工业纯铝的塑性变形与再结晶实验方案

合集下载

金属的塑性变形与再结晶实验实验报告资料

金属的塑性变形与再结晶实验实验报告资料

金属的塑性变形与再结晶实验实验报告资料实验目的:通过实验研究金属的塑性变形与再结晶的过程,了解金属材料的性质及其应用。

实验原理:1.金属的塑性变形金属的塑性变形是指在外力作用下,金属发生形变而不断展开的一种过程。

金属的塑性变形具有以下特点:①金属塑性变形具有可逆性,即当外力解除时形变可回复。

②金属的塑性变形是沿晶的,即沿晶体内的晶体结构变形。

③金属的塑性变形具有连续性,即在一定应变范围内,应力与应变呈线性关系。

2.金属的再结晶金属的再结晶是指在金属塑性变形的过程中,原来的组织结构发生了某些变化,而在恰当的条件下,这些组织结构又恢复到了原来的状态,这种过程就叫做金属的再结晶。

金属的再结晶的特点如下:①金属的再结晶是晶体内部的结构调整。

②金属的再结晶能够使金属的内部应力有所缓和。

实验步骤:1.制备试样:准备金属的坯料,在坯料上打上“X”形切口,切口至深为材料厚度的1/2。

2.进行冷加工:采用箔冷机或轧制机进行冷加工,进行一定程度的压缩形变。

在经过一定拉伸形变后,在X形切口处出现了明显的变形。

3.进行再结晶退火:将试样放入电阻炉中进行再结晶退火,然后进行空冷,使试样的晶粒细化,且Z形切口处无明显变形。

4.进行显微组织观察:将试样进行金相试样制备和显微组织观察。

在加工前,金属材料的结构均匀且颗粒晶粒较大,大量晶界分布而成急促晶界。

在加工后,晶粒较小,分布均匀;试样表面被拉伸,并且形成了急促晶界。

在经过再结晶退火处理后,试样中的晶粒再次变小,形成了勾芡状晶粒,Z形切口处没有变形出现,晶界清晰。

实验结果:通过本次实验,我们得到了以下实验结果:1.金属材料在冷加工的过程中,晶粒会发生变形,形成急促晶界。

2.金属在经过适当的再结晶退火处理后,晶粒又会重新排列,形成勾芡状的晶籍,并且试样中没有变形现象。

实验分析:本次实验从实验原理、实验步骤、实验结果三方面说明了金属塑性变形和再结晶的过程,得到了较好的结果。

同时我们也认识到,产生分析实验结果的原因不外乎通往实验目的的基本原理和实验的步骤。

金属的塑性变形与再结晶

金属的塑性变形与再结晶

实验名称:金属的塑性变形与再结晶实验类型:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、实验步骤与实验结果(必填)五、讨论、心得(必填)一、实验目的1.了解冷塑性变形对金属材料的内部组织与性能的影响;2.了解变形度对金属再结晶退火后晶粒大小的影响。

二、实验原理金属塑性变形的基本方式有滑移和孪生两种。

在切应力作用下,晶体的一部分沿某一晶面相对于另一部分滑动,这种变形方式称为滑移;在切应力作用下,晶体的一部分沿某一晶面相对另一部分产生剪切变形,且变形部分与未变形部分的位向形成了镜面对称关系,这种变形方式称为孪生。

