. 110.网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为 A. 2 B. 4 C.223D. 213+11.已知实数,x y 满足()2221x y +-=223x y+的取值范围是A.3,2⎤⎦ B. []1,2 C. (]0,2 D. 3⎤⎥⎝⎦12.过圆2225x y +=内一点)15,0P 作倾斜角互补的直线AC 和BD ,分别交圆于A,C,和B,D ,则四边形ABCD 的面积的最大值为 A. 403803 C. 2802第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知正六棱锥S ABCDEF -的底面边长和高均为1,则异面直线SC 与DE 所成角的大小为为 .14.已知数列{}n a 为等差数列,{}n b 为等比数列,且0,0n n a b >>,记数列{}n n a b ⋅的前n 项和为n S ,若()()111,131n n a b S n n N *===-⋅+∈,则数列25n n a b ⎧⎫-⎨⎬⎩⎭的最大项为第 项.15. 某单位植树节计划种杨树x 棵,柳树y 棵,若实数,x y 满足约束条件2527x y x y x ->⎧⎪-<⎨⎪<⎩,则该单位集合栽种这两种树的棵树最多为 . 16.函数()sin sin 3f x x x π⎛⎫=++⎪⎝⎭的值域为 . 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)在ABC ∆中,角A,B,C 的对边分别为,,a b c ,且cos .a C b=(1)求B ;(2)设CM 是角C 的平分线,且1,6CM b ==,求cos BCM ∠.18.(本题满分12分) 如图,长方体1111ABCD A B C D -中,点M 在棱1BB 上,两条直线,MA MC 与平面ABCD 所成角均为θ,AC 与BD 交于点O.(1)求证:AC OM ⊥;(2)当M 为1BB 的中点,且4πθ=时,求二面角11A D M B --的余弦值.19.(本题满分12分)在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求,x y 的值;(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X ,求X 的分布列和数学期望E (X ).20.(本题满分12分)已知平面内动点P 与点()3,0A -和点()3,0B 的连线的斜率之积为8.9- (1)求动点P 的轨迹方程;(2)设点P 的轨迹且曲线C ,过点()1,0的直线与曲线C 交于M,N 两点,记AMB ∆的面积为1S ,ANB ∆的面积为2S ,当12S S -取得最大值时,求12S S 的值.21.(本题满分12分)已知函数()()ln ,.xx f x x x g x e ==(1)证明方程()()f x g x =在区间()1,2内有且仅有唯一实根;(2)记{}max ,a b 表示,a b 两个数中的较大者,方程()()f x g x =在区间()1,2内的实数根为()()(){}0,max ,x m x f x g x =,若()()m x n n R =∈在()1,+∞内有两个不等的实根()1212,x x x x <,判断12x x +与02x 的大小,并说明理由.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题及答案

绝密★启用前2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上 一、单选题 1.已知集合{}|26Mx x =-<<,{}2|3log 35N x x =-<<,则MN =( )A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x <<答案:A根据对数性质可知25log 356<<,再根据集合的交集运算即可求解. 解:∵25log 356<<, 集合{}|26Mx x =-<<,∴由交集运算可得{}2|2log 35M N x x ⋂=-<<.故选:A. 点评:本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题. 2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-答案:B根据共轭复数定义及复数模的求法,代入化简即可求解. 解:z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-,∵12z zz +=+,1x =+,解得221y x =+. 故选:B. 点评:本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 3.“2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案:A根据幂函数定义,求得b 的值,结合充分条件与必要条件的概念即可判断. 解:∵当函数()()2231af x b b x =--为幂函数时,22311b b --=,解得2b =或12-, ∴“2b =”是“函数()()2231af x b b x =--为幂函数”的充分不必要条件.故选:A. 点评:本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.4.已知()21AB =-,,()1,AC λ=,若cos BAC ∠=,则实数λ的值是( ) A .-1 B .7C .1D .1或7答案:C根据平面向量数量积的坐标运算,化简即可求得λ的值. 解:由平面向量数量积的坐标运算,代入化简可得cos 105AB AC BAC AB AC⋅∠===. ∴解得1λ=. 故选:C. 点评:本题考查了平面向量数量积的坐标运算,属于基础题.5.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆有下述四个结论: (1)焦距长约为300公里; (2)长轴长约为3988公里; (3)两焦点坐标约为()150,0±; (4)离心率约为75994. 其中正确结论的个数为()A .1B .2C .3D .4答案:B根据椭圆形轨道,设该椭圆长轴长为a ,半焦距为c ,先求得月球的半径r ,再根据近月点与月球表面距离为100公里,有100a c r -=+,远月点与月球表面距离为400公里,有400a c r +=+,然后两式联立求解. 解:设该椭圆长轴长为a ,半焦距为c ,依题意可得月球半径约为1347617382⨯=, 所以1001738183840017382138a c a c -=+=⎧⎨+=+=⎩,解得1988150a c =⎧⎨=⎩所以离心率150751988994c e a ===,可知结论(1)(4)正确,(2)错误; 因为没有给坐标系,焦点坐标不确定,所以(3)错误. 故选:B 点评:本题主要考查椭圆的几何性质,还考查了阅读抽象应用的能力,属于基础题. 6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=,且321c b -=,则cos C ()A .12-B .3C .12D 6 答案:A根据1a =,321c b -=,由正弦定理边化为角得到3sin 2sin sin C B A -=,由A B C π++=,得到()3sin 2sin sin C A C A -+=,再根据6A π=求解.解:由321c b -=,得32c b a -=,即3sin 2sin sin C B A -=, 所以()3sin 2sin sin C A C A -+=, 而6A π=,所以3sin 2sin sin 66C C ππ⎛⎫-+= ⎪⎝⎭, 即3113sin 2sin cos 222C C C ⎛⎫-+= ⎪ ⎪⎝⎭, 解得1cos 2C =-. 故选:A 点评:本题主要考查正弦定理和三角恒等变换,还考查了运算求解的能力,属于中档题. 7.函数()2cos2cos221xxf x x =+-的图象大致是( ) A . B .C .D .答案:C根据函数奇偶性可排除AB 选项;结合特殊值,即可排除D 选项. 解:∵()2cos221cos2cos22121x x x x f x x x +=+=⨯--,()()()2121cos 2cos22121x x x x f x x x f x --++-=⨯-=-⨯=---,∴函数()f x 为奇函数,∴排除选项A ,B ;又∵当04x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故选:C. 点评:本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.8.设x ,y 满足约束条件2010x y x y x m -+≥⎧⎪+-≥⎨⎪≤⎩,若2z x y =+的最大值大于17,则实数m 的取值范围为() A .()4,+∞ B .13,2⎛⎫+∞⎪⎝⎭C .()6,+∞D .()5,+∞答案:D先作出不等式组表示的平面区域,然后平移直线l :20x y +=,当直线l 在y 轴上的截距最大时,z 取得最大值求解. 解:作出不等式组表示的平面区域如图所示,作出直线l :20x y +=,并平移,当直线l 经过点(),2m m +时,直线在y 轴上的截距最大,z 取得最大值, 因为2z x y =+的最大值大于17, 所以2217m m ++>,解得5m >. 故选:D 点评:本题主要考查线性规划求最值,还考查了数形结合的方法的能力,属于基础题. 9.七巧板是一种古老的中国传统智力玩具,是由七块板组成.而这七块板可拼成许多图形,人物、动物、建筑物等,在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧图谱》.若用七巧板(图1为正方形),拼成一只雄鸡(图2),在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡头或鸡尾(阴影部分)的概率为A .112B .18C .14D .316答案:D这是一个几何概型模型,设包含7块板的正方形边长为4,求得正方形的面积,即为雄鸡的面积,然后求得雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和,代入公式求解. 解:设包含7块板的正方形边长为4,正方形的面积为4416⨯=, 则雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和为1212132⨯⨯+⨯=, 在雄鸡平面图形上随机取一点,则恰好取自雄鸡几头或鸡尾(阴影部分)的概率为316p. 故选:D 点评:本题主要考查几何概型的概率,还考查了阅读抽象应用的能力,属于基础题.10.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为()A .2π B .3π C .4π D .6π 答案:C设AE BF a ==,13B EBF EBFV S B B '-'=⨯⨯,利用基本不等式,确定点E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.