9塑性变形与回复再结晶实验指导书4

合集下载

塑性变形与再结晶课程实验

塑性变形与再结晶课程实验

金属的塑性变形与再结晶一、实验目的1.观察冷变形后金属的显微组织2.了解金属冷塑变形后与再结晶退火后显微组织3.了解冷加工变形度对再结晶晶粒大小影响4.讨论再结晶退火温度对退火晶粒大小影响二、概述1 显微镜下的滑移线与变形挛晶金属受力超过弹性极限后,在金属中特产生塑性变形。

金属单晶体变形机理指出,塑性变形的基本方式为滑移和孪晶两种。

所谓滑移时晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。

滑移后在滑移面两侧的晶体位相保持不变。

把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。

变形后的显微姐织是由许多滑移带(平行的黑线)所组成。

在显微镜下能清楚地看到多晶体变形的特点:各晶粒内滑移带的方向不同(因晶粒方位各不相同),各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。

另一种变形的方式为孪晶。

不易产生滑移的金属,如六方晶系镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的—部分以一定的晶面(孪晶面或双晶面)为对称面;与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。

孪晶的结果是孪晶面两侧晶体的位向发生变化,呈镜面对称。

所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。

在密排六方结构的锌中,由于其滑移系少,则易以孪晶方式变形,在显微镜下看到变形孪晶呈发亮的竹叶状特征。

对体心立方结构的a一F e,在常温时变形以滑移方式进行,而在0℃以下受冲击载荷时,则以孪晶方式变形,而面心立方结构大多是以滑移方式变形的。

塑性变形金属的回复与再结晶

塑性变形金属的回复与再结晶

图 3.刃形位错的攀移和滑移示意图
图 4.多变形化前、后刃形位错的排列状况
1.3 回复后金属性能的变化
金属的电阻率是点缺陷敏感的一种物理性能, 塑性变形使空位增加而导致金 属电阻率增大;低温回复使空位消失,电阻减小,达到接近冷变形前的状态。力 学能是对点缺陷不敏感的性能,故低温回复之后力学性能不发生较大改变。 中温回复时,第一类应力消除,使金属构件尺寸稳定;第二类应力基本上消 除了, 抗应力腐蚀有明显提高甚至恢复到冷变形前的状态,所以许多金属材料如 黄铜加工产品在出厂之前要经过消除应力退火, 防止以后放置或使用时造成晶界 应力腐蚀开裂。由于位错数量的减少并不显著,故力学性能基本上不发生变化。 高温回复时, 除了上述的物理和化学性能得到完全的回复外,由于多边形化 的形成,力学性能稍有变化,强度有所降低和塑性有少量改善。某些金属材料出 厂前,进行较高温度的消除应力退火,除了提高耐腐蚀性之外,在消除应力、尺 寸稳定的前提下,保留变形硬化效果,也是退火的目的之一。如用冷拉钢丝卷成 弹簧,在成形之后,要在 250-300℃进行退火以消除低内应力并使之定形,而强 度和硬度又基本上保持不变。
1.2 回复机理
回复过程可以分为低温、中温和高温三个阶段。
在低温回复过程中,主要表现为空位的消失。冷变形所产生的大量空位,受 热后发生空位迁移, 使空位迁移到金属的自由表面或界面,或使空位与间隙原子 重新结合;空位与位错发生交互作用;空位聚集成空位片等。这些因素都会使空 位数量急剧减少,因而便与点缺陷敏感的电阻率发生不同程度的下降。 中温回复的过程表现为位错的滑移,导致位错重新结合,异号位错的汇聚而 抵消以及亚晶的长大。 在冷塑性变形过程中,位错的不断增殖和塞积,大量位错的相互交互缠结而 形成发团, 井将晶粒分割成若干个细小的胞状结构。胞壁上纠缠着大量位错且有 一定的厚度。在中温回复时,温度升高,使位错容易滑移,同一滑移面上的异号 位错相遇会相互吸引而抵消, 不但使亚晶内部的位错数目减少,而且胞壁缠结位 错的减少更为显著,重新调整排列规则,胞壁也变得明晰,形成回复亚晶。 高温回复的过程是位错的进一步滑移并产生攀移,形成位错墙,发生多边形 化的过程。 同一滑移面上的异号位错已在中温回复时相互抵消而只留下同号位错, 但其 分布排列并不均匀, 且多层相互平行的滑移面上的位错数目并不相同。在高温回 复阶段,位错运动的动力学条件充分,不但容易发生滑移并能够进行攀移,由于 攀移的结果使多层滑移面上的位错密度趋于相同, 各位错之间的作用力又使同一 滑移面上的位错分布均匀, 间距大体相等,并且使各层滑移面上的位错在与滑移 面垂直的方向上形成规则排列的位错墙,称为多边形化,如图 3 和图 4 所示。多 边形化构成的位错墙即是小角度晶界,它将原晶粒分隔成若干个亚晶粒。