(一) 冷塑性变形对金属组织与性能的影响若金属在再结晶温度以下进行塑性变形,称为冷塑性变形。

冷塑性变形不仅改变了金属材料的形状与尺寸,而且还将引起金属组织与性能的变化。

金属在发生塑性变形时,随着外形的变化,其内部晶粒形状由原来的等轴晶粒逐渐变为沿变形方向伸长的晶粒,在晶粒内部也出现了滑移带或孪晶带。

当变形程度很大时,晶粒被显著地拉成纤维状,这种组织称为冷加工纤维组织。

同时,随着变形程度的加剧,原来位向不同的各个晶粒会逐渐取得近于一致的位向,而形成了形变织构,使金属材料的性能呈现出明显的各向异性。

金属经冷塑性变形后,会使其强度、硬度提高,而塑性、韧性下降,这种现象称为加工硬化。

(二) 冷塑性变形后金属在加热时组织与性能的变化金属经冷塑性变形后,由于其内部亚结构细化、晶格畸变等原因,处于不稳定状态,具有自发地恢复到稳定状态的趋势。

但在室温下,由于原子活动能力不足,恢复过程不易进行。

若对其加热,因原子活动能力增强,就会使组织与性能发生一系列的变化。

1.回复当加热温度较低时,原子活动能力尚低,故冷变形金属的显微组织无明显变化,仍保持着纤组织的特征。

此时,因晶格畸变已减轻,使残余应力显著下降。

但造成加工硬化的主要原因未消除,故其机械性能变化不大。

2.再结晶当加热温度较高时,将首先在变形晶粒的晶界或滑移带、孪晶带等晶格畸变严重的地带,通过晶核与长大方式进行再结晶。

金属的塑性变形与再结晶

金属的塑性变形与再结晶

金属的塑性变形与再结晶一、实验目的:1、了解显微镜下滑移线、变形孪晶和退火孪晶特征。

2、了解金属经冷加工变形后显微组织及机械性能的变化。

3、讨论冷加工变形对再结晶晶粒大小的影响。

二、实验内容:1、观察工业纯铁冷变形滑移线,纯锌的变形孪晶,黄铜或纯铜的退火孪晶。

2、观察工业纯铁经冷变形(0%、20%、40%、60%)后的显微组织。

3、用变形度不同的工业纯铝片,退火后测定晶粒大小。

三、实验内容讨论:1、显微镜下的滑移线与变形孪晶:当金属以滑移和孪晶两种方式塑性变形时,可以在显微镜下看到变形结果。

我们之所以能看到滑移线(叫滑移带更符合实际)是因为晶体滑移时,使试样的抛光表面产生高低不一的台阶所致。

滑移线的形状取决于晶体结构和位错运动,有直线形的,有波浪形的,有平行的,有互相交叉的,显示了滑移方式的不同。

变形量越大,滑移线愈多、愈密。

在密排六方结构中,常可看到变形孪晶,这是因为此类金属结构难以进行滑移变形。

孪晶可以看成是滑移的一种特殊对称形式,其结果使晶体的孪生部分相对于晶体的其余部分产生了位向的改变。

由于位向不同,孪晶区与腐蚀剂的作用也不同于其他部分,在显微镜下,孪晶区是一条较浅或较深的带。

在不同的金属中,变形孪晶的形状也不同,例如在变形锌中可看到孪晶变形区域,其特征为竹叶状,α—Fe则为细针状。

除变形孪晶外,有些金属如黄铜在退火时也常常出现以平行直线为边界的孪晶带,这类孪晶称为退火孪晶。

滑移和孪晶的区别:制备滑移线试样时,是试样先经过表面抛光,然后再经过微量塑性变形。

如果变形后再把表面抛光,则滑移线就看不出来了。

制备孪晶试样时,是先经塑性变形,然后再抛光腐蚀,可见:(1)对于滑移线不管样品是否经过腐蚀均可看到,而孪晶只有在磨光腐蚀后才可看见。

(2)滑移线经再次磨光即消失,而孪晶在样品表面磨光腐蚀后仍然保留着。

滑移线和磨痕的区别在于前者是不会穿过晶界的。

2、冷变形后金属的显微组织和机械性能冷加工变形后,晶粒的大小、形状及分布都会发生改变。

材料科学基础-实验指导-实验10塑性变形和再结晶(精)

材料科学基础-实验指导-实验10塑性变形和再结晶(精)

实验十塑性变形和再结晶一、实验目的1. 研究金属冷变形过程机器组织性能的变化。

2. 研究冷变形金属在加热时组织性能的变化。

3. 了解金属的再结晶温度和再结晶后晶粒大小的影响因素。

4. 初步学会测定晶粒度的方法。

二、实验内容说明金属经冷加工变形后,其组织和性能均发生变化:原先的等轴晶组织,随着塑性变形量的增大,其晶粒沿变形方向逐渐伸长,变形度越大,则伸长也越显著;当变形度很大时,其组织呈纤维状。

