中考数学压轴题破解策略专题19《中点模型》
中考数学必考几何模型:中点四大模型

中点四大模型模型1 倍长中线或类中线(与中点有关的线段)构造全等三角形②图①图构造全等倍长类中线倍长中线DCBAFF ACABCDCA模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.模型实例如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF =EF ,求证:AC =BE .FECA1.如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.BA解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,⎪⎩⎪⎨⎧=∠=∠=DEADBDEADCCDBD,∴△ADC≌△EDB(SAS),∴EB=AC=20,根据三角形的三边关系定理:20-12<AE<20+12,∴4<AD<16,故AD的取值范围为4<AD<16.2.如图,在△ABC中,D是BC的中点,DM⊥DN,如果BM2+CN2=DM2+DN2.求证:AD2=41(AB2+AC2).NMD CA证明:如图,过点B作AC的平行线交ND的延长线于E,连ME.∵BD =DC , ∴ED =DN .在△BED 与△CND 中,∵⎪⎩⎪⎨⎧=∠=∠=DN ED CDN BDE DC BD ∴△BED ≌△CND (SAS ). ∴BE =NC . ∵∠MDN =90°,∴MD 为EN 的中垂线. ∴EM =MN .∴BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2, ∴△BEM 为直角三角形,∠MBE =90°. ∴∠ABC +∠ACB =∠ABC +∠EBC =90°. ∴∠BAC =90°. ∴AD 2=(21BC )2=41(AB 2+AC 2).模型2 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.ABCDDCBA模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”. 模型实例如图,在△ABC 中,AB =AC =5,BC =6,M 为BC 的中点,MN ⊥AC 于点N ,求MN 的长度.NM CB A解答: 连接AM .∵AB =AC =5,BC =6,点M 为BC 中点, ∴AM ⊥BC ,BM =CM =21BC =3. ∵AB =5, ∴AM =4352222=-=-BM AB .∵MN ⊥AC ,∴S △ANC =21MC ·AM =21AC ·MN . 即:21×3×4=21×5×MN .∴MN =512跟踪练习1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .F证明:连结AD ,∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC ,∠ADB =∠ADC =90° 在Rt △AED 与Rt △AFD 中,⎩⎨⎧==ADAD AFAB , ∴Rt △AED ≌Rt △AFD .(HL ) ∴∠ADE =∠ADF , ∵∠ADB +∠ADC =90°, ∴∠EDB =∠FDC .2.已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当∠EDF 绕D 点旋转到DF ⊥AC 于E 时(如图①),求证:S △DEF +S △CEF =21S △ABC ; (2)当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图ABDEFACDDCA解:(1)连接CD ;如图2所示: ∵AC =BC ,∠ACB =90°,D 为AB 中点, ∴∠B =45°,∠DCE =21∠ACB =45°,CD ⊥AB ,CD =21AB =BD , ∴∠DCE =∠B ,∠CDB =90°,∵∠EDF =90°,∴∠1=∠2,在△CDE 和△BDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠B DCB BD CD 21, ∴△CDE ≌△BDF (ASA ),∴S △DEF +S △CEF =S △ADE +S △BDF =21S △ABC ; (2)不成立;S △DEF −S △C EF =21S △ABC ;理由如下:连接CD ,如图3所示:同(1)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC , =S △CFE +S △DBC ,=S △CFE +21S △ABC , ∴S △DEF -S △CFE =21S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF -S △CEF =21S △ABC . 