金属的塑性变形与再结晶实验实验报告资料

金属的塑性变形与再结晶实验实验报告资料

金属的塑性变形与再结晶实验实验报告资料实验目的:通过实验研究金属的塑性变形与再结晶的过程,了解金属材料的性质及其应用。

实验原理:1.金属的塑性变形金属的塑性变形是指在外力作用下,金属发生形变而不断展开的一种过程。

金属的塑性变形具有以下特点:①金属塑性变形具有可逆性,即当外力解除时形变可回复。

②金属的塑性变形是沿晶的,即沿晶体内的晶体结构变形。

③金属的塑性变形具有连续性,即在一定应变范围内,应力与应变呈线性关系。

2.金属的再结晶金属的再结晶是指在金属塑性变形的过程中,原来的组织结构发生了某些变化,而在恰当的条件下,这些组织结构又恢复到了原来的状态,这种过程就叫做金属的再结晶。

金属的再结晶的特点如下:①金属的再结晶是晶体内部的结构调整。

②金属的再结晶能够使金属的内部应力有所缓和。

实验步骤:1.制备试样:准备金属的坯料,在坯料上打上“X”形切口,切口至深为材料厚度的1/2。

2.进行冷加工:采用箔冷机或轧制机进行冷加工,进行一定程度的压缩形变。

在经过一定拉伸形变后,在X形切口处出现了明显的变形。

3.进行再结晶退火:将试样放入电阻炉中进行再结晶退火,然后进行空冷,使试样的晶粒细化,且Z形切口处无明显变形。

4.进行显微组织观察:将试样进行金相试样制备和显微组织观察。

在加工前,金属材料的结构均匀且颗粒晶粒较大,大量晶界分布而成急促晶界。

在加工后,晶粒较小,分布均匀;试样表面被拉伸,并且形成了急促晶界。

在经过再结晶退火处理后,试样中的晶粒再次变小,形成了勾芡状晶粒,Z形切口处没有变形出现,晶界清晰。

实验结果:通过本次实验,我们得到了以下实验结果:1.金属材料在冷加工的过程中,晶粒会发生变形,形成急促晶界。

2.金属在经过适当的再结晶退火处理后,晶粒又会重新排列,形成勾芡状的晶籍,并且试样中没有变形现象。

实验分析:本次实验从实验原理、实验步骤、实验结果三方面说明了金属塑性变形和再结晶的过程,得到了较好的结果。

同时我们也认识到,产生分析实验结果的原因不外乎通往实验目的的基本原理和实验的步骤。

9-3 回复和再结晶0

9-3 回复和再结晶0
图 同一变形度的Fe在不同温度等温退火后的再结晶曲线
核-长大过程的动力学特征。
退火温度越高,转变曲线越向左移,
即转变加速。
再结晶动力学曲线可表示为: 金属的等温再结晶动力学曲线 通常认为可以用下列方程来描述:
xv 1 exp Bt

k

式中 xv 为在t时间已经再结晶的体 积分数,B和K为常数,可通过实验决定。
240
320 370

铅 钨(高纯)
-3
-3 1200-1300
镍(99.4%)
630
钨(含显微气泡)
1600-2300
四、 影响再结晶的因素
1.温度 加热温度越高,再结晶转 变速度越快,完成再结晶 所需时间越短。
第三节 再结晶
第三节 再结晶
一、 再结晶的形核与长大
实验表明,再结晶是一个形核长大过程,即通常在变形金 属中能量较高的局部区域优先形成无畸变的再结晶晶核, 然后通过晶核逐渐长大成为等轴晶,从而完全取代变形组 织的过程。与一般相变存在区别,没有晶体结构转变。 研究表明,再结晶形核机制一般根据其形变量的不同,存 在如下一些形式:弓出形核机制、亚晶合并机制和亚晶蚕 食机制。
3、经冷塑性变形的金属加热时,经过那些阶段?各阶段 的特点?
经冷塑性变形的金属,通过适当的加热和保温将发生一系 列组织、性能的变化。 根据其显微组织及性能的变化情况,可将这种变化分为 三个阶段:回复、再结晶和晶粒长大。
图 冷变形金属退火晶粒形状大小变化
回复:指经冷塑性变形的金属在加热时,在光学 显微镜组织发生改变前(即在再结晶晶粒形成前)所 产生的某些亚结构和性能的变化过程。 再结晶:指经冷塑性变形的金属在加热时,通过 再结晶核心的形成及随后的生长、最终形成无畸变的 新的晶粒的过程。 晶粒长大:随着加热温度的升高或者保温时间的 延长,晶粒之间相互吞并而长大。包括正常的晶粒长 大和异常的晶粒长大,后者称为二次再结晶。在特殊 的情况下,二次再结晶形成的新的晶粒组织在加热时 还会发生三次再结晶。