随着组织的变化,金属的性能也发生改变:强度硬度增高,塑性则逐渐下降,即产生了“加工硬化”。

经冷变形后的金属加热到再结晶温度时,又会发生相反转变。

新的无应变的晶粒取代原先变形的晶粒,金属的性能也恢复到变形前的情况,这一过程称为再结晶。

再结晶温度与金属本性、杂质含量、冷变形程度、保温时间、材料的原始晶粒度等有关。

再结晶所产生的晶粒大小在很大程度上取决于冷变形程度的大小,在某一变形度变形,再经退火处理后晶粒异常粗大,该变形度称为临界变形度,它使材料性能恶化,是压力加工中切忌的问题。

本实验主要以低碳钢为对象,分析其塑性变形和再结晶过程中显微组织的变化。

观察经一定冷变形后不同退火温度下低碳钢的显微组织,测定再结晶度,此外对不同冷变形度的低碳钢材料进行高温退火,测定晶粒度,从而确定临界变形度。

三、实验步骤1. 教师讲解金属塑性变形与再结晶的组织状态,介绍用对照法、割线法测定晶粒度的方法。

2. 观察纯铁经10%,15%,20%,50%,70%变形度变形后的显微组织。

描绘其组织特征。

3. 观察纯铁经70%变形度在400℃,450℃,500℃,600℃,850℃退火半小时后的试样,一组五只,从中找得再结晶后晶粒大小与退火温度之间的定性关系。

4. 观察纯铁经10%,20%,30%,50%,70%五种变形度变形后在850℃退火半小时后组织,分别用对照法和割线法测得其晶粒度,确定其临界变形度的大致范围。

5. 观察并描绘纯铁冷变形的滑移线和冲击载荷下产生的机械双晶及纯锌压延后机械双晶、黄铜的退火双晶。

金属的塑性变形与再结晶-材料科学基础-实验-06

金属的塑性变形与再结晶-材料科学基础-实验-06

实验六 金属的塑性变形与再结晶(Plastic Deformation and Recrystallization of Metals )实验学时:2 实验类型:综合前修课程名称:《材料科学导论》适用专业:材料科学与工程一、实验目的1. 观察显微镜下变形孪晶与退火孪晶的特征;2. 了解金属经冷加工变形后显微组织及机械性能的变化;3. 讨论冷加工变形度对再结晶后晶粒大小的影响。

二、概述1. 显微镜下的滑移线与变形孪晶金属受力超过弹性极限后,在金属中将产生塑性变形。

金属单晶体变形机理指出,塑性变形的基本方式为:滑移和孪晶两种。

所谓滑移,是晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。

滑移后在滑移面两侧的晶体位向保持不变。

把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。

变形后的显微组织是由许多滑移带(平行的黑线)所组成。

在显微镜下能清楚地看到多晶体变形的特点:① 各晶粒内滑移带的方向不同(因晶粒方位各不相同);② 各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);③ 在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。

(注:此类样品制备困难,需要先将样品进行抛光,再进行拉伸,拉伸后立即直接在显微镜下观察;若此时再进行样品的磨光、抛光,滑移带将消失,观察不到。

原因是:滑移带是位错滑移现象在金属表面造成的不平整台阶,不是材料内部晶体结构的变化,样品制备过程会造成滑移带的消失。

)另一种变形的方式为孪晶。

不易产生滑移的金属,如六方晶系的镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的一部分以一定的晶面(孪晶面或双晶面)为对称面,与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。