21ABCDE模型3 已知三角形一边的中点,可考虑中位线定理构造中位线取另一边中点EDDA模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理:DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型实例如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDCBA解答如图,连接BD ,取BD 的中点H ,连接HE 、HF . ∵E 、F 分别是BC 、AD 的中点, ∴FH =21AB ,FH ∥AB ,HE =21DC ,HE ∥NC . 又∵AB =CD ,∴HE =HF .∴∠HFE =∠HEF . ∵FH ∥MB ,HE ∥NC ,∴∠BME =∠HFE ,∠CNE =∠FEH . ∴∠BME =∠CNE .练习:1.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AD ⊥BD ,AE ⊥CE ,垂足分别为D ,E ,连接DE ,求证:DE ∥BC ,DE =12(AB +BC +AC );(2)如图2,BD ,CE 分别是△ABC 的内角平分线,其他条件不变,上述结论是否成立? (3)如图3,BD 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,其他条件不变,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中一种情况进行证明.E D CBA图1G FEDCBA图2FED CBA图31.解答(1)如图①,分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌ △BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12HK .又∵HK =BK +BC +CH =AB +BC +AC . ∴DE =12(AB +AC +BC ).(2)猜想结果:图②结论为DE =12(AB +AC -BC ) 证明:分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB同理可证,AE =HE ,AC =HC . ∴DE =12HK . 又∵HK =BK +CH -BC =AB +AC -BC∴DE =12(AB +AC -BC )GABCDEKHF 图2(3)图③的结论为DE =12(BC +AC -AB ) 证明:分别延长AE ,AD 交BC 或延长线于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12KH . 又∵HK =BH -BK =BC +CH -BK =BC +AC -AB∴DE =12(BC +AC -AB ).ABCD EKHF图32.问题一:如图①,在四边形ABCD 中,AB 与CD 相交于点O ,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF ,分别交DC ,AB 于点M ,N ,判断△OMN 的形状,请直接写出结论.问题二:如图②,在△ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断△AGD 的形状并证明.图1NMO F E DC BAE图2G ABCDF2.证明(1)等腰三角形(提示:取AC 中点H ,连接FH ,EH ,如图①)(2)△AGD 是直角三角形如图②,连接BD ,取BD 的中点H ,连接HF ,HE . ∵F 是AD 的中点, ∴HF ∥AB ,HF =12AB . ∴∠1=∠3.同理,HE ∥CD ,HE =12CD , ∴∠2=∠EFC , ∴AB =CD , ∴HF =HE . ∴∠1=∠2.∵∠EFC =60°,∴∠3=∠EFC =∠AFG =60°. ∴△AGF 是等边三角形. ∴AF =FG . ∴GF =FD .∴∠FGD =∠FDG =30°.∴∠AGD =90°,即△AGD 是直角三角形.图2321G A BCDF H模型4 已知直角三角形斜边中点,可以考虑构造斜边中线DCBA模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用. 模型实例如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .M FEDCBA证明连接DE ,DF .BE ,CF 分别为边AC ,AB 上的高,D 为BC 的中点,DF =12BC ,DE =12BC .DF =DE ,即△DEF 是等腰三角形. DM ⊥EF ,点M 是EF 的中点,即FM =EM .ABCDEFM练习:1.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10,求DM 的长度.1.