“金属的塑性变形与再结晶实验”实验报告.docx

“金属的塑性变形与再结晶实验”实验报告.docx

金属的塑性变形与再结晶实验”实验报告、实验目的( 1) 了解冷塑性变形对金属材料的内部组织与性能的影响。

( 2) 了解变形度对金属再结晶退火后晶粒大小的影响。

二、实验原理金属材料在外力作用下,当应力大于弹性极限时,不但会产生弹性变形,还会产生塑性变形。

塑性变形的结果不仅改变金属的外形和尺寸,也会改变其内部的组织和性能。

在冷塑性形变过程,随着变形程度的增大,金属内部的亚晶增多,加上滑移面转动趋向硬位向和位错密度增加等原因,金属的强度和硬度升高,塑性和韧性下降,这种现象称为加工硬化。

加工硬化后的金属内能升高,处在不稳定的状态,并有想稳定状态转变的自发趋势。

若对其进行加热,使其内部原子活动能力增大,随着加热温度逐渐升高,金属内部依次发生回复、再结晶和晶粒长大3 个阶段。

冷塑性变形金属经再结晶退火后的晶粒大小,不仅与再结晶退火时的加热温度有关,,而且与再结晶退火前预先冷变形程度有关。

当变形度很小时,由于金属内部晶粒的变形也很小,故晶格畸变也小,晶粒的破碎与位错密度增加甚微,不足以引起再结晶现象发生,故晶粒大小不变。

当变形度在2%~10% 范围内时,由于多晶体变形的特点,金属内部各个晶粒的变形极不均匀(即只有少量晶粒进行变形) ,再结晶是晶核的形成数量很少,且晶粒极易相互并吞长大,形成较粗大的晶粒,这样的变形度称为临界变形度。

大于临界变形度后,随着变形量的增大,金属的各个晶粒的变形逐步均匀化,晶粒破碎程度与位错密度也随着增加,再结晶时晶核形成的数量也增多,所以再结晶退火后晶粒较细小而均匀。

为了观察再结晶退火后铝片的晶粒大小,必须把退火后的铝片放入一定介质中进行浸蚀,由于各个晶粒内原子排列的位向不同,对浸蚀剂的腐蚀不同,因而亮暗程度不同,就能观察到铝片内的晶粒。

三、实验装置及试件工业纯铝片、铝片拉伸机、浸蚀剂( 15%HF+45%HCL+15%HN ??3+25% ??2??组成的混合酸)、HV-120型维氏硬度计、小型实验用箱式炉、钢皮尺、划针、扳手、放大镜。