金属的塑性变形与再结晶-实验报告

金属的塑性变形与再结晶-实验报告

金属的塑性变形与再结晶实验目的:1. 研究低碳钢在塑性变形后组织性能的变化规律。

2. 讨论塑性变形后低碳钢在加热时组织与性能的变化规律。

3.了解变形程度对再结晶后晶粒大小的影响。

实验设备及材料:1.各种变形的低碳钢式样一套。

2.同一变形度(51%)的式样一套。

3.洛氏硬度计,加热炉,金相显微镜及砂纸,抛光机和侵蚀剂。

4.塑性变形后再结晶的工业纯铁显微式样一套。

5.不同变形度经再结晶后具有不同晶粒度的铝片式样一套。

实验步骤:1.每人领取两块式样,一块用于研究不同形变程度对硬度的影响,另一块研究不同温度对性能的影响。

2.研究16Mn钢的硬度与变形的关系:测量变形程度为0%,40%,50%,64%的硬度记录在表3-1中。

根据表中的数据,以变形度(%)为横坐标,硬度(HRB)为纵坐标,绘制出硬度与变形曲线关系,如图3-1:编号变形度硬度(HRB)1 0% 87.82 26.9% 98.33 41.5% 102.54 64.3% 103.0表3-1图3-1结论:钢的硬度随着冷变形程度的增加而增加.3.研究变形后的16Mn钢加热是硬度的变化:以同一变形程度51%的16Mn钢试样,测量其硬度后,分别加热至100℃,300℃,500℃,550℃,600℃,700℃,800℃保温30分钟后测量硬度,将数据列入表3-2中。

根据表3-2中的数据,以加热温度为横坐标,硬度为纵坐标,绘制出加热温度与硬度的曲线关系如图3-2。

同一塑性变形后16Mn钢加热时硬度的变化:编号加热温度保温时间硬度(HRB)1 100℃30min 982 300℃30min 953 500℃30min 944 550℃30min 725 600℃30min 556 700℃30min 517 800℃30min 45表3—2图3-2结论:随着16Mn钢塑性变形后加热温度升高,硬度减小,加热温度小于500℃时,硬度减小不明显加热温度大于500℃时,随着加热温度升高,硬度急剧减小。

实验-金属的塑性变形与再结晶

实验-金属的塑性变形与再结晶
实验四 金属的塑性变形与再结晶
一、实验目的 1.了解冷塑性变形对金属组织和性能的影响。 2.了解冷变形度对金属再结晶后晶粒大小的影响。
图 4-1 05 钢冷塑性变形后组织(200×) a)未变形,940℃正火 b)变形程度 40% c)变形程度 70% d)变形程度 80%
二、实验概述 (一)金属塑性变形后的组织、性能变化
注:若时间有限,该组铝片变形试样亦可由实验室事先制备好。
五、实验报告
1.简述实验目的。 2. 根据实验结果,作出纯铜变形度与硬度间的关系曲线。 3. 根据观察试样结果,填写下表。
3
硬 度
材料 处理工艺 浸蚀剂 放大倍数
变形度 纯铜硬度与变形度的关系曲线
低碳钢 抛光后加压变形
未浸蚀
纯锌 稍加塑性变形 HCl+HNO3+甘油
4.加工硬化 由于金属冷塑性变形,亚结构进一步细化,位错密度增大,导致其 强度、硬度提高,而塑性、韧性下降,该现象即称加工硬化。 (二)塑性变形后的回复与再结晶
金属经冷塑性变形后,在热力学上处于不稳定状态,必有力求恢复到稳定状态的 趋势。但在室温下,由于原子的动能不足,恢复过程不易进行,加热会提高原子的活动 能力,也就促进了这一恢复过程的进行。加热温度由低到高,其变化过程大致分为回复、 再结晶和晶粒长大三个阶段,当然这三个阶段并非截然分开。图 4-2a 即为经 70%变形 度的 05 钢,625℃退火后,发生了不完全再结晶,图 4-2b 为 670C 退火后,再结晶已完 成。由图 4-3 可知,在回复阶段,显微组织不变,仅是内应力获得很大松弛,所示其性 能几乎不变。但经再结晶后,显微组织已恢复到变形前的等轴晶,故各种性能也都复原, 即加工硬化完全消除。
度下晶粒形态 作出硬度与变形 并测出其硬度 度的关系曲线