解答取AB 中点N ,连接DN ,MN .在Rt △ADB 中,N 是斜边AB 上的中点, ∴DN =12AB =BN =5.∴∠NDB =∠B .在△ABC 中,M ,N 分别是BC ,AB 的中点, ∴MN ∥AC∴∠NMB =∠C ,又∵∠NDB 是△NDM 的外角, ∴∠NDB =∠NMD +∠DNM .即∠B =∠NMD +∠DNM =∠C +∠DNM . 又∵∠B =2∠C ,∴∠DNM =∠C =∠NMD . ∴DM =DN . ∴DM =5.N MD CBA2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MEDCBA2.证明延长BM 交CE 于G ,∵△ABD 和△ACE 都是直角三角形, ∴CE ∥BD .∴∠BDM =∠GEM .又∵M 是DE 中点,即DM =EM , 且∠BMD =∠GME , ∴△BMD ≌△GME . ∴BM =MG .∴M 是BG 的中点,∴在Rt △CBG 中,BM =CM .3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 . 问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MF DCBA图2ABCDE FM图3ABCDF M3.解答∵(1)AE ⊥BC ,BF ⊥AC ,∴△AEB 和△AFB 都是直角三角形, ∵D 是AB 的中点, ∴DE =12AB ,DF =12AB .∴DE =DF . ∵DE =KDF , ∴k =1. (2)∵CB =CA , ∴∠CBA =∠CAB . ∵∠MAC =∠MBC ,∴∠CBA -∠MBC =∠CAB -∠MAC ,即∠ABM =∠BAM . ∴AM =BM .∵ME ⊥BC ,MF ⊥AC , ∴∠MEB =∠MF A =90°. 又∵∠MBE =∠MAF ,∴△MEB ≌△MF A (AAS ) ∴BE =AF .∵D 是AB 的中点,即BD =AD , 又∵∠DBE =∠DAF ,∴△DBE ≌△DAF (SAS ) ∴DE =DF .(3)DE =DF .图1M F E DCB A如图,作AM的中点G,BM的中点H,连DG,FG,DH,EH. ∵点D是边AB的中点,∴DG∥BM,DG=12 BM.同理可得:DH∥AM,DH=12AM.∵ME⊥BC于E,H是BM的中点.∴在Rt△BEM中,HE=12BM=BH.∴∠HBE=∠HEB.∴∠MHE=2∠HBE.又∵DG=12BM,HE=12BM,∴DG=HE.同理可得:DH=FG. ∠MGF=2∠MAC.∵DG∥BM,DH∥GM,∴四边形DHMG是平行四边形.∴∠DGM=∠DHM.∵∠MGF=2∠MAC,∠MHE=2∠MBC,∠MBC=∠MAC,∴∠MGF=∠MHE.∴∠DGM+∠MGF=∠DHM+∠MHE.∴∠DGF=∠DHE.在△DHE与△FGD中DG HEDGF DHEDH FG=⎧⎪∠=∠⎨⎪=⎩∴△DHE≌△FGD(SAS)∴DE=DF.图2AB CDEFM。
中点四大模型-【压轴必刷】中考数学压轴大题之经典模型(解析版)

中点四大模型解题策略模型1倍长中线或类中线(与中点有关的线段)构造全等三角形模型分析如图1,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS )如图2,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )模型2已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到:“边等、角等、三线合一”.图1AABCD EB CD倍长中线ABCDEF ABCDF 倍长类中线构造全等图2ABCDABCD连接中线模型3已知三角形一边的中点,可考虑中位线定理模型分析:在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理:DE ∥BC ,且DE =12BC 来解题,中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型4已知直角三角形斜边中点,可以考虑构造斜边中线模型分析:在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12BC ,来证明线段间的数量关系,而且可以得到两个等腰三角形;△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用。