设AE BF a ==,则()()23119333288B EBFaa V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 9322222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=--⎪⎝⎭,()3,3,0AC =-, 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯,所以异面直线A F '与AC 所成的角为4π. 故选:C 点评:本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.11.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是() A .①②③ B .①③④C .①④D .③④答案:B 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证. 解: ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即=1a =,①正确; ∴()sin 2sin 3π⎛⎫==- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈, 当0k =时,12x x +取最小值23π,所以①③④正确,②错误.故选:B 点评:本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.12.如图,在ABC 中,AB 4=,点E 为AB 的中点,点D 为线段AB 垂直平分线上的一点,且4DE =,固定边AB ,在平面ABD 内移动顶点C ,使得ABC 的内切圆始终与AB 切于线段BE 的中点,且C 、D 在直线AB 的同侧,在移动过程中,当CA CD +取得最小值时,ABC 的面积为()A .12524-B .6512-C .12518-D .658-答案:A以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,利用圆的切线长定理,得到C 点的轨迹是以A 、B 为焦点的双曲线在第一象限部分,然后利用直线段最短,得到点C 的位置,再求三角形的面积. 解: 如图,以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,则()2,0A -,()2,0B ,()0,4D ,设ABC 的内切圆分别切BC 、AC 、AB 于F ,G ,H 点,∵3124CA CB AG BF AH HB -=-=-=-=<,所以C 点的轨迹是以A 、B 为焦点的双曲线的第一象限部分,且1a =,2c =,2223b c a =-=,∴C 的轨迹方程为()220,03y x x y ->>.∵2CA CB -=,∴2CA CB =+,∴2CA CD CB CD +=++, 则当点C 为线段BD 与双曲线在第一象限的交点时,CA CD +最小, 如图所示:线段BD 的方程为()4202y x x =-≤≤,将其代入22330x y --=,得216190x x -+=,解得835x =+835x =-,∴426512y x =-=, ∴()835,6512C -. ∴ABC 的面积为()146512125242⨯⨯=. 故选:A 点评:本题主要考查双曲线的定义,圆的切线长定理以及三角形的面积,还考查了数形结合的思想和运算求解的能力,属于中档题. 二、填空题13.若函数()()()()()2log 2242x x f x f x x ⎧->⎪=⎨+≤⎪⎩,则()()5f f -=__________. 答案:1利用分段函数,先求()5f -,再求()()5f f -的值.解: ∵()()()5130f f f -=-==,∴()()()()5041ff f f -===.故答案为:1 点评:本题主要考查分段函数求函数值问题,还考查了运算求解的能力,属于基础题. 14.若()()613x a x -+的展开式中3x 的系数为45-,则实数a =__________. 答案:13利用通项公式得到()()613x a x -+的展开式中含3x 的项为:()()23236633x C x a C x ⋅-⋅,再根据系数为45-,建立方程求解.解:因为()()613x a x -+的展开式中含3x 的项为:()()()232336633135540x C x a C x a x ⋅-⋅=-,∴13554045a -=-,解得13a =. 故答案为:13点评:本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题. 15.如图,在矩形ABCD 中,24==AD AB ,E 是AD 的中点,将ABE △,CDE △分别沿BE CE ,折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.答案:323π 根据题意,画出空间几何体,设BE EC BC ,,的中点分别为M N O ,,,并连接AM CM AO DN NO DO OE ,,,,,,,利用面面垂直的性质及所给线段关系,可知几何体ABCDE 的外接球的球心为O ,即可求得其外接球的体积. 解:由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图所示,设BE EC BC ,,的中点分别为M N O ,,, 连接AM CM AO DN NO DO OE ,,,,,,, 则OM BE ⊥,ON CE ⊥.因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE , 所以OM ⊥平面ABE ,ON ⊥平面DEC , 易得2OA OB OC OD OE =====,则几何体ABCDE 的外接球的球心为O ,半径2R =, 所以几何体ABCDE 的外接球的体积为343233V R ππ==. 故答案为:323π. 点评:本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.16.若函数()2ln 2f x x x ax x =--有两个不同的极值点,则实数a 的取值范围为__________. 答案:10,4e ⎛⎫ ⎪⎝⎭由函数()2ln 2f x x x ax x =--有两个不同的极值点,则()ln 40f x x ax '=-=有两个不同的根,转化为方程ln 4x a x =有两个不同解,即函数()g x ln 4xx=的图象与直线y a =有两个公共点求解.解:由()ln 40f x x ax '=-=,得ln 4xa x=, 记()ln 4x g x x =,则()21ln 4xg x x-'=, 当()0,x e ∈时,()0g x '>,()g x 单调递增,当(),x e ∈+∞时,()0g x '<,()g x 单调递减. 又∵()14g e e=,当0x →时,()g x →-∞,当x →+∞时,()0g x →. 因为函数()2ln 2f x x x ax x =--有两个不同的极值点, 所以方程ln 4xa x=有两个不同的解, 即函数()g x 的图象与直线y a =有两个公共点, 故实数a 的取值范围为10,4e ⎛⎫ ⎪⎝⎭. 故答案为:10,4e ⎛⎫ ⎪⎝⎭点评:本题主要考查导数与函数的极值点以及导数与函数的零点问题,还考查了数形结合的思想和运算求解的能力,属于中档题. 三、解答题17.在如图所示的多面体中,四边形ABEG 是矩形,梯形DGEF 为直角梯形,平面DGEF ⊥平面ABEG ,且DG GE ⊥,//DF GE ,2222AB AG DG DF ====.(1)求证:FG ⊥平面BEF . (2)求二面角A BF E --的大小. 答案:(1)见解析;(2)23π(1)根据面面垂直性质及线面垂直性质,可证明BE FG ⊥;由所给线段关系,结合勾股定理逆定理,可证明FE FG ⊥,进而由线面垂直的判定定理证明FG ⊥平面BEF .(2)建立空间直角坐标系,写出各个点的坐标,并求得平面AFB 和平面EFB 的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角A BF E --的大小. 解:(1)证明:∵平面DGEF ⊥平面ABEG ,且BE GE ⊥, ∴BE ⊥平面DGEF , ∴BE FG ⊥,由题意可得2FG FE ==, ∴222FG FE GE +=,∵FE FG ⊥,且FE BE E ⋂=, ∴FG ⊥平面BEF .(2)如图所示,建立空间直角坐标系,则()1,0,0A ,()1,2,0B ,()0,2,0E ,()0,1,1F ,()1,1,1FA =--,()1,1,1FB =-,()0,1,1FE =-.设平面AFB 的法向量是()111,,n x y z =,则11111111100000x y z x z FA n x y z y FB n --==⎧⎧⎧⋅=⇒⇒⎨⎨⎨+-==⋅=⎩⎩⎩,令11x =,()1,0,1n =,由(1)可知平面EFB 的法向量是()0,1,1m GF ==,∴1cos<,222n m n m n m⋅>===⨯⋅,由图可知,二面角A BF E --为钝二面角,所以二面角A BF E --的大小为23π. 点评:本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.18.在等差数列{}n a 中,12a =,35730a a a ++=.(1)求数列{}n a 的通项公式;(2)记23n n a an b =+,当*n N ∈时,1n n b b λ+>,求实数λ的取值范围.答案:(1)2n a n =(2)实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭(1)根据12a =,35730a a a ++=,利用“1,a d ”法求解.(2)由(1)得到2349n naa n n nb =+=+,将()114949n n n n λ+++>+对*n N ∀∈恒成立,转化为5419nλ<⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立求解. 解:(1)在等差数列{}n a 中,3575330a a a a ++==,∴510a =,所以{}n a 的公差51251a a d -==-, ∴()112n a a n d n =+-=. (2)∵2349n naa n n nb =+=+,∴()114949n n n n λ+++>+对*n N ∀∈恒成立,即4499595444949419n n n n n n n n λ⨯+⨯⨯<=+=+++⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立, 又∵55974441341199n+≥+=⎛⎫++ ⎪⎝⎭,∴9713λ<,即实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭.点评:本题主要考查等差数列的基本运算以及有关数列的不等式恒成立问题,还考查了运算求解的能力,属于中档题.19.在直角坐标系xOy 中,曲线1C 上的任意一点M 到直线1y =-的距离比M 点到点()02F ,的距离小1.