实验三 金属塑性变形与再结晶

实验三 金属塑性变形与再结晶

实验三金属塑性变形与再结晶一、实验目的认识金属冷变形加工后及经过再结晶退火后的组织性能和特征变化;研究形变程度对再结晶退火前后组织和性能的影响。

加深对加工硬化现象和回复再结晶的认识。

二、基本原理1、金属冷塑性变形后的显微组织和性能变化金属冷塑性变形为金属在再结晶温度以下进行的塑性变形。

金属在发生塑性变形时,外观和尺寸发生了永久性变化,其内部晶粒由原来的等轴晶逐渐沿加工方向伸长,在晶粒内部也出现了滑移带或孪晶带,当变形程度很大时,晶界消失,晶粒被拉成纤维状。

相应的,金属材料的硬度、强度、矫顽力和电阻等性能增加,而塑性、韧性和抗腐蚀性降低。

这一现象称为加工硬化。

为了观察滑移带,通常将已抛光并侵蚀的试样经适量的塑性变形后再进行显微组织观察。

注意:在显微镜下滑移带与磨痕是不同的,一般磨痕穿过晶界,其方向不变,而滑移带出现在晶粒内部,并且一般不穿过晶界。

2、冷塑性变形后金属加热时的显微组织与性能变化金属经冷塑性变形后,在加热时随着加热温度的升高会发生回复、再结晶、和晶粒长大。

(1)回复当加热温度较低时原子活动能力尚低,金属显微组织无明显变化,仍保持纤维组织的特征。

但晶格畸变已减轻,残余应力显著下降。

但加工硬化还在,固其机械性能变化不大。

(2)再结晶金属加热到再结晶温度以上,组织发生显著变化。

首先在形变大的部位(晶界、滑移带、孪晶等)形成等轴晶粒的核,然后这些晶核依靠消除原来伸长的晶粒而长大,最后原来变形的晶粒完全被新的等轴晶粒所代替,这一过程为再结晶。

由于金属通过再结晶获得新的等轴晶粒,因而消除了冷加工显微组织、加工硬化和残余应力,使金属又重新恢复到冷塑性变形以前的状态。

金属的再结晶过程是在一定的温度范围能进行的,通常规定在一小时内再结晶完成95%所对应的温度为再结晶温度,实验证明,金属熔点越高,再结晶温度越高,其关系大致为:T=0.4T熔。

(3)晶粒长大再结晶完成后,继续升温(或保温),则等轴晶粒以并容的方式聚集长大,温度越高,晶粒越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验方案金属的塑性变形与再结晶
一,实验目的
1、观察显微镜下滑移线、变形孪晶的特征;
2、了解金属经冷加工变形后显微组织及性能的变化;
二、概述
1 显微镜下的滑移线与变形挛晶
金属受力超过弹性极限后,在金属中特产生塑性变形。

金属单晶体变形机理指出,塑性变形的基本方式为滑移和孪晶两种。

所谓滑移时晶体在切应力作用下借助于金属薄层沿滑移面相对移动实质为位错沿滑移面运动的结果。

滑移后在滑移面两侧的晶体位相保持不变。

把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。

变形后的显微姐织是由许多滑移带所组成。

另一种变形的方式为孪晶。

不易产生滑移的金属,如六方晶系镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的—部分以一定的晶面为对称面;与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。

孪晶的结果是孪晶面两侧晶体的位向发生变化,呈镜面对称。

所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。

2、变形程度对金属组织和性能的影响
变形前金属为等轴晶粒,轻微量变形后晶粒内即有滑移带出现,经过较大的变形后即发现晶粒被拉长,变形程度愈大,晶粒被拉得愈长,当变形程度很大时,则加剧剧了晶粒沿一定方向伸长,晶粒内部被许多的滑移带分割成细小的小块,晶界与滑移带分辨不清,呈纤维状组织。

由于变形的结果,滑移带附近晶粒破碎,产生较严重的晶格歪扭,造成临界切应力提高,使继续变形发生困难,即产生了所谓加工硬化现象。

随变形程度的增加,金属的硬度、强度、矫顽力、电阻增加,而塑性和韧性下降。

3、形变金属在加热后组织和性能的影响
变形后的金属在较低温度加热时,金属内部的应力部分消除,歪曲的晶格恢
复正常,但显微组织没有变化,原来拉长的晶粒仍然是伸长的。

