正弦函数、余弦函数的单调性与最值.pdf

合集下载

1.4.2第2课时 正、余弦函数的单调性与最值 课件

1.4.2第2课时 正、余弦函数的单调性与最值 课件
栏目 导引
第一章 三角函数
(4)确定含有正弦函数或余弦函数的较复杂函数的单调性时, 要注意使用复杂函数的判断方法来判断. 2.解析正弦函数、余弦函数的最值 (1)明确正弦、余弦函数的有界性,即|sin x|≤1,|cos x|≤1. (2)对有些函数,其最值不一定就是1或-1,要依赖函数的定 义域来决定. (3)形如y=Asin(ωx+φ)(A>0,ω>0)的函数求最值时,通常利 用“整体代换”,即令ωx+φ=z,将函数转化为y=Asin z的 形式求最值.
第一章 三角函数
栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π+2kπ,74π+ 2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
【名师点评】 正弦、余弦函数单调区间的求解技巧: (1)结合正弦、余弦函数的图象,熟记它们的单调区间. (2)确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法:采 用“换元”法整体代换,将ωx+φ看作一个整体,可令“z= ωx+φ”,即通过求y=Asin z的单调区间而求出函数的单调 区间.若ω<0,则可利用诱导公式将x的系数转变为正数.
栏目 导引
第一章 三角函数
跟踪训练
1.求函数 y=sin(π3-12x),x∈[-2π,2π]的单调递增区间. 解:y=sin(π3-12x)=-sin(12x-π3). 由 y=sin x 与 y=-sin x 的图象关于 x 轴对称可知,y=sin x 的递增 区间就是 y=-sin x 的递减区间.因此,要求 y=-sin(12x-π3)的递 增区间,只要求出 y=sin(12x-π3)的递减区间即可.

正弦函数、余弦函数的单调性与最值

正弦函数、余弦函数的单调性与最值

∵函数y=sin
π π x在-2+2kπ,2+2kπ(k∈Z)上是增函数,
π π π ∴- +2kπ≤2x- ≤ +2kπ, 2 3 2 π 5π 即- +kπ≤x≤ +kπ(k∈Z). 12 12
π π 5π ∴函数y=3sin 3 -2x 的单调递减区间为 -12+kπ,12+kπ
π π π 13π ∴cos >cos ,即cos-8 >cos . 8 7 7
(2)sin 194°=sin (180°+14°)=-sin 14°, cos 160°=cos(180°-20°)=-cos 20°=-sin 70°. ∵0°<14°<70°<90°且y=sin
比较三角函数值大小的方法 (1)比较两个同名三角函数值的大小,先利用诱导公 式把两个角化为同一单调区间内的角,再利用函数的单调 性比较. (2)比较两个不同名的三角函数值的大小,一般应先 化为同名的三角函数,后面步骤同上.
[活学活用] 比较下列各组数的大小.
π 13π (1)cos -8 与cos ; 7
(3)在区间[0,2π]上,函数y=cos x仅当x=0时取得最大值1. ( × )
2.在下列区间中,使函数y=sin x为增函数的是 ( A.[0,π]
π π C.-2,2 π 3π B.2 , 2
)
D.[π,2π]
答案:C
3.函数y=2-sin x的最大值及取最大值时x的值为 π A.ymax=3,x= 2 π B.ymax=1,x= +2kπ(k∈Z) 2 π C.ymax=3,x=- +2kπ(k∈Z) 2 π D.ymax=3,Biblioteka = +2kπ(k∈Z) 2值域
[点睛]

正弦、余弦函数的奇偶性、单调性

正弦、余弦函数的奇偶性、单调性

正弦、余弦函数的单调性
例1 不通过求值,指出下列各式大于0还是小于0: (1) sin(

) – sin( 18



10
)
解: 2 10 18 sin(
5

2
又 y=sinx 在[
)

10
) < sin(

18
即:sin( 18 ) – sin( 10 )>0
正弦、余弦函数的奇偶性
一般的,对于函数f(x)的定义域内的任 意一个x,都有f(-x) = f(x),则称f(x)为这一 定义域内的偶函数。
关于y轴对称
cos(-x)= cosx (xR)
y
1 -4 -3 -2 -
y=cosx (xR) 是偶函数
o
-1