A BCD A BC D E 取另一边中点构造中位线ABCDABCD构造直角三角形斜边上的中线经典例题【例1】(2022·江苏·南通市通州区育才中学八年级阶段练习)已知,在△ABC中,∠ACB=90°,AC= BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)如图1,求证:AD=CE;(2)如图2,点O为AB的中点,连接OD,OE.请判断△ODE的形状?并说明理由.【答案】(1)见解析(2)△DOE等腰直角三角形,理由见解析【分析】(1)根据垂直的定义及直角三角形中两个锐角互余得出∠EBC=∠DCA,再由全等三角形的判定和性质即可证明;(2)连接OC,根据等腰直角三角形的性质及斜边上的中线的性质得出AO=BO=CO,∠CAB=∠CBA=45°,CO⊥AB,再由全等三角形的判定得出△DCO≌△EBO(SAS),△ADO≌△CEO,最后结合图形证明即可.【详解】(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,∠E=∠D,∠EBC=∠DCA,BC=AC,∴△CEB≌△ADC(AAS),∴AD=CE.(2)△DOE等腰直角三角形,理由如下:连接OC,如图所示:∵AC=BC,∠ACB=90°,点O是AB中点,∴AO=BO=CO,∠CAB=∠CBA=45°,CO⊥AB,∴∠AOC=∠BOC=∠ADC=∠BEC=90°,∵∠BOC+∠BEC+∠ECO+∠EBO=360°,∴∠EBO +∠ECO =180°,且∠DCO +∠ECO =180°,∴∠DCO =∠EBO ,且DC =BE ,CO =BO ,∴△DCO ≌△EBO (SAS ),∴EO =DO ,∠EOB =∠DOC ,同理可证:△ADO ≌△CEO ,∴∠AOD =∠COE ,∠AOD +∠DOC =90°,∴∠DOC +∠COE =90°,∴∠DOE =90°,且DO =OE ,∴△DOE 是等腰直角三角形.【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形斜边上的中线的性质等,理解题意,综合运用这些知识点是解题关键.【例2】(2022·重庆市合川中学九年级阶段练习)在△ABC 中,∠ABC =45°,D 为BC 上一动点.(1)如图1,当∠ADC =75°时,若AB =3+3,求AD 的长;(2)如图2,当AC =AD 时,点P 为AB 的中点,且AB =2CD ,求证:AC =PC ;(3)如图3,在(2)的条件下,将△BCP 绕点P 旋转180°,得到△AC P ,连接DC ,直接写出CC 'C 'D的值.【答案】(1)AD =23(2)见解析(3)102【分析】(1)过点D 作DH ⊥AB 于点H .由三角形外角的性质易求∠DAH =30°.根据题意可求∠DBH =∠BDH =45°,即得出BH =DH .设BH =DH =x ,则AD =2x ,根据勾股定理可求出AH =AD 2-DH 2=3x .从而可列出关于x 的方程,解出x ,即可求出AD 的长;(2)连接DP ,过点A 作AQ ⊥BC 于点Q .易得出AQ =BQ ,根据勾股定理可得出AB =2AQ =2BQ .结合题意又可得出CD =AQ =BQ .设CD =AQ =BQ =2a .根据等腰三角形的性质可得CQ =DQ =12CD =a =BD ,即点D 为BQ 中点.结合题意利用三角形中位线定理可得PD ∥AQ ,PD =12AQ =a ,从而可证PD ⊥BC ,最后根据勾股定理可求出PC =5a =AC ;(3)在(2)的基础上,过点C 作C T ⊥BC 交CB 的延长线于点T ,由旋转的性质可知AC =BC =3a,∠AC P=∠PCB,即易证四边形AC TQ是矩形,得出TQ=AC =3a,C T=AQ=2a,进而可求出BT=TQ-BQ=a,DT=TQ-DQ=2a=C T,CT=TQ+CQ=4a,最后根据勾股定理求出C C和C D的长,作比即可.【详解】(1)如图,过点D作DH⊥AB于点H.∵∠ADC=∠ABC+∠BAD,∠ABC=45°,∠ADC=75°,∴∠BAD=30°,即∠DAH=30°.∵DH⊥AB,∴∠DBH=∠BDH=45°,∴BH=DH.设BH=DH=x,则AD=2x,∴AH=AD2-DH2=3x.∴AB=AH+BH=x+3x=3+3,解得:x=3,∴AD=23;(2)如图,连接DP,过点A作AQ⊥BC于点Q.∵∠ABC=45°,∴∠BAQ=∠ABC=45°,∴AQ=BQ,∴AB=2AQ=2BQ.∵AB=2CD,∴CD=AQ=BQ.设CD=AQ=BQ=2a.∵AD=AC,AQ⊥CD,∴CQ=DQ=12CD=a=BD,即点D为BQ中点.∵点P为AB的中点,即AP=BP,∴PD∥AQ,PD=12AQ=a,∴PD⊥BC,∴PC=PD2+CD2=a2+4a2=5a,AC=AQ2+CQ2=4a2+a2=5a,∴PC=AC;(3)如图,在(2)的基础上,过点C 作C T⊥BC交CB的延长线于点T,由旋转的性质可知AC =BC=3a,∠AC P=∠PCB,∴AC ∥CT .∵C T ⊥BC ,AQ ⊥BC ,∴四边形AC TQ 是矩形,∴TQ =AC =3a ,C T =AQ =2a ,∴BT =TQ -BQ =3a -2a =a ,DT =TQ -DQ =3a -a =2a =C T ,CT =TQ +CQ =3a +a =4a ,∴C D =2DT =22a ,C C =C T 2+CT 2=2a2+(4a )2=25a ,∴C C C D =25a 22a=102.