这个过程是靠原子在一个晶粒范围内的移动来实现的,称为回复。

变形后金属加热到再结晶温度以上时,发生再结晶过程,显微组织发生显著变化。

再结晶使金属中被拉长的晶粒消失,生成新的无内应力的等轴晶粒,机械性能完全恢复。

对于立方晶系的金属,当变形度达到了70~80%以上时,最低(开始)的再结晶温度与熔点有如下关系:
T再=0.4T熔化(绝对温度计)
金属中有杂质存在时,最低的再结晶温度显著变化。

在大多数情况下,杂质均使再结晶温度升高。

为了消除加工硬化现象,通常退火温度要比其最低再结晶温度高出100—200℃。

变形金属经过再结晶后的晶粒度,不仅会影响其强度和塑性,而且还会显著影响动载下的冲击韧性值。

当变形度很小时,由于晶格歪扭程度很小,不足以引起再结晶,故晶粒大小不变。

当变形度在2~10%范围内时,金属中变形极不均匀,再结晶时形核数量很少,再结晶后晶粒度很不均匀,晶粒极易相互并吞长大,这样的变形度称“临界变形度”。

大于临界变形度后,随着变形度的增加,变形愈均匀,再结晶时的形核率便愈大,再结晶后的晶粒便愈细。

在进行冷塑性变形时,应尽量避免在临界变形度下变形,而采用较大的变形度,以获得较细小的品粒,临界变形度,因金属的本性及纯度而异,铁为7—15%,铝为2~4%。

三、实验任务
2、测量工业纯铝不同变形度(1%、6%、12%、16%)试样的硬度;
3、观察纯铝滑移带,并拍摄组织照片,分析形成原因。

四、实验方法指导
1、实验设备和材料
(1)金相显微镜;(2)手动拉伸机;(3)加热炉;(4)布氏硬度计或洛氏硬度计;(5)纯铝滑移带试样;(6)尺寸为140X12X 0.5mm铝片一组4根。

2、实验步骤.
(1)用软铅笔在铝片中部划出l00mm长度的计算距离,刻度线间距离的测量力求准确,试片两端打上编号,编号顺序见表1—1。

表1—1
(2)在拉伸机上分别将试样拉到所要求的尺寸,拉伸时纯铝片的长度方向必须平行于拉伸方向。

(3)将变形后的试样集中起来,一起放入500—600℃的炉中加热30分钟,试样冷却后(可用水冷)进行宏观腐蚀,以显示晶粒大小。

=0.1~O.3Tm,所以回火温度为温度的确定:本实验采用低温回复由公式T

100℃。

又因为T再=0.4T m(绝对温度计)可得纯铝的再结晶退火温度350~420℃。

因再结晶受各种因素的影响,为缩短退火周期,实际生产中再结晶退火温度通常为最低再结晶温度以上100~200℃,所以左中采用550℃30min,可有效消除加工硬化同时产生等轴晶粒。

腐蚀:
①用1:1的硝酸盐酸溶液浸蚀,当能清楚地用肉眼看到晶粒时,即可用水冲洗。

②采用40%NaOH腐蚀。

腐蚀后用自来水冲洗干净,擦干后即可看出晶粒。

(4)观察试样上晶粒的分布情况,统计lcm2面积中的晶粒数目。

(5)测量工业纯铝不同变形度的硬度HB。

(6)观察滑移带,变形孪晶、退火孪晶的特征,比较它们的区别和形成,拍摄出组织示意图。

五、实验报告要求
1、报告内容包括实验目的、任务和实验结果,
2、根据记录,建立纯铝片“变形度与再结晶后晶粒大小”的关系曲线,讨论变形度对纯铝片再结晶晶粒大小的影响;
3、根据实验结果,分析冷变形对纯铝性能(硬度)的影响;。

相关文档
最新文档