2
3
4
5
6
x
正弦、余弦函数的奇偶性
+2k, +2k],kZ 上单调递减 2 2 3 [ +2k , +2k],kZ上单调递增 函数在 2 2
3 8 8 3 3 7 2k 2 x 2k k x k 2 4 2 8 8 3 所以:单调增区间为 [k , k ] 8 8 3 7 , k ] 单调减区间为 [k 8 8 k x k
1 2k x 2k 2 3 4 2
正弦、余弦函数的单调性
(5) y = -| sin(x+ )| 4 解: 令x+ =u , 则 y= -|sinu| 大致图象如下: 4
y 1
y=|sinu|
2
2

3 2

正弦函数、余弦函数的单调性与最值

正弦函数、余弦函数的单调性与最值
________ T=2π
函数名称 图象与性质 性质分类 图象 奇偶性 _________ 奇函数 _________ 偶函数 y=sinx y=cosx
不同处
函数名 称 图象与性质 性质分类 在 不同 处 y=sinx y=cosx
单调性
π π [2kπ-π,2kπ](k∈Z) 上 2kπ- ,2kπ+ (k∈Z) 在 ____________________ 2 2 ________________________ 递增; 上递增; 在 在 π 3 [2kπ,2kπ+π](k∈Z) 2kπ+ ,2kπ+ π(k∈Z) ________________________ 2 2 ________________________ 上递减 上递减
π π π 【解】 (1)由 2kπ-2≤x+3≤2kπ+2(k∈Z), 5 π 得 2kπ-6π≤x≤2kπ+6(k∈Z). π π 3 由 2kπ+2≤x+3≤2kπ+2π(k∈Z), π 7 得 2kπ+6≤x≤2kπ+6π(k∈Z). ∴函数
π y=2sinx+3的单调增区间为
(2)可化为 y=Asin2x+Bsinx+C 或 y=Acos2x+Bcosx+C(A≠0) 的最大、最小值可利用二次函数在区间[-1,1]上的最大、最小值 的求法来求(换元法). Asinx+B Acosx+B 2 (3)形如 y= 或 y= (A +C2≠0)的最大值最 Csinx+D Ccosx+D 小值可解出 sinx 或 cosx 后利用其有界性来求.
2.比较三角函数值大小的方法 先利用诱导公式把要比较的三角函数值转化为同一单调区间 上的同名三角函数值,再利用三角函数的单调性比较大小. 3.求三角函数值域或最值的常用方法 (1)可化为单一函数 y=Asin(ωx+φ)+k 或 y=Acos(ωx+φ)+k 的最大值为|A|+k, 最小值为-|A|+k(其中 A、 ω、 k 为常数, A≠0, ω≠0).

【课件】正弦函数、余弦函数的性质+(2)+课件-高一上学期数学人教A版(2019)必修第一册

【课件】正弦函数、余弦函数的性质+(2)+课件-高一上学期数学人教A版(2019)必修第一册

23
33
4.变式:求函数y sin( 1 x ), x [ , ]的单调递增区间.
23
解 : y sin( 1 x ) sin(1 x ),
23
23
令z 1 x , x [2 ,2 ], 则z [ 4 , 2 ].
23
33
因为y
sin
z,
z
[
4
,
2
]的单调递减区间是[
4
时取得最小值
1;
7.最大值与最小值
由余弦函数的图象知
y1
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
余弦函数当且仅当 x _2_k__,_k____Z__ 时取得最大值1,
当且仅当x _____2_k__,_k___Z_时取得最小值 1.
8. 正弦函数、余弦函数的图象和性质
函 数 y sin x, x R
在每个闭区间 [2k , 2k ](k Z ) 上都单调递减,
其值从1减小到-1.
7.最大值与最小值
正弦函数图象知
y1
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
正弦函数当且仅当
x
2k , k Z
_2__________
时取得最大值 1,
当且仅当
x
2k , k Z
___2__________
5
)在区间[0,
]上的单调递增区间为(
)
3
A.[5 ,11 ]
12 12
5
、B.[0, 12 ]

正弦,余弦函数的单调性和奇偶性[优质ppt]