(1)求动点M 的轨迹1C 的方程;(2)若点P 是圆()()222221C x y -++=:上一动点,过点P 作曲线1C 的两条切线,切点分别为A B 、,求直线AB 斜率的取值范围.答案:(1)28x y =;(2)13,44⎡⎤⎢⎥⎣⎦(1)设(),M x y ,根据题意可得点M 的轨迹方程满足的等式,化简即可求得动点M 的轨迹1C 的方程;(2)设出切线PA PB 、的斜率分别为12k k ,,切点()12,A x x ,()22,B x y ,点()P m n ,,则可得过点P 的拋物线的切线方程为()y k x m n =-+,联立抛物线方程并化简,由相切时0∆=可得两条切线斜率关系12,k k +12k k ;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出12,y y ,可求得4AB mk =,结合点()P m n ,满足()()22221x y -++=的方程可得m 的取值范围,即可求得AB k 的范围.解:(1)设点(),M x y ,∵点M 到直线1y =-的距离等于1y +, ∴11y +=,化简得28x y =,∴动点M 的轨迹1C 的方程为28x y =.(2)由题意可知,PA PB 、的斜率都存在,分别设为12k k ,,切点()12,A x x ,()22,B x y ,设点()P m n ,,过点P 的拋物线的切线方程为()y k x m n =-+,联立()28y k x m n x y⎧=-+⎨=⎩,化简可得28880x kx km n -+-=,∴26432320k km n ∆=-+=,即220k km n -+=, ∴122m k k +=,122n k k =. 由28x y =,求得导函数4xy '=, ∴114x k =,2211128x y k ==,2222228x y k ==,∴222121212121224424ABy y k k k k m k x x k k --+====--, 因为点()P m n ,满足()()22221x y -++=, 由圆的性质可得13m ≤≤,∴13444AB m k ≤=≤,即直线AB 斜率的取值范围为13,44⎡⎤⎢⎥⎣⎦. 点评:本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.20.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案()a 规定每日底薪100元,外卖业务每完成一单提成2元;方案()b 规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[)[)[)[)[)[)[]2535354545555565657575858595,,,,,,,,,,,,,七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案()a 的概率为13,选择方案()b 的概率为23.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案()a 的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替) 答案:(1)0.4;(2)1127;(3)应选择方案()a ,理由见解析 (1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案()a 的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案()a 的概率;(3)设骑手每日完成外卖业务量为X 件,分别表示出方案()a 的日工资和方案()b 的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择. 解:(1)设事件A 为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为0.2,0.15,0.05,∵020*******++=...., ∴()P A 估计为0.4.(2)设事件′为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案()a ”, 设事件i C ,为“甲、乙、丙、丁四名骑手中恰有()01234ii =,,,,人选择方案()a ”, 则()()()41310144212163211111333818127P B P C P C C C ⎛⎫⎛⎫⎛⎫=--=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以四名骑手中至少有两名骑手选择方案()a 的概率为1127. (3)设骑手每日完成外卖业务量为X 件, 方案()a 的日工资()11002,*Y X X N =+∈,方案()b 的日工资()215054*15055454*X X N Y X X X N ≤∈⎧=⎨+->∈⎩,,,,,所以随机变量1Y 的分布列为()1160005180005200022200324002260015280005224E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.......;同理,随机变量2Y 的分布列为()21500318003230022800153300052035E Y =⨯+⨯+⨯+⨯+⨯=.......∵()()21EY E Y >,∴建议骑手应选择方案()a . 点评:本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择,属于中档题.21.已知函数()()ln 1f x m x x =+-,()sin g x mx x =-.(1)若函数()f x 在()0+∞,上单调递减,且函数()g x 在02,上单调递增,求实数m 的值;(2)求证:()()21111sin11sin 1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫+++⋯+<⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭(*n N ∈,且2n ≥).答案:(1)1;(2)见解析(1)分别求得()f x 与()g x 的导函数,由导函数与单调性关系即可求得m 的值; (2)由(1)可知当0x >时,()ln1x x +<,当02x π<<时,sin x x <,因而()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,,,构造()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,由对数运算及不等式放缩可证明()()1111ln 1sin11+sin 1+sin 1sin 2212231n n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+=-<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,从而不等式可证明. 解:(1)∵函数()f x 在()0+∞,上单调递减, ∴()101mf x x'=-≤+,即1m x ≤+在()0+∞,上恒成立, ∴1m ,又∵函数()g x 在02,上单调递增,∴()cos 0g x m x '=-≥,即cos m x ≥在02,上恒成立,m 1≥,∴综上可知,1m =.(2)证明:由(1)知,当1m =时,函数()()ln 1f x x x =+-在()0+∞,上为减函数,()sin g x x x =-在02,上为增函数,而()()00,00f g ==,∴当0x >时,()ln 1x x +<,当02x π<<时,sin x x <. ∴()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,, ∴()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()111ln 1sin1ln 1+sin ln 1+sin ln 1sin 12231n n ⎛⎫⎛⎫⎛⎫=+++⋯++ ⎪ ⎪ ⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭ ()111sin1sinsin sin 12231n n <+++⋯+⨯⨯-⨯()11111111111122312231n n n n ⎛⎫⎛⎫⎛⎫<+++⋯+=+-+-+⋯+- ⎪ ⎪ ⎪⨯⨯-⨯-⎝⎭⎝⎭⎝⎭122n=-< 即()()111ln 1sin11+sin 1+sin 1sin 212231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦, ∴()()()2*1111sin11+sin 1+sin 1sin ,212231e n N n n n ⎛⎫⎛⎫⎛⎫+⋯+<∈≥⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭,. 点评:本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题. 22.在直角坐标系xOy 中,直线l 的方程为0x y a -+=,曲线C 的参数方程为22cos 22sin x y αα=+⎧⎨=+⎩(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)若射线6πθ=与l 的交点为M ,与曲线C 的交点为A ,B ,且4OA OB OM +=,求实数a 的值.答案:(1)l :cos sin 0a ρθρθ-+=,C :24cos 4sin 40ρρθρθ--+=(2)12a =- (1)先消去参数得到C 的普通方程,然后利用cos x ρθ=,sin y ρθ=分别代入,得到直线和曲线C 的极坐标方程.(2)在极坐标系中,设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭,将π6θ=代入24cos 4sin 40ρρθρθ--+=,然后利用韦达定理求解.解:(1)将cos x ρθ=,sin y ρθ=代入方程0x y a -+=中,得到直线l 的极坐标方程为cos sin 0a ρθρθ-+=;曲线C 的普通方程为()()22224x y -+-=,即224440x y x y +--+=, 所以曲线C 的极坐标方程为24cos 4sin 40ρρθρθ--+=.(2)在极坐标系中,可设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭, 将π6θ=代入24cos 4sin 40ρρθρθ--+=,得()2240ρρ-+=,∴232ρρ+=,∵4OA OB OM +=,∴1ρ=即1π,26M ⎛⎫ ⎪ ⎪⎝⎭,将1π,26M ⎛⎫ ⎪ ⎪⎝⎭代入cos sin 0a ρθρθ-+=,得()111sin cos 222a ρθθ=-=⨯=-. 点评:本题主要考查参数方程,普通法方程极坐标方程间的转化以及直线与曲线的位置关系,还考查了运算求解的能力,属于中档题.23.已知不等式112x x ++-≤的解集为{}x a x b ≤≤.(1)求实数a 、b 的值;(2)设0m >,0n >,且满足122a b m n-=,求证:1212m n ++-≥. 答案:(1)1a =-,1b =(2)见解析(1)利用绝对值的几何意义,去绝对值求解.(2)由(1)得到1122m n+=,利用三角不等式转化为1212m n m n ++-≥+,再利用基本不等式求解.解:(1)原不等式等价于①122x x <-⎧⎨-≤⎩,∴x ∈∅; ②1122x -≤≤⎧⎨≤⎩,∴11x -≤≤; ③122x x >⎧⎨≤⎩,∴x ∈∅. 所以原不等式的解集为{}11x x -≤≤,∴1a =-,1b =.(2)∵122a b m n -=,∴1122m n+=, ∴()()1211212m n m n m n ++-≥++-=+()111122222222n m m n m n m n ⎛⎫⎛⎫=+⋅+=++≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当22n m m n =,即1m =,12n =时取等号, ∴1212m n ++-≥.点评:本题主要考查绝对值不等式的解法以及三角不等式和基本不等式的应用,还考查了运算求解的能力,属于中档题.。