金属的塑性变形与再结晶

金属的塑性变形与再结晶

金属的塑性变形与再结晶一、实验目的:1、了解显微镜下滑移线、变形孪晶和退火孪晶特征。

2、了解金属经冷加工变形后显微组织及机械性能的变化。

3、讨论冷加工变形对再结晶晶粒大小的影响。

二、实验内容:1、观察工业纯铁冷变形滑移线,纯锌的变形孪晶,黄铜或纯铜的退火孪晶。

2、观察工业纯铁经冷变形(0%、20%、40%、60%)后的显微组织。

3、用变形度不同的工业纯铝片,退火后测定晶粒大小。

三、实验内容讨论:1、显微镜下的滑移线与变形孪晶:当金属以滑移和孪晶两种方式塑性变形时,可以在显微镜下看到变形结果。

我们之所以能看到滑移线(叫滑移带更符合实际)是因为晶体滑移时,使试样的抛光表面产生高低不一的台阶所致。

滑移线的形状取决于晶体结构和位错运动,有直线形的,有波浪形的,有平行的,有互相交叉的,显示了滑移方式的不同。

变形量越大,滑移线愈多、愈密。

在密排六方结构中,常可看到变形孪晶,这是因为此类金属结构难以进行滑移变形。

孪晶可以看成是滑移的一种特殊对称形式,其结果使晶体的孪生部分相对于晶体的其余部分产生了位向的改变。

由于位向不同,孪晶区与腐蚀剂的作用也不同于其他部分,在显微镜下,孪晶区是一条较浅或较深的带。

在不同的金属中,变形孪晶的形状也不同,例如在变形锌中可看到孪晶变形区域,其特征为竹叶状,α—Fe则为细针状。

除变形孪晶外,有些金属如黄铜在退火时也常常出现以平行直线为边界的孪晶带,这类孪晶称为退火孪晶。

滑移和孪晶的区别:制备滑移线试样时,是试样先经过表面抛光,然后再经过微量塑性变形。

如果变形后再把表面抛光,则滑移线就看不出来了。

制备孪晶试样时,是先经塑性变形,然后再抛光腐蚀,可见:(1)对于滑移线不管样品是否经过腐蚀均可看到,而孪晶只有在磨光腐蚀后才可看见。

(2)滑移线经再次磨光即消失,而孪晶在样品表面磨光腐蚀后仍然保留着。

滑移线和磨痕的区别在于前者是不会穿过晶界的。

2、冷变形后金属的显微组织和机械性能冷加工变形后,晶粒的大小、形状及分布都会发生改变。

金属的塑性变形与再结晶-实验报告

金属的塑性变形与再结晶-实验报告

金属的塑性变形与再结晶实验目的:1. 研究低碳钢在塑性变形后组织性能的变化规律。

2. 讨论塑性变形后低碳钢在加热时组织与性能的变化规律。

3.了解变形程度对再结晶后晶粒大小的影响。

实验设备及材料:1.各种变形的低碳钢式样一套。

2.同一变形度(51%)的式样一套。

3.洛氏硬度计,加热炉,金相显微镜及砂纸,抛光机和侵蚀剂。

4.塑性变形后再结晶的工业纯铁显微式样一套。

5.不同变形度经再结晶后具有不同晶粒度的铝片式样一套。

实验步骤:1.每人领取两块式样,一块用于研究不同形变程度对硬度的影响,另一块研究不同温度对性能的影响。

2.研究16Mn钢的硬度与变形的关系:测量变形程度为0%,40%,50%,64%的硬度记录在表3-1中。

根据表中的数据,以变形度(%)为横坐标,硬度(HRB)为纵坐标,绘制出硬度与变形曲线关系,如图3-1:编号变形度硬度(HRB)1 0% 87.82 26.9% 98.33 41.5% 102.54 64.3% 103.0表3-1图3-1结论:钢的硬度随着冷变形程度的增加而增加.3.研究变形后的16Mn钢加热是硬度的变化:以同一变形程度51%的16Mn钢试样,测量其硬度后,分别加热至100℃,300℃,500℃,550℃,600℃,700℃,800℃保温30分钟后测量硬度,将数据列入表3-2中。

根据表3-2中的数据,以加热温度为横坐标,硬度为纵坐标,绘制出加热温度与硬度的曲线关系如图3-2。

同一塑性变形后16Mn钢加热时硬度的变化:编号加热温度保温时间硬度(HRB)1 100℃30min 982 300℃30min 953 500℃30min 944 550℃30min 725 600℃30min 556 700℃30min 517 800℃30min 45表3—2图3-2结论:随着16Mn钢塑性变形后加热温度升高,硬度减小,加热温度小于500℃时,硬度减小不明显加热温度大于500℃时,随着加热温度升高,硬度急剧减小。

工业纯铝的塑性变形与再结晶实验方案

工业纯铝的塑性变形与再结晶实验方案

实验方案金属的塑性变形与再结晶一,实验目的1、观察显微镜下滑移线、变形孪晶的特征;2、了解金属经冷加工变形后显微组织及性能的变化;二、概述1 显微镜下的滑移线与变形挛晶金属受力超过弹性极限后,在金属中特产生塑性变形。

金属单晶体变形机理指出,塑性变形的基本方式为滑移和孪晶两种。

所谓滑移时晶体在切应力作用下借助于金属薄层沿滑移面相对移动实质为位错沿滑移面运动的结果。

滑移后在滑移面两侧的晶体位相保持不变。

把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。

变形后的显微姐织是由许多滑移带所组成。

另一种变形的方式为孪晶。

不易产生滑移的金属,如六方晶系镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的—部分以一定的晶面为对称面;与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。