正弦,余弦函数的单调性和奇偶性[优质ppt]
x 内的任意一个 ,都有 f(x)f(x)则称 f (x) 为
这一定义域内的偶函数。偶函数的图像关于 y
轴对称。
定义:一般地,如果对于函数 f ( x)的定义
域内的任意一个 x都 f(x)f(x),则称 f (x)
为这一定义域内的奇函数。奇函数图像关于原 点对称。
x 注意:1、 是任意的
2.奇函数,偶函数的定义域必须关于原点对称
正弦、余弦函数的性质
(奇偶性、单调性)
X
知识回顾 y
1
3 5 2
2 3
2

2
O 3 2 5 3 x
2
2
2
1
y=sinx (xR) 定义域 xR
值 域 y[ - 1, 1 ]
y=cosx (xR) 周期性 T = 2
y
1
3 5 2
x( , )
x( , )
且f(x)(x)si nx)(
且f(x)1si nx)(
xsinx
1sin x
f (x)
f(x)f(x)且 f(x)f(x)
函数 yxsinx是偶函数 y 1sinx是非奇非偶函数
判断下列函数的 ( 1)yxsinx
再观察正弦函数图像
y
1
3 5 2
2 3
2

2
O 3 2 5 3 x
2
2
2
1
正弦函数 ysinx在
在每个闭区间 [2k,2k]k (Z)上是增函数,
22
其函数值从-1增大到1
在每个闭区间 [2k,32k](kZ)是减函数,
其关于原点的对称点 P'(x,sinx) , 由诱导公式 sinx()sixn, 即 P'(x,sinx()) 故P '也在正弦函数的图像上。

1.4.2 正弦 余弦函数的性质(单调性、最值)

1.4.2  正弦 余弦函数的性质(单调性、最值)

3 5 对称中心: ( ,0),( ,0),( ,0),( ,0) 2 2 2 2

2
k ,0) k Z
1 例5:求函数 y sin( x ) 的单调递增区间: 2 3
解:

2
1 y sin x 3 2
y sin z

2k z
余弦函数的单调性
y
1 -3
5 2
-2
3 2
-


2
o
-1

2

3 2
2
5 2
x
3
7 2
4
x
cosx
-
-1



2

0
1

2


-1
0
0
y=cosx (xR) 增区间为 [ +2k, 2k],kZ + ], kZ 减区间为 [2k, 2k, 其值从-1增至1 其值从 1减至-1
y cos x
3 5 2
2


y
1
任意两相邻对称轴 ( 或对称中心 ) 的间距为 3 2 O 5 x 3 半个周期;
2
2
1
2

2
3
2
对称轴与其相邻的对称中心的间距为
对称轴:x
,0, , 2
四分之一个周期.
(
x k , k Z

o
-1

2
3
4
5
6
x
sin(-x)= - sinx (xR) cos(-x)= cosx (xR)

1.4.2正弦函数、余弦函数的最值

1.4.2正弦函数、余弦函数的最值
(2)y 3sin 2x, x R.
解(:2)令t=2x,因为使函数y 3sin t,t R取最大值的t的集合是
{t | t 2k , k Z}

2x
t
2
2k

x k
2
4
所以使函数 y 3sin 2x, x R取最大值的x的集合是 {x | x k , k Z} 4
2
O
2
1
2
3 2
2
5 3
2
x
分析:令 z 2x
2 则 y 3cosz
化未知为已知
• P46 A2最值问题 使原函数取得最大值的集合是
(4)
y
1 2
sin
1 2
x
3
解:令z 1 x
23
x
|
x
3
4k
,k
Z
要使y 1 sin z有最小值, 2
要使y 1 sin z有最大值, 2
2
零点: x k (k Z )
探究:余弦函数的最大值和最小值 y
1
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
最大值:当 x 0 2k 时,有最大值 y 1 最小值:当 x 2k 时,有最小值 y 1
零点:x k (k Z )
2
例1.下列函数有最大、最小值吗?如果有,请写出取最大、最 小值时的自变量x的集合,并说出最大、最小值分别是什么.
同理,使函数y 3sin 2x, x R 取最小值的x的集合是 {x | x k , k Z} 4
函数 y 3sin 2x, x R取最大值是3,最小值是-3。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档