2020高考模拟考试试卷数学理科数学含答案

a为.y y⎪数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两分部.共 150 分,考试时间 120 分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若 z = 2 - bi (b ∈R )为纯虚数,则 b 的值为.2 + iA .- 1B .1C .- 2D .4 2. 在等差数列 { }中, a + a = 16, a = 1 ,则 a 的值是. n5739A .15B .30C . - 31D .643.给出下列命题:① 若平面 α 内的直线 l 垂直于平面 β 内的任意直线,则α ⊥ β ; ② 若平面 α 内的任一直线都平行于平面 β ,则 α // β ; ③ 若平面 α 垂直于平面 β ,直线 l 在平面内 α ,则 l ⊥ β ; ④ 若平面 α 平行于平面 β ,直线 l 在平面内 α ,则 l // β .其中正确命题的个数是.A .4B .3C .2D .14.已知函数 f ( x ) = ⎛ 1 ⎫ x -1 - 1 ,则 f ( x ) 的反函数 f -1 ( x ) 的图像大致 ⎝ 2 ⎭y y-1ox -1 ox -1 ox -1oxABCD5.定义集合 M 与 N 的运算: M * N = {x x ∈ M 或x ∈ N , 且x ∉ M I N } ,⎪4C . π - αD . 3π - α4 B . α +π则 (M * N ) * M = A . M I NB . M Y NC . MD . N6.已知 cos(α + π ) = 1 ,其中 α ∈ (0, π ) ,则 sin α 的值为.432A . 4 - 2B . 4 + 2C . 2 2 - 1D . 2 2 - 166 6 37.已 知 平 面 上 不 同 的 四 点 A 、 B 、 C 、 D , 若DB ·DC + CD ·DC + DA ·BC = 0 ,则三角形 ABC 一定是.A .直角或等腰三角形B .等腰三角形C .等腰三角形但不一定是直角三角形D .直角三角形但不一定是等腰三角形8.直线: x + y + 1 = 0 与直线: x sin α + y cos α - 2 = 0⎛ π < α < π ⎫ 的夹⎝ 4 2 ⎭角为.A . α - π4 49.设函数 f ( x ) 是定义在 R 上的以 5 为周期的奇函数,若f (2) > 1, f (3) = a 2 + a + 3,则 a 的取值范围是.a - 3A . (-∞,-2) Y (0,3)B . (-2,0) Y (3,+∞)C . (-∞,-2) Y (0,+∞)D . (-∞,0) Y (3,+∞)10. 若 log x = log x = log 21a2a系为.(a +1)x > 0 (0 < a < 1) ,则 x 、x 、x 的大小关3 1 2 3A . x < x < x32 1D . x < x < x231B . x < x < x2 13C . x < x < x1 3211. 点 P 是双曲线 y 2 - x 2 = 1 的上支上一点,F 1、F 2 分别为双曲线9 16的上、下焦点,则∆PF F 的内切圆圆心 M 的坐标一定适合的方程是.1 2A . y = -3B . y = 3C . x 2 + y 2 = 5D . y = 3x 2 - 212. 一个三棱椎的四个顶点均在直径为 6 的球面上,它的三条侧棱两两垂直,若其中一条⎨ ⎪5 - bx, x > 1.侧棱长是另一条侧棱长的 2 倍,则这三条侧棱长之和的最大值为.A .3B . 4 3C . 2 105D . 2 21555第Ⅱ卷(非选择题,共 90 分)二、填空题:本大题共四小题,每小题4 分,共 16 分,把答案填在题中横线上.⎧2 x , 13 .设函数 f ( x ) = ⎪a,x < 1,x = 1, 在 x = 1 处连续,则实数 a, b 的值分别⎩为.14.以椭圆 x 2 + y 2 = 1 的右焦点为焦点,左准线为准线的抛物线方程 5 4为.15.如图,路灯距地面 8m ,一个身高 1.6m过路A的人沿穿灯的直路以 84m/min 的速度行走,人影1.6O NC M B长度变化速率是m/min .16.在直三棱柱 ABC - A B C 中,有下列三个条件:1 1 1① A B ⊥ AC ;② A B ⊥ B C ;③ B C = A C .11111 11 1以其中的两个为条件,其余一个为结论,可以构成的真命题是(填上所有成立的真命题,用条件的序号表示即可).三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分 12 分)已知函数 f ( x ) = cos x( 3 sin x - cos x), x ∈ R . (Ⅰ)求函数 f ( x ) 的最大值;(Ⅱ)试说明该函数的图像经过怎样的平移和伸缩变换,可以得到y=sin x,x∈R的图像?18.(本小题满分12分)已知数列{a}的首项a=2,且2a=a+1(n∈N*).n1n+1n(Ⅰ)设b=na,求数列{b}的前n项和T;n n n n(Ⅱ)求使不等式a-a<10-9成立的最小正整数n.(已知n+1nlg2=0.3010)19.(本小题满分12分)甲、乙两人进行投篮比赛,每人投三次,规定:投中次数多者获胜,投中次数相同则成平局.若甲、乙两人的投篮命中的概率分别为2和1,且两人每次投篮是否命中是相互独立的.32(Ⅰ)求甲、乙成平局的概率;P(Ⅱ)求甲获胜的概率.D C 20.(本小题满分12分)A B如图,四棱锥P—ABCD中,底面ABCD为直角梯形,且AB//CD,AB⊥AD,AD=CD=2A B=2,侧面∆APD为等边三角形,且平面APD⊥平面ABCD.(Ⅰ)若M为PC上一动点,当M在何位置时,PC⊥平面MDB,并证明之;(Ⅱ)求直线AB到平面PDC的距离;(Ⅲ)若点G为∆PBC的重心,求二面角G-BD-C的大小.21.(本小题满分12分)y M B 1A 1o A2xB2如图,已知 A 1、A 2 为双曲线 C : x 2 - y 2 = 1(a > 0, b > 0) a 2b 2的两个顶点,过双曲线上一点 B 1 作 x 轴的垂线,交双 曲线于另一点 B 2,直线 A 1B 1、A 2B 2 相交于点 M . (Ⅰ)求点 M 的轨迹 E 的方程;(Ⅱ)若 P 、Q 分别为双曲线 C 与曲线 E 上不同于A 1、A 2 的动点,且 A P + A P = m ( A Q + A Q ) ( m ∈ R ,且 m > 1),1212设直线 A 1P 、A 2P 、A 1Q 、A 2Q 的斜率分别为 k 1、k 2、k 3、k 4, 试问 k 1+k 2+k 3+k 4 是否为定值?说明理由.22.(本小题满分 14 分)已知函数 f ( x ) = 1 x 3 + ax 2 - bx + 1 ( x ∈ R, a ,b 为实数)有极值,且3x = 1 在处的切线与直线 x - y + 1 = 0 平行.(Ⅰ)求实数 a 的取值范围;(Ⅱ)是否存在实数 a ,使得函数 f ( x ) 的极小值为 1,若存在,求出实数 a 的值;若不存在,请说明理由;(Ⅲ)设 a = 1 , f ( x ) 的导数为 f '( x ) ,令 g ( x ) = f '( x + 1) - 3, x ∈ (0,+∞) ,2 x求证:g n ( x ) - x n- 1≥ 2 n - 2 (n ∈ N * ) .x n=3sin2x-………………………………………(2=sin(2x-)-…………………………………………(46)有最大值1.此时函数f(x)的值最大,最大值为数学(理科)参考答案一、选择题:DABCD ADAAD BC二、填空题:13.a=2,b=3;14.y2=12(x+2);15.21;16.①②⇒③;①③⇒②;②③⇒①.三、解答题:17.(Ⅰ)f(x)=3sin x cos x-cos2x1+cos2x22分)π162分)当2x-π=2kπ+π,(k∈Z),即x=kπ+π,(k∈Z)时,623sin(2x-π1.……(6分)2(Ⅱ)将y=sin(2x-π)-1的图像依次进行如下变换:62①把函数y=sin(2x-π)-1的图像向上平移1个单位长度,得到622函数y=sin(2x-π6)的图像;…………………………………………(8分)②把得到的函数图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(x-π)6的图像;…………………………………………(10分)③将函数y=sin(x-π)的图像向左平移π个单位长度,就得到66函数y=sin x的图2 ∴ a = ⎪⎝2⎭⎝ 2 ⎭ ⎪ ∴T = 1· ⎪ + 2· ⎪ + 3· ⎪ + Λ + n · ⎪⎝2⎭ ⎝2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭∴ T = 1· ⎪ + 2· ⎪ + Λ + (n - 1) ⎪ 1 n (n + 1) ………+ n · ⎪ + ·T = 4 - (4 + 2n) ⎪ + ⎝ 2 ⎭ - a = ⎪ < 10 -9⎝2⎭C ⨯ ⎪ ⨯ ⨯ C 2 ⨯ ⎪ =⎝3⎭ 3⎝ 2 ⎭像.…………………………………………(12 分)(注:如考生按向量进行变换,或改变变换顺序,只要正确,可给相应分数)18.