孪晶的结果是孪晶面两侧晶体的位向发生变化,呈镜面对称。

所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。

2、变形程度对金属组织和性能的影响变形前金属为等轴晶粒,轻微量变形后晶粒内即有滑移带出现,经过较大的变形后即发现晶粒被拉长,变形程度愈大,晶粒被拉得愈长,当变形程度很大时,则加剧剧了晶粒沿一定方向伸长,晶粒内部被许多的滑移带分割成细小的小块,晶界与滑移带分辨不清,呈纤维状组织。

由于变形的结果,滑移带附近晶粒破碎,产生较严重的晶格歪扭,造成临界切应力提高,使继续变形发生困难,即产生了所谓加工硬化现象。

随变形程度的增加,金属的硬度、强度、矫顽力、电阻增加,而塑性和韧性下降。

3、形变金属在加热后组织和性能的影响变形后的金属在较低温度加热时,金属内部的应力部分消除,歪曲的晶格恢复正常,但显微组织没有变化,原来拉长的晶粒仍然是伸长的。

这个过程是靠原子在一个晶粒范围内的移动来实现的,称为回复。

变形后金属加热到再结晶温度以上时,发生再结晶过程,显微组织发生显著变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 塑性变形与回复再结晶
一、实验目的
1.加深对加工硬化现象和回复再结晶的认识。

2.通过实验分析加工温度和变形程度对所选原材料组织和性能的影响。

3.测定所选原材料(例如工业纯铝)的形变度与再结晶后的晶粒度的关系曲线。

二、实验原理
1、加工硬化现象
当金属与合金在外力的作用下,应力超过弹性极限以后,将发生塑性形变。

金属在塑性形变过程中,组织与性能将发生变化。

一般说来随着形变程度的增加,金属的强度、硬度提高而塑性下降,同时也造成其它物理化学性能的明显变化。

人们就把金属因塑性变而导致的强度和硬度增加的现象称为加工硬化。

2、金属经塑性形变后显微组织的变化
金属经塑性形变以后,其组织发生以下的变化。

(1)金属在塑性形变后,组织也将发生相应的变化,例如在轧制后,晶粒沿着形变方向被拉长,其程度随形变量的加大而增大,当形变量很大时,晶粒伸长呈“纤维状”。

与此同时,除晶粒的形状发生变化外,组织中的第二相也将发生变化,硬的相将破碎,软的相将发生形变等。

(2)塑性形变导致金属组织内部的亚结构细化。

在形变不大的情况下,晶粒内首先出现明显的滑移带,随着形变量的加大。

滑移带逐渐增多。

射线结构分析结果表明:晶粒被碎化成许多位向略有不同(位向差一般不大于1°)的晶块,其大小约为10-3~10-6厘米,即在原来晶粒内出现了很多小晶块,这种组织称为亚结构。

(3)金属塑性形变时,由于各部分的形变的不均匀性而造成的内应力(第一类,第二类,第三类内应力)将增大。

(4)当金属的塑性形变量很大时,在形变过程中晶体将产生转动和旋转,使各晶粒的某一晶向都不同程度的转向与外力相近的方向,这样便使得原来晶向不同的晶粒取向渐趋一致。

而使其具有择优趋向组织称之为形变结构。

金属塑性形变后组织和性能的变化规律,在生产中有一定的实际意义,为此应了解这一变化规律,从而能更好的为生产服务。

塑性形变的方式,主要有两种。

其一是滑移形变方式,其二是孪晶形变方式。

至于形变结构与机理,这里不做叙述。

3、回复与再结晶
由于塑性形变,使晶格畸变增大(使错密度增加,亚结构细化等),使得冷形变金属的自由能升高而处于不稳定状态。

因此,便有一种向较稳定状态转化的自发趋势。

如将冷形变后的金属加热到较高的温度,使其原子具有一定的扩散能力,就会产生一系列组织与性能的变化。

这个变化过程就是回复——再结晶及晶粒长大(聚集再结晶)过程,参看图1。

回复:当加热温度较(再结晶温度)低时,通过原子作短距离的扩散,使某些晶体缺陷互相抵消而使缺陷数量减少;使晶格畸变程度减轻(由多边化结果导致);第一类、第二类内应力基本消除;显微组织无变化,机械性能和物理化学性能部分的恢复到形变前的状态,如硬度、强度稍微下降,塑性略有提高;导磁率上升,比电阻下降等,这一过程称为回复。