(Ⅰ)由 2an +1= a + 1得 ann +1 - 1 = 1 2(a - 1) n可知数列{a - 1} 是以 a - 1 = 1 为首项,公比为 1 的等比数列. n 1n⎛ 1 ⎫ n -1+ 1 (n ∈ N * ) . …………………………………………(4分)从而有 b = na = n ·⎛ 1 ⎫n -1+ n .n nT = b + b +Λ + b n 1 2n n⎛ 1 ⎫ 0 ⎛ 1 ⎫1 ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -1 + (1 + 2 + Λ + n) ………①1 ⎛ 1 ⎫1 ⎛ 1 ⎫2 ⎛ 1 ⎫ n -12 n ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭ ⎛ 1 ⎫ n⎝ 2 ⎭ 2 2②n ①⎛1⎫ n- ② 并 整 理 得n(n + 1) . ………………(8 分)2(Ⅱ) a n +1n⎛ 1 ⎫ n两边取常用对数得: n > 9 ≈ 29.9lg 2∴ 使 不 等 式 成 立 的 最 小 正 整 数30. ………………………………(12 分)19.(Ⅰ) 甲、乙各投中三次的概率:n 为⎛ 2 ⎫ 3 ⎛ 1 ⎫ 3 ⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(1 分) 27甲、 乙各投中两次的概率:23 3 ⎛ 2 ⎫ 2 1 ⎛ 1 ⎫ 3 1 , …………………………………( 2 61 ,…………………………( 3C 1 ⨯ ⎪ ⨯ ⎪ ⨯ C 1 ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭ 12⎪ ⨯ 1 - ⎪ =2 ,………( 9C ⨯ ⎪ ⨯ ⨯ ⎢C 0 ⨯ ⎪ + C 1 ⨯ ⎪ ⎥=⎝ 3 ⎭ 3 ⎢ 3 ⎝ 2 ⎭ ⎝ 2 ⎭ ⎥ 9C 1 ⨯ ⎪ ⨯ ⎪ ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭分)甲、 乙各投中一次的概率:⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 333 分)甲、 乙两人均投三次,三次都不中的概率:⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(4 216分)∴甲、乙平局的概率是: 1 + 1 + 1 + 1 = 7 . ……………27 6 12 216 24(6 分)(Ⅱ) 甲投中三球获胜的概率:⎛ 2 ⎫ 3 ⎛ 1 ⎫ 7 , …………………………………⎝ 3 ⎭ ⎝ 8 ⎭ 27(8 分)甲投中两球获胜的概率:⎛ 2 ⎫ 2 1 ⎡ ⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3 ⎤ 2 3 3分)甲投中一球获胜的概率:3⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 31 , (36)(10 分)甲获胜的概率为: 7 + 2 + 1 = 55 .………………………27 9 36 108(12 分)20.(Ⅰ) 当 M 在中点时,PC ⊥ 平面 MDB ………………………………(1 分)连结 BM 、DM ,取 AD 的中点 N ,连结 PN 、NB . ∵ PN ⊥ AD 且面 P AD ⊥ 面 ABCD , ∴ PN ⊥ 面 ABCD . 在 Rt ∆PNB 中, PN = 3, NB = 2, ∴ PB = 5,CM =又 BC = 5 . ∴ BM ⊥ PC……………………………………(3分)又 PD = DC = 2, 又 DM I BM = M ,∴ DM ⊥ PC ,∴ PC ⊥ 面 MDB . ……………………(4分)(Ⅱ) AB // CD, C D ⊂ 面 PDC , AB ⊄ 面 PDC ,∴ AB // 面 PDC .∴AB 到面 PDC 的距离即 A 到面 PDC 的距离. ………………(6 分)Θ CD ⊥ DA, C D ⊥ PN , DA I PN = N , ∴ CD ⊥ 面 PAD ,又 DC ⊂ 面 PDC ,∴面 P AD ⊥ 面 PDC .作 AE ⊥ PD ,AE 就是 A 到面 PDC 的距离,∴ AE = 3 , 即 AB 到平面 PDC 的距离为 3 .………………(8 分)(Ⅲ)过 M 作 MF ⊥ BD 于 F ,连结 CF .Θ PC ⊥ 面 MBD ,∴ ∠MFC 就是二面角 G - BD - C 的平面角. ………………(10分)在 ∆BDC 中, BD = 5, DC = 2, BC = 5,∴ CF = 4 5, 又 CM = 2,5∴ s in ∠MFC = 10 . CF 4即二面角 G - BD - C 的大小是 arcsin 10 .4……………(12分)21.(Ⅰ) 设 B ( x , y ) 、 B ( x ,- y ) 且 y ≠ 0 ,由题意 A (-a,0) 、 A (a,0) ,1212则直线 A 1B 1 的方程为: y = x + a ………①y x + a0 0直线 A 2B 2 的方程为: - y = x - a ………②…………(2y x - a0 0分)x , 由①、②可得 ⎪⎪⎨ 0⎩a 2 b 2b 2 x + a x - a x 2 - a 2 a 2 y a 2 y∴O 、P 、Q 三点共线,………………………………yy⎧ a 2 x = ⎪ y = ay . ⎪ 0 x………………………………( 4分)a 4 a 2 y 2又点 B ( x , y ) 在双曲线上,所以有 x 2 - x 2 = 1 ,1 0 0 整理得 x2 + y 2 = 1 ,a 2b 2所以点 M 的轨迹 E 的方程为 x 2 + y 2 = 1( x ≠ 0 且 y ≠ 0 ).……a 2b 2(6 分)(Ⅱ) k 1+k 2+k 3+k 4 为定值.设 P ( x , y ) ,则 x 2 - a 2 = a 2 y 12 ,1 1 1分)则 k + k = y 1 + y 1 = 2 x 1 y 1 = 2b 2 · x 1 ……③ 1 2 1 1 1 1设 Q ( x , y ) ,则同理可得 k + k = - 2b 2 · x 2 ……④ ………(82 234 2设 O 为原点,则 A P + A P = 2OP , A Q + A Q = 2OQ .1212Θ A P + A P = m ( A Q + A Q)∴ O P = mOQ1 212(10 分)∴ x 1 = x 2 , 再由③、④可得,k 1+k 2+k 3+k 4 = 0 yy12∴k 1+k 2+k 3+k 4 为定值 0.………………………………(12 分)另解:由 A P + A P = m ( A Q + A Q ) ,1212得 ( x + a , y ) + ( x - a , y ) = m [( x + a , y ) + ( x - a , y )] 111122 2 2即 ( x , y ) = m ( x , y )∴ x1 = x2 ,112212再由③、④可得,k 1+k 2+k 3+k 4 = 022.(Ⅰ) ∵ f ( x ) = 1 x 3 + ax 2 - bx + 13xx 10 0 3∴ -a + a 2 + 2a = 4∴ a = - < -2 ,- 3 = x 2 + 1= x +∴ f '( x ) = x 2 + 2ax - b由题意 f '(1) = 1 + 2a - b = 1∴ b = 2a……①………………………………………(2 分)∵ f ( x ) 有极值,∴方程 f '( x ) = x 2 + 2ax - b = 0 有两个不等实根.∴ ∆ = 4a 2 + 4b > 0∴ a 2 + b > 0 ……②由①、②可得, a 2 + 2a > 0∴ a < -2 或a > 0 .故实数 a 的取值范围是 a ∈ (-∞,-2) Y (0,+∞)…………(4 分)(Ⅱ)存在 a = - 8 ,………………………………………(5 分)3由(Ⅰ)可知 f '( x ) = x 2 + 2ax - b ,令 f '( x ) = 0 ,∴ x = -a + a 2 + 2a , x = -a - a 2 + 2a12(-∞, x )( x , x )1 12x 2( x ,+∞)2f '( x )f ( x )+ - +单调增 极大值 单调减 极小值 单调增(7 分)(8 分)∴ x = x 时, f ( x ) 取极小值, ………………………………………2则 f ( x ) = 1 x 3 + ax 2 - 2ax + 1 = 1, ∴ x = 0 或 x 2 + 3ax - 6a = 0 , 2 2 2 2 2 2若 x = 0 ,即 - a + a 2 + 2a = 0 ,则 a = 0 (舍) ………………2若 x 2 + 3ax - 6a = 0 ,又 f '( x ) = 0 ,∴ x 2 + 2ax - 2a = 0 ,22222∴ ax - 4a = 0 ,Θ a ≠ 0∴ x = 4 , 2283∴存在实数 a = - 8 , 使 得 函 数 f ( x ) 的 极 小 值 为31.…………(9 分)(Ⅲ) Θ a = 1 , f '( x ) = x 2 + x - 12 ∴ f '( x + 1) = x 2 + 3x + 1 ,∴ f '( x + 1)1 , x x x∴ g ( x ) = x + ,x ∈ (0,+∞) .…………………………………( 10= x + ⎪ - x n - = C x ⎪+ C2 x n -2 ⎪ +Λ + C n -2 x 2 ⎪ + C n -1 x ⎪ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ 2 ⎢⎣ n ⎝ x n -2 ⎭ ⎝ ⎝ x n -2 + x n -2 ⎪⎥ 2 ⎣ x n -2 x n -4⎢1 x分)g n ( x ) - x n -1 ⎛ 1 ⎫ nx n ⎝ x ⎭ 1 x n⎛ 1 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -2 ⎛ 1 ⎫ n -1 1 n -1 n n n n= 1 ⎡ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 C 1 x n -2 + ⎪ + C 2 x n -4 + ⎪ + Λ + C n -1 n n ⎫⎤ ⎭⎦≥ 1 ⎡C 1 2 x n -2 · 1 + C 2 2 x n -4 · 1 + Λ + C n -1 2 n n n 1 x n -2 ⎤·x n -2 ⎥ ⎦= C 1 + C 2 + Λ + C n -1 = 2 n - 2n n n∴其中等号成立的条件为 x = 1 .…………………………………(13 分)∴ g n ( x ) - x n - 1 ≥ 2 n - 2 (n ∈ N * )…………………………( 14x n分)。
2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)

盐城市、南京市2020届高三年级第一次模拟考试数 学 理 试 题2020.01(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡...相应的位置上.......) 1.已知集合A =(0,+∞),全集U =R ,则U A ð= . 答案:(-∞,0] 考点:集合及其补集解析:∵集合A =(0,+∞),全集U =R ,则U A ð=(-∞,0]. 2.设复数2z i =+,其中i 为虚数单位,则z z ⋅= . 答案:5 考点:复数解析:∵2z i =+,∴2(2)(2)45z z i i i ⋅=+-=-=.3.学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为 . 答案:23考点:等可能事件的概率解析:所有基本事件数为3,包含甲的基本事件数为2,所以概率为23. 4.命题“θ∀∈R ,cos θ+sin θ>1 ”的否定是 命题(填“真”或“假”). 答案:真 考点:命题的否定解析:当θπ=-时,cos θ+sin θ=﹣1<1,所以原命题为假命题,故其否定为真命题. 5.运行如图所示的伪代码,则输出的I 的值为 .答案:6考点:算法(伪代码)解析:第一遍循环 S =0,I =1,第二轮循环S =1,I =2 ,第三轮循环S =3,I =3,第四轮循环S =6,I=4,第五轮循环S =10,I =5,第六轮循环S =15,I =6,所以输出的 I =6. 6.已知样本7,8,9,x ,y 的平均数是9,且xy =110,则此样本的方差是 . 答案:2考点:平均数,方差解析:依题可得x +y =21,不妨设x <y ,解得x =10,y =11,所以方差为22222210(1)(2)5+++-+-=2.7.在平面直角坐标系xOy 中,抛物线y 2=4x 上的点P 到其焦点的距离为3,则点P 到点O 的距离为 .答案:考点:抛物线及其性质解析:抛物线的准线为x =−1,所以P 横坐标为2,带入抛物线方程可得P(2,±),所以OP=8.若数列{}n a 是公差不为0的等差数列,ln 1a 、ln 2a 、ln 5a 成等差数列,则21a a 的值为 . 答案:3考点:等差中项,等差数列的通项公式 解析:∵ln 1a 、ln 2a 、ln 5a 成等差数列,∴2152a a a =,故2111(4)()a a d a d +=+,又公差不为0,解得12d a =,∴21111133a a d a a a a +===. 9.在三棱柱ABC —A 1B 1C 1中,点P 是棱CC 1上一点,记三棱柱ABC —A 1B 1C 1与四棱锥P —ABB 1A 1的体积分别为V 1与V 2,则21V V = . 答案:23考点:棱柱棱锥的体积解析:1111121123C ABB A C A B C V V V V V ==-=——,所以2123V V =.10.设函数()sin()f x x ωϕ=+ (ω>0,0<ϕ<2π)的图象与y轴交点的纵坐标为2, y 轴右侧第一个最低点的横坐标为6π,则ω的值为 . 答案:7考点:三角函数的图像与性质解析:∵()f x 的图象与y轴交点的纵坐标为2,∴sin ϕ=,又0<ϕ<2π,∴3πϕ=, ∵y 轴右侧第一个最低点的横坐标为6π, ∴3632ππωπ+=,解得ω=7. 11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),11AH AB AC 42=+u u u r u u u r u u u r,则 cos ∠BAC 的值为 .考点:平面向量解析:∵H 是△ABC 的垂心, ∴AH ⊥BC ,BH ⊥AC ,∵11AH AB AC 42=+u u u r u u u r u u u r,∴1131BH AH AB AB AC AB AB AC 4242=-=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r则11AH BC (AB AC)(AC AB)042⋅=+⋅-=u u u r u u u r u u ur u u u r u u u r u u u r ,31BH AC (AB AC)AC 042⋅=-+⋅=u u u r u u u r u u ur u u u r u u u r ,即22111AC AB AC AB 0244--⋅=u u u r u u u r u u u r u u u r ,231AC AB AC 042-⋅+=u u ur u u u r u u u r ,化简得:22111cos BAC 0244b c bc --∠=,231cos BAC+042bc b -∠=则2222 cos BAC3b c bbc c-∠==,得3b c=,从而3cos BAC∠=.12.若无穷数列{}cos()nω(ω∈R)是等差数列,则其前10项的和为.答案:10考点:等差数列解析:若等差数列公差为d,则cos()cos(1)n d nωω=+-,若d>0,则当1cos1ndω->+时,cos()1nω>,若d<0,则当1cos1ndω-->+时,cos()1nω<-,∴d=0,可得cos2cosωω=,解得cos1ω=或1cos2ω=-(舍去),∴其前10项的和为10.13.已知集合P={}()16x y x x y y+=,,集合Q={}12()x y kx b y kx b+≤≤+,,若P⊆Q,则1221b bk-+的最小值为.答案:4考点:解析几何之直线与圆、双曲线的问题解析:画出集合P的图象如图所示,第一象限为四分之一圆,第二象限,第四象限均为双曲线的一部分,且渐近线均为y x=-,所以k=−1,所求式为两直线之间的距离的最小值,所以1b=,2y kx b=+与圆相切时最小,此时两直线间距离为圆半径4,所以最小值为4.14.若对任意实数x∈(-∞,1],都有2121xex ax≤-+成立,则实数a的值为.答案:12-考点:函数与不等式,绝对值函数解析:题目可以转化为:对任意实数x ∈(-∞,1],都有2211xx ax e -+≥成立,令221()x x ax f x e -+=,则(1)[(21)]()xx x a f x e --+'=,当211a +≥时,()0f x '≤,故()f x 在(-∞,1]单调递减,若(1)0f ≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(1)0f >,要使()1f x ≥恒成立,则(1)f =121a e -≥,解得12ea ≤-与211a +≥矛盾.当211a +<时,此时()f x 在(-∞,21a +)单调递减,在(21a +,1)单调递增,此时min ()(21)f x f a =+,若(21)0f a +≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(21)0f a +>,要使()1f x ≥恒成立,则min 2122()(21)a a f x f a e ++=+=1≥. 接下来令211a t +=<,不等式21221a a e++≥可转化为10te t --≤, 设()1tg t e t =--,则()1tg t e '=-,则()g t 在(-∞,0)单调递减,在(0,1)单调递增,当t =0时,()g t 有最小值为0,即()0g t ≥,又我们要解的不等式是()0g t ≤,故()0g t =,此时210a +=,∴12a =-. 二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)已知△ABC 满足sin(B )2cos B 6π+=.(1)若cosC AC =3,求AB ; (2)若A ∈(0,3π),且cos(B ﹣A)=45,求sinA .解:16.(本题满分14分)如图,长方体ABCD —A 1B 1C 1D 1中,已知底面ABCD 是正方形,点P 是侧棱CC 1上的一点. (1)若A 1C//平面PBD ,求1PC PC的值; (2)求证:BD ⊥A 1P .证明:17.(本题满分14分)如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从⊙O 中剪裁出两块全等的圆形铁皮⊙P 与⊙Q 做圆柱的底面,剪裁出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A ,B 在⊙O 上,点P ,Q 在⊙O 的一条直径上,AB ∥PQ ,⊙P ,⊙Q 分别与直线BC 、AD 相切,都与⊙O 内切.(1)求圆形铁皮⊙P 半径的取值范围;(2)请确定圆形铁皮⊙P 与⊙Q 半径的值,使得油桶的体积最大.(不取近似值)解:18.(本题满分16分)设椭圆C :22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,离心率是e ,动点P(0x ,0y ) 在椭圆C上运动.当PF 2⊥x 轴时,0x =1,0y =e .(1)求椭圆C 的方程;(2)延长PF 1,PF 2分别交椭圆于点A ,B (A ,B 不重合).设11AF FP λ=u u u r u u u r ,22BF F P μ=u u u r u u u r,求λμ+的最小值.解:19.(本题满分16分)定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“M(q )数列”.设数列{}n b 中11b =,37b =.(1)若2b =4,且数列{}n b 是“M(q )数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为“M(q )数列”,并说明理由;(3)若数列{}n b 是“M(2)数列”,是否存在正整数m ,n ,使得4039404020192019mn b b <<?若存在,请求出所有满足条件的正整数m ,n ;若不存在,请说明理由. 解:20.(本题满分16分)若函数()x xf x e aemx -=--(m ∈R)为奇函数,且0x x =时()f x 有极小值0()f x .(1)求实数a 的值; (2)求实数m 的取值范围; (3)若02()f x e≥-恒成立,求实数m 的取值范围. 解:附加题,共40分21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤.A .选修4—2:矩阵与变换已知圆C 经矩阵M = 33 2a ⎡⎤⎢⎥-⎣⎦变换后得到圆C ′:2213x y +=,求实数a 的值. 解:B .选修4—4:坐标系与参数方程在极坐标系中,直线cos 2sin m ρθρθ+=被曲线4sin ρθ=截得的弦为AB ,当AB 是最长弦时,求实数m 的值.解:C .选修4—5:不等式选讲已知正实数 a ,b ,c 满足1231a b c++=,求23a b c ++的最小值. 解:【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)如图,AA 1,BB 1是圆柱的两条母线,A 1B 1,AB 分别经过上下底面的圆心O 1,O ,CD 是下底面与AB 垂直的直径,CD =2.(1)若AA 1=3,求异面直线A 1C 与B 1D 所成角的余弦值;(2)若二面角A 1—CD —B 1的大小为3,求母线AA 1的长.解:23.(本小题满分10分)设22201221(12)n i n n i x a a x a x a x =-=++++∑L (n N *∈),记0242n n S a a a a =++++L .(1)求n S ;(2)记123123(1)n nn n n n n n T S C S C S C S C =-+-++-L ,求证:36n T n ≥恒成立. 解:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|1}A x x =<,2{|log 1}B x x =<,则( )A .{|1}AB x x =<U B .