再结晶:冷形变金属加热到某一温度,由于原子扩散能力的增大,组织和性能将发生剧烈的变化,完全回复到形变以前的情况。

从显微组织看形变组织完全消失,代之的是新的等轴晶粒;其强度硬度下降而塑性提高。

把在这一温度下组织和性能发生剧烈变化的现象称做
能够发生再结晶的最低温度称为再结晶温度。

一般以金属或合金经大的变形量大于70%塑性变形后,在某一温度保温一小时,能够完全再结晶的温度定为这一合金的再结晶温度。

聚集再结晶:冷形变金属再结晶后,当继续在更高温度加热时,晶粒就会长大,机械性能变坏。

这种晶粒长大现象称为聚集再结晶。

影响金属的再结晶温度及再结晶后组织的因素很多,以下分别讨论之。

4、影响再结晶温度的因素
(1)形变程度的影响:冷形变程度愈大,畸变愈严重,畸变能也就愈高,合金就愈不稳定,向低能量状态变化的倾向也越大,因此再结晶温度就愈低。

实验结果表明,当形变程度较大时,各种工业纯金属的最低再结晶温度与其熔点之间存在下列关系:
T再≈(0.35~0.40)T熔
式中T再——金属的再结晶温度(K);T熔----金属的熔点(K)
(2)合金元素及杂质的影响:合金元素对再结晶温度的影响比较复杂。

在金属中含有少量合金元素时,由于它们阻碍再结晶过程中位错的移动,使得再结晶难以进行,也就使得再结晶温度升高。

当金属中合金元素数量较多时,则可能提高也可能降低再结晶温度,这要看合金元素对基体金属原子扩散速度的影响,以及合金元素对再结晶形核时的表面能的影响而定。

例如Cr、W、Mo等元素可使钢的再结晶温度升高。

(3)加热时间的影响:加热速度和加热时间也明显的影响再结晶温度。

当形变度一定时,加热时间愈短,则再结晶温度愈高。

5、影响再结晶后晶粒度的因素:
(1)加热温度的影响:经相同程度的冷形变金属,再结晶退火后的晶粒度大小一般是随加热温度和在加热温度下的保温时间的不同变化。

加热温度愈高,时间愈长,晶粒就愈粗大。

(2)形变度的影响:金属材料再结晶退火后的晶粒大小与其形变度之间的关系。

当形变量很小时,由于畸变能很小,不能形核,金属不发生再结晶,因此晶粒大小基本不变;而当金属材料经受某一不大的冷形变度之后,于再结晶退火时,其晶粒异常地长大到极大的尺寸,这一形变度称为临界形变度。

对一般金属或合金,其临界形变度约为2~10%左右。

例如纯Fe、纯Cu、纯Al的临界形变度分别为5~6%,5%,2%等。

在形变量超过临界形变度后,再结晶后的晶粒度大小,将随着冷形变度的增加而减少。

当形变量很大时(一般大于70%),经过再结晶退火后晶粒又变得很粗大。

三、实验设备
材料万能试验机,中温电阻炉,放大镜,金相显微镜。

四、实验内容与步骤
实验内容:
ⅰ.观察H68经不同形变度及不同再结晶温度退火后的纤维组织。

ⅱ.在显微镜下观察纯铝试样抛光表面经拉伸后的滑移带。

ⅲ.测定工业纯铝的形变度与再结晶后的晶粒度的关系曲线。

实验步骤:
1、每人取一个铝片(尺寸150×10×1mm),用铅笔在铝片上做出标记,如图4所示。

并用字头打上编号,编号按表1所示。

之后将铝片装在拉伸机上分别进行拉伸一定的变形量。

2、将形变后的试样,一起装入500℃的炉中加热进行退火,保温30分钟后空冷至室温。

3、退火后的试样用王水腐蚀,腐蚀时间以晶粒度清晰可见为准,然后用清水冲洗并迅
4、测出晶粒度。

测出单位面积内晶粒的数量(先测出10mm2内的晶粒数,测量三次取其平均值),并算出晶粒的平均面积填入下表中。

5、用全组数据绘出形变度与再结晶后的晶粒度的关系曲线。

五、实验报告要求
用全组数据,绘出形变度与再结晶后晶粒大小的关系曲线。

相关文档
最新文档