{|2}A B x x =<UC .{|1}A B x x =<ID .{|2}A B x x =<I 【答案】B {|1}A x x =<,{|02}B x x =<<,{|01}A B x x =<<I ,{|2}A B x x =<U . 2.i 是虚数单位,4i1iz =-,则||z =( ) A .2 B .22 C .4 D .42 【答案】B 由题意得4i 4i(1i)2i(1i)22i 1i (1i)(1i)z +===+=-+--+,∴22||(2)222z =-+=.故选B . 3.已知某公司按照工作年限发放年终奖金并且进行年终表彰.若该公司有工作10年以上的员工100人,工作510:年的员工400人,工作05:年的员工200人,现按照工作年限进行分层抽样,在公司的所有员工中抽取28人作为员工代表上台接受表彰,则工作510:年的员工代表有( ) A .8人 B .16人 C .4人 D .24人【答案】B 依题意知,该公司的所有员工中工作10年以上、工作510:年、工作05:年的员工人数比例为1:4:2, 所以工作510:年的员工代表有428167⨯=. 4.已知向量||2=a ,||1=b ,(2)2⋅-=a a b ,则a 与b 的夹角为( ) A .30︒ B .60︒ C .90︒ D .150︒【答案】B ∵2(2)2422⋅-=-⋅=-⋅=a a b a a b a b ,∴1⋅=a b .设a 与b 的夹角为θ,则1cos ||||2θ⋅==a b a b ,又0180θ︒≤≤︒,∴60θ=︒,即a 与b 的夹角为60︒.5.长方体1111ABCD A B C D -,1AB =,2AD =,13AA =,则异面直线11A B 与1AC 所成角的余弦值为( ) A .1414 B .8314 C .1313D .13【答案】A【解析】∵1111C D A B ∥,∴异面直线11A B 与1AC 所成的角即为11C D 与1AC 所成的角11AC D ∠, 在11AC D Rt △中,111C D =,222112314AC =++=,∴11111114cos 1414C D AC D AC ∠===,故选A . 6.执行下图的程序框图,若输出的结果为10,则判断框中的条件是( )A .4?i <B .5?i <C .6?i <D .7?i < 【答案】B【解析】由程序框图可知,该程序框图的功能是计算(1)1232i i S i +=++++=L 的值, 又10S =,所以4i =,当15i +=时退出循环,结合选项可知,应填5?i <.6题 7题7.函数()sin()f x A x ωϕ=+(其中0A >,0ω>)的部分图象如图所示,将函数()f x 的图象 向左平移π6个单位长度,得到()y g x =的图象,则下列说法不正确的是( ) A .函数()g x 为奇函数 B .函数()g x 的最大值为3 C .函数()g x 的最小正周期为π D .函数()g x 在π(0,)3上单调递增【答案】D 由图可知3A =,35ππ3π()41234T =--=,∴πT =,2ω=, 将点5π(,3)12代入3sin(2)y x ϕ=+,得π2π3k ϕ=-+()k ∈Z ,故π()3sin(2)3f x x =-,向左平移π6个单位长度得ππ()3sin[2()]3sin 263y g x x x ==+-=,故A ,B ,C 正确,故选D .8.随机设置某交通路口亮红绿灯的时间,通过对路口交通情况的调查,确定相邻两次亮红灯与亮绿灯的时间之和为90秒,且一次亮红灯的时间不超过60秒,一次亮绿灯的时间不超过50秒,则亮绿灯的时间不小于亮红灯的时间的概率为( )A .14 B .19 C .59 D .511【答案】A 设亮绿灯的时间随机设置为t 秒,则50t ≤,亮红灯的时间为9060t -≤,所以3050t ≤≤, 亮绿灯的时间不小于亮红灯的时间即为45t ≥,由几何概型的概率公式知:P =50−4550−30=14. 9.已知函数1()1ln f x x x=--,则()y f x =的图象大致为( )A .B .C .D .【答案】A ∵1()1ln f x x x=--,∴1ln 0x x --≠,令()1ln g x x x =--,∵(1)0g =,∴函数的定义域为(0,1)(1,)+∞U ,可得211()(1ln )x f x x x x -'=-⋅--, 当(0,1)x ∈时,()0f x '>,函数单调递增;当(1,)x ∈+∞时,()0f x '<,函数单调递减,∴A 选项图象符合题意10.已知圆222x y r +=(0)r >与抛物线22y x =交于A ,B 两点,与抛物线的准线交C ,D 两点,若四边形ABCD 是矩形,则r 等于( ) A .22B .2C .52 D .5 【答案】C 由题意可得,抛物线的准线方程为12x =-,画出图形如图所示:在222x y r +=(0)r >中,当12x =-时,则有2214y r =-.① 由22y x =,得22y x =,代入222x y r +=,消去x 整理得422440y y r +-=.②结合题意可得点A ,D 的纵坐标相等,故①②中的y 相等, 由①②两式消去2y ,得222211()4()4044r r r -+--=, 整理得42168150r r --=,解得254r =或234r =-(舍去),∴52r =,故选C . 11.在ABC △中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知5a =,2534ABC S =△,且2222cos cos b c a ac C c A +-=⋅+⋅,则sin sin B C +=( )A .3B . 9√32C .3D .33【答案】C 在ABC △中,由余弦定理得22222222cos cos 22a b c b c a ac C c A ac c bc ab bc+-+-⋅+⋅=⋅+⋅=,∵2222cos cos b c a ac C c A +-=⋅+⋅,∴222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,∵0πA <<,∴π3A =,∵2534ABC S =△,∴13253sin 244bc A bc ==,∴25bc =,即22225b c a +-=, ∵5a =,∴2250b c +=,由222550bc b c =⎧⎨+=⎩,解得5b c ==,∴a b c ==,∴π3B C A ===, ∴π3sin sin 2sin2332B C +==⨯=.12.已知函数24,0(),0x x x x f x e x x⎧+≤⎪=⎨>⎪⎩,()()g x f x ax =-,若()g x 有4个零点,则a 的取值范围为( )A .2(,4)4eB .(,4)4eC .(,)4e +∞D .2(,)4e +∞【答案】A 因为()()g x f x ax =-有4个零点,即函数()y f x =与y ax =有4个交点,当0x >时,2(1)()xx ef x x-'=, 所以(0,1)x ∈时,()0f x '<,()f x 单调递减;(1,)x ∈+∞时,()0f x '>,()f x 单调递增, 画出()f x 的图象如图所示,求出()f x 的过原点的切线,()f x 在0x =处的切线1l 的斜率为2100(4)|(24)|4x x k x x x =='=+=+=, 设()f x 的过原点的切线2l 的切点为000(,)x e P x x 0(0)x ≠,切线2l 的斜率为2k ,又2(1)()x x e x e x x -'=,故000220020(1)x x x e k x e x k x ⎧-=⎪⎪⎪⎨⎪⎪=⎪⎩,解得02x =,224e k =, 由图可知()y f x =与y ax =有4个交点,则21k a k <<,所以244ea <<.二、填空题:本大题共4小题,每小题5分,共20分. 13.若5(2)()ax x x+-展开式的常数项等于80,则a = . 【答案】2【解析】5()a x x -的通项公式为55525155C (1)(1)C r r r r r r r r r r T a x x a x ----+=⋅⋅⋅-⋅=-⋅,∴5(2)()a x x x+-展开式中的常数项为235C 80a =,∴2a =.14.设x ,y 满足约束条件10103x y x y x -+≥⎧⎪++≥⎨⎪≤⎩,则23z x y =-的最小值是 .【答案】-6【解析】根据题意,画出可行域与目标函数线如图所示,由103x y x -+=⎧⎨=⎩,得34x y =⎧⎨=⎩,由图可知目标函数在点(3,4)A 取最小值23346z =⨯-⨯=-.15.已知双曲线22:13y C x -=的左右焦点分别为1F 、2F ,点A 在双曲线上,点M 的坐标为2(,0)3,且M 到直线1AF ,2AF 的距离相等,则1||AF = .【答案】4【解析】由题意得1(2,0)F -,2(2,0)F ,点A 在双曲线的右支上,又点M 的坐标为2(,0)3, ∴128||233F M =+=,224||233MF =-=. 画出图形如图所示,1MP AF ⊥,2MQ AF ⊥,垂足分别为P ,Q ,由题意得||||MP MQ =,∴AM 为12F AF ∠的平分线,∴1122||||2||||AF F M AF MF ==,即12||2||AF AF =, 又12||||2AF AF -=,∴1||4AF =,2||2AF =.故答案为4.16.在平面直角坐标系xOy 中,已知圆22:1O x y +=,直线:l y x a =+,过直线l 上点P 作圆O 的切线PA ,PB ,切点分别为A ,B ,若存在点P 使得32PA PB PO +=u u u r u u u r u u u r,则实数a 的取值范围是 .【答案】[−2√2,2√2]【解析】取AB 中点H ,OH AB ⊥,∵PA PB =,H 为AB 中点,∴90AHP ∠=︒,∴O ,H ,P 三点在一条直线上,2PA PB PH +=u u u r u u u r u u u r,322PH PO =u u u r u u u r ,34PH PO =u u u r u u u r ,设||3PH x =u u u r ,∴||4PO x =uuu r,∴OH x =,在AHO Rt △中,得222r OH AH -=,221AH x =-,①,在OAP 中运用射影定理得2AH OH PH =⋅,2233AH x x x =⋅=,②, 联立①②,2231x x =-,214x =,12x =,||42OP x ==, ∴P 点以O 为圆心,2r =的圆上,P 轨迹224x y +=, 又∵P 在y x a =+上,直线与圆有交点,∴||211a d =≤+,∴2222a -≤≤. 三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{}n a 满足132********n n n a a a a +-++++=-L ()n ∈*N ,4log n n b a =. (1)求数列{}n a 的通项公式; (2)求数列11{}n n b b +⋅的前n 项和n T .【解析】(1)∵132********n n n a a a a +-++++=-L ,∴31212222222nn n a a a a --++++=-L (2)n ≥, 两式相减得112222n n n nn a +-=-=,∴212n n a -=(2)n ≥. 又当1n =时,12a =满足上式,∴212n n a -=()n ∈*N . ∴数列{}n a 的通项公式212n n a -=. (2)由(1)得21421log 22n n n b --==, ∴114112()(21)(21)2121n n b b n n n n +==-⋅-+-+, ∴12231111111112[(1)()()]3352121n n n T b b b b b b n n +=+++=-+-++-⋅⋅-+L L 142(1)2121nn n =-=++.18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,22AD BC ==,90BAD ABC ∠=∠=︒.(1)证明:PC BC ⊥;(2)若直线PC 与平面PAD 所成角为30︒,求二面角B PC D --的余弦值. 【解析】(1)取AD 的中点为O ,连接PO ,CO , ∵PAD △为等边三角形,∴PO AD ⊥.底面ABCD 中,可得四边形ABCO 为矩形,∴CO AD ⊥,∵0PO CO =I ,∴AD ⊥平面POC ,PC ⊂平面POC ,AD PC ⊥. 又AD BC ∥,所以PC BC ⊥.(2)由面PAD ⊥面ABCD ,PO AD ⊥知,∴PO ⊥平面ABCD ,OP ,OD ,OC 两两垂直,直线PC 与平面PAD 所成角为30︒, 即30CPO ∠=︒,由2AD =,知3PO =,得1CO =.分别以OC u u u r ,OD u u u r ,OP uuu r的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz -,则(0,0,3)P ,(0,1,0)D ,(1,0,0)C ,(1,1,0)B -,(0,1,0)BC =u u u r ,(1,0,3)PC =-u u u r ,(1,1,0)CD =-u u u r,设平面PBC 的法向量为(,,)x y z =n ,∴030y x z =⎧⎪⎨-=⎪⎩,则(3,0,1)=n .设平面PDC 的法向量为(,,)x y z =m ,∴030x y x z -=⎧⎪⎨-=⎪⎩,则(3,3,1)=m .427|cos ,|||||727⋅<>===m n m n m n , ∴二面角B PC D --的余弦值为277-.19.(12分)某学校共有1000名学生,其中男生400人,为了解该校学生在学校的月消费情况, 采取分层抽样随机抽取了100名学生进行调查,月消费金额分布在450~950之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示:将月消费金额不低于元的学生称为“高消费群”.(1)求a 的值,并估计该校学生月消费金额的平均数(同一组中的数据用该组区间的中点值作代表);(2)现采用分层抽样的方式从月消费金额落在[550,650),[750,850)内的两组学生中抽取10人,再从这10人中随机抽取3人,记被抽取的3名学生中属于“高消费群”的学生人数为随机变量X ,求X 的分布列及数学期望;(3)若样本中属于“高消费群”的女生有10人,完成下列22⨯列联表,并判断是否有97.5%的把握认为该校学生属于“高消费群”与“性别”有关?(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)解:(1)由题意知100(0.00150.00250.00150.001)1a ++++=,解得0.0035a =,样本的平均数为:5000.156000.357000.258000.159000.10670x =⨯+⨯+⨯+⨯+⨯=(元), 所以估计该校学生月消费金额的平均数为670元.(2)由题意,从[550,650)中抽取7人,从[750,850)中抽取3人.随机变量X 的所有可能取值有0,1,2,3,337310C C ()C k k P X k -==(0,1,2,3)k =,所以,随机变量X 的分布列为随机变量X 的数学期望35632119()012312012012012010E X =⨯+⨯+⨯+⨯=. (3)由题可知,样本中男生40人,女生60人,属于“高消费群”的25人,其中女生10人; 得出以下22⨯列联表:750222()100(10251550)505.556 5.024()()()()406025759n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有97.5%的把握认为该校学生属于“高消费群”与“性别”有关.20.(12分)已知椭圆22221x y a b +=(0)a b >>的右焦点F 与抛物线28y x =的焦点重合,且椭圆的离心率为63,过x 轴正半轴一点(,0)m 且斜率为33-的直线l 交椭圆于A ,B 两点.(1)求椭圆的标准方程;(2)是否存在实数m 使以线段AB 为直径的圆经过点F ,若存在,求出实数m 的值;若不存在说明理由. 解:(1)∵抛物线28y x =的焦点是(2,0),∴(2,0)F ,∴2c =,又∵椭圆的离心率为63,即63c a =,∴6a =,26a =,则2222b a c =-=,故椭圆的方程为22162x y +=.(2)由题意得直线l 的方程为3()3y x m =--(0)m >, 由221623()3x y y x m ⎧+=⎪⎪⎨⎪=--⎪⎩,消去y 得222260x mx m -+-=, 由2248(6)0Δm m =-->,解得2323m -<<,又0m >,∴023m <<,设11(,)A x y ,22(,)B x y ,则12x x m +=,21262m x x -=,∴212121212331[()][()]()33333m m y y x m x m x x x x =--⋅--=-++. ∵11(2,)FA x y =-u u u r ,22(2,)FB x y =-u u u r,∴212121212462(3)(2)(2)()43333m m m m FA FB x x y y x x x x +-⋅=--+=-+++=u u u r u u u r , 若存在m 使以线段AB 为直径的圆经过点F ,则必有0FA FB ⋅=u u u r u u u r, 即2(3)03m m -=,解得0m =或3m =. 又023m <<,∴3m =,即存在3m =使以线段AB 为直径的圆经过点.21.(12分)已知函数1()ln 12m f x x x =+-()m ∈R 的两个零点为1x ,2x 12()x x <.(1)求实数m 的取值范围;(2)求证:12112x x e+>. 解:(1)2212()22m x mf x x x x -'=-+=, 当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,不可能有两个零点; 当0m >时,由()0f x '>,可解得2x m >;由()0f x '<,可解得02x m <<, ∴()f x 在(0,2)m 上单调递减,在(2,)m +∞上单调递增,∴min 1()(2)ln 2122m f x f m m m ==+-, 要使得()f x 在(0,)+∞上有两个零点,则11ln 21022m +-<,解得02e m <<,则m 的取值范围为(0,)2e . (2)令1t x=,则1111()ln()1ln 122f x m mt t x x =--=--,由题意知方程1ln 102mt t --=有两个根,即方程ln 22t m t+=有两个根,不妨设111t x =,221t x =,令ln 2()2t h t t+=,则当1(0,)t e ∈时,()h t 单调递增,1(,)t e∈+∞时,()h t 单调递减,综上可知,1210t t e >>>, 令2()()()x h x h x e ϕ=--,下面证()0x ϕ<对任意的1(0,)x e∈恒成立,2221ln()21ln ()()()222()x x e x h x h x e x x eϕ-----'''=+-=+-, ∵1(0,)x e ∈,∴ln 10x -->,222()x x e<-,∴222221ln()2ln ()1ln ()2222()2()2()x x x x e e x x x x e e eϕ--------'>+=---, 又∵1(0,)x e∈,∴22221()()2x xe x x e e +--≤=, ∴()0x ϕ'>,则()x ϕ在1(0,)e 单调递增,∴1()()0x eϕϕ<=,∵2222()()()0t h t h t e ϕ=--<,∴222()()h t h t e<-,又∵12()()h t h t =,∴122()()h t h t e<-,∴122t t e >-,∴122t t e +>,即12112x x e +>.2020届尼尔基一中高三理科数学模拟试卷7(教师版)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】平面直角坐标系中,直线l 的参数方程为131x t y t =+⎧⎪⎨=+⎪⎩(t 为参数),以原点为极点,x 轴正半轴为 极轴建立极坐标系,曲线C 的极坐标方程为22cos 1cos θρθ=-. (1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)已知与直线l 平行的直线l '过点(2,0)M ,且与曲线C 交于A ,B 两点,试求||||MA MB ⋅.【解析】(1)把直线l 的参数方程化为普通方程为3(1)1y x =-+,即3130x y -+-=. 由22cos 1cos θρθ=-,可得22(1cos )2cos ρθρθ-=,∴曲线C 的直角坐标方程为22y x =. (2)直线l 的倾斜角为π3,∴直线l '的倾斜角也为π3, 又直线l '过点(2,0)M ,∴直线l '的参数方程为12232x t y t ⎧'=+⎪⎪⎨⎪'=⎪⎩(t '为参数),将其代入曲线C 的直角坐标方程可得234160t t ''--=,设点A ,B 对应的参数分别为1t ',2t ', 由一元二次方程的根与系数的关系知12163t t ''=-,1243t t ''+=,∴16||||3MA MB ⋅=. 23.(10分)【选修4-5:不等式选讲】设函数()|||2|([0,2])f x x a x a a =+---∈.(1)当1a =时,解不等式()1f x ≥;(2)求证:()2f x ≤.【解析】(1)当1a =时,解不等式()1f x ≥等价于|1||1|1x x +--≥,①当1x ≤-时,不等式化为111x x --+-≥,原不等式无实数解;②当11x -<<时,不等式化为111x x ++-≥,解得112x ≤<; ③当1x ≥时,不等式化为111x x +-+≥,解得1x ≥,综上所述,不等式()1f x ≥的解集为1[,)2+∞.(2)()|()(2)|2f x x a x a a a ≤+---=+-,∵[0,2]a ∈,∴(2)2(2)a a a a +-≥-,∴22[(2)](2)a a a a +-≥+-, ∴2(2)4a a +-≤,22a a +-≤,∴()2f x ≤.。