【点睛】本题考查三角形外角的性质,等腰直角三角形的判定和性质,含30度角的直角三角形的性质,勾股定理,三角形中位线定理,矩形的判定和性质等知识,综合性强,较难.正确的作出辅助线是解题关键.【例3】(2022·河南·嵩县教育局基础教育教学研究室一模)如图,Rt △ABC 的中,∠BAC =90°,AB =4cm ,AC =3cm ,点G 是边AB 上一动点,以AG 为直径的⊙O 交CG 于点D ,E 是边AC 的中点,连接DE .(1)求证:DE 与⊙O 相切;(2)填空:①当AG =___________cm 时,⊙O 与直线BC 相切;②当点G 在边AB 上移动时,△CDE 面积的最大值是___________cm 2【答案】(1)见解析(2)①3,②98【分析】(1)证明DE 是圆的切线,即连接OD ,再由直径AG 和中点E 想到连接AD 、OE ,则可知DE =AE ,最后证明ΔODE ≌ΔOAE 即可求证;(2)①由⊙O 与BC 相切,故结合ΔABC 的面积等于ΔAOC 的面积与ΔBOC 的面积之和即可求解;②结合(1)中分析可知CE =12AC =32,再结合三角形的面积公式,即可分析求解.【详解】(1)连接OE ,OD ,AD ∵AG 是⊙O 的直径,∴∠ADG =∠ADC =90°,即ΔADC 是直角三角形.∵E 是斜边AC 的中点,∴DE =AE .在ΔODE 和ΔOAE 中,OD =OADE =AEOE =OE∴△ODE ≌△OAE SSS ∴∠ODE =∠BAC =90°.∵OD 是⊙O 的半径,∴DE 与⊙O 相切.(2)①设⊙O 与BC 相切与点F ,⊙O 的半径为r 连接OC 则OF =OA =r =12AG ∵AB =4,AC =3,∠BAC =90°∴BC =32+42=5,S ΔAOC =12×AC ×OA =12×3×r =32r ,S ΔABC =12×AB ×AC =12×4×3=6∵⊙O 与BC 相切与点F ∴S ΔBOC =12×BC ×OF =12×5×r =52r ∵S ΔABC =S ΔAOC +S ΔBOC ∴6=32r +52r ,即r =32∴AG =2r =32×2=3故答案是:3.②由(1)可知DE =CE =12AC =32,设CE 边上的高为h ,则S ΔCDE =12×CE ×h =34h ∴当h 取最大值时,S ΔCDE 的值最大结合题意可知,当h =DE =32时最大,即DE ⊥AC 时,∴S ΔCDE 的最大值为34h =34×32=98故答案是:98.【点睛】本题主要考查圆的性质、切线的证明、直角三角形的性质、勾股定理、全等三角形的判定与性质、面积最值问题、线段长度问题等知识点,属于综合几何证明题,具有一定难度.解题的关键是熟练掌握圆和直角三角形的相关性质,并根据题意画出辅助线,即线段OD ,AD .【例4】(2021·广西·南宁二中八年级期中)在平面直角坐标系中有一等腰三角形ABC ,点A 在y 轴正半轴上,点B 在x 轴负半轴上.(1)如图1,点C 在第一象限,若∠BAC =90°,A 、B 两点的坐标分别是A (0,4),B (-2,0),求C 点的坐标;(2)如图2,点C 在x 正半轴上,点E 、F 分别是边BC 、AB 上的点,若∠AEF =∠ACB =2∠OAE .求证:BF =CE ;(3)如图3,点C 与点O 重合时点E 在第三象限,BE ⊥AE ,连接OE ,求∠BEO 的度数.【答案】(1)C 4,2 ;(2)见解析;(3)135°.【分析】(1)过点C 作CM ⊥OA ,垂足为M ,则∠AMC =90°,求出∠ABO =∠CAM ,证明△ABO ≌△CAM AAS ,得出MC =AO =4,AM =BO =2,则可得出答案;(2)证明∠BEF =∠EAC ,∠FAE =∠AFE ,可得AE =EF ,利用AAS 证明△AEC ≌△EFB ,则可得出BF =CE ;(3)过点O 作OG ⊥AE 于点G ,OH ⊥BE 交BE 的延长线于点H ,AE 与OB 交于点M ,证明△AOG ≌△BOH AAS ,由全等三角形的性质得出OG =OH ,证明EO 平分∠AEH ,求出∠OEH =∠AEO =45°,则可得出答案.【详解】(1)解:如图1中,过点C 作CM ⊥OA ,垂足为M ,则∠AMC =90°,∵∠BAC =∠AOB =90°,∴∠BAO +∠CAM =90°,∠BAO +∠ABO =90°,∴∠ABO =∠CAM ,∵△ABC 是等腰三角形,∠BAC =90°,∴AB =CA ,在△ABO 和△CAM 中,∠ABO =∠CAM ∠AOB =∠CMA AB =CA,∴△ABO ≌△CAM AAS ,∴MC =AO ,AM =BO ,∵A (0,4),B (-2,0),∴AO =4,BO =2,∴MC =4,AM =2,∴MO =AO -AM =2,∴C 4,2 ;(2)证明:设∠OAE =α,则∠AEF =∠ACB =2α,∵∠AEF +∠BEF +∠AEC =180°,∠ACB +∠EAC +∠AEC =180°,∴∠BEF =∠EAC ,由图2可知,等腰三角形ABC 中,AB =AC ,∴∠ABC =∠ACB ,∵OA ⊥BC ,∴∠BAO =∠CAO ,∵∠FAE =∠FAO +∠OAE =∠OAC +α=α+∠EAC +α=2α+∠EAC ,∠AFE =∠FBE +∠BEF =2α+∠BEF ,∴∠FAE =∠AFE ,∴AE =EF ,∴△AEC ≌△EFB AAS ,∴BF =CE ;(3)解:∵点C 与点O 重合,∠AOB =90°,∴OA =OB ,如图3,过点O 作OG ⊥AE 于点G ,OH ⊥BE 交BE 的延长线于点H ,AE 与OB 交于点M ,∵BE ⊥AE ,∴∠AEB =90°,∵∠AOB =90°,∠AMO =∠BME,∴∠MAO=∠OBH,又∵∠AGO=∠BHO=90°,OA=OB,∴△AOG≌△BOH AAS,∴OG=OH,又∵OG⊥AE,OH⊥BE,∴EO平分∠AEH,∴∠OEH=∠AEO=45°,∴∠BEO=∠AEB+∠AEO=90°+45°=135°.【点睛】本题是三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定与性质,角平分线的判定,三角形内角和定理,坐标与图形的性质等知识,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.培优训练一、解答题1.(2021·湖北武汉·九年级阶段练习)△ABC中,BC=4,AC=6,∠ACB=m°,将△ABC绕点A顺时针旋转n°得到△AEF,E与B是对应点,如图1.(1)延长BC、EF,交于点K,求证:∠BKE=n°;(2)当m=150,n=60时,求四边形CEFA的面积;(3)如图3.当n=150时,取BE的中点P和CF的中点Q,直接写出PQ2的值.【答案】(1)见解析;(2)12+93;(3)8-43【分析】(1)根据旋转的性质可得∠AEF=∠B,利用三角形的外角性质可得∠BKE=∠KPA-∠AEF,从而得到∠BKE=∠BAE=n°;(2)连CF,作FH⊥AC于H,根据条件得到ΔACF是等边三角形,则∠EFC=90°,从而根据S四边形CEFA=SΔCEF+SΔACF计算即可;(3)取CE中点G,连接PG,QG,构造△GPQ为等腰三角形,并结合中位线定理以及旋转的性质求解∠PGQ=30°,再作CN⊥FA于N点,结合旋转的性质求解出sin15°=6-24,最后在△GPQ中运用“三线合一”的性质求解出PQ的长度得出结论.【详解】(1)设CK、AE交于点P,∵ΔAEF是ΔABC旋转所得,∴ΔAEF≅ΔABC,∴∠AEF=∠B,∵∠BKE=∠KPA-∠AEF,∠BAE=∠KPA-∠B,∴∠BKE=∠BAE=n°;(2)连CF,作FH⊥AC于H,∵ΔAEF≅ΔABC,∴EF=BC=4,AF=AC=6,∠AFE=∠ACB=150°,∴ΔACF是等边三角形,∴∠AFC=60°,∴∠EFC=∠AFE-∠AFC=150°-60°=90°,∴SΔCEF=12CF⋅EF=12×6×4=12,∵AH=12AC=3,FH=AF2-AH2=36-9=33,∴SΔACF=12AC⋅FH=12×6×33=93,=SΔCEF+SΔACF=12+93;∴S四边形CEFA(3)如图,取CE中点G,连接PG,QG,则PG,QG为△BCE和△FCE的中位线,∴PG=12BC=2,QG=12EF=2,△GPQ为等腰三角形,根据中位线定理可得:∠BCE=∠PGE,∠CEF=∠CGQ,∴∠PGQ=∠PGE+∠CGQ-180°=∠BCE+∠CEF-180°,又∵∠BCE+∠CEF=∠BCE+∠CEA+∠AEF=∠BCE+∠CEA+∠ABC,∴在四边形ABCE中,∠BCE+∠CEA+∠ABC=360°-∠BAE=360°-150°=210°,∴∠BCE+∠CEF=210°,∠PGQ=∠PGE+∠CGQ-180°=210°-180°=30°,作CN⊥FA于N点,根据旋转可知,∠CAF=150°,AC=AF=6,∠AFC=15°,∴∠CAN=30°,在Rt△CAN中,AC=6,∠CAN=30°,∴CN=3,AN=33,∴NF=AN+AF=6+33由勾股定理得:FC=CN2+NF2=36+32,∴sin∠CFN=CNCF=336+32=6-24,即:sin15°=6-2 4,此时,作GM⊥PQ,则根据“三线合一”知GM平分∠PGQ,∠MGQ=15°,PM=QM,∴MQ=GQ·sin15°=2×6-24=6-2 2,∴PQ=2MQ=6-2,∴PQ2=6-22=8-43.【点睛】本题考查图形旋转的综合问题,包括全等三角形的判定与性质,等腰三角形的判定与性质,以及运用三角函数解直角三角形等,熟练根据题意灵活构造辅助线是解题关键.2.(2022·四川·石室中学八年级期中)已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图1,若点P在线段AB上,且AC=6+2,PA=2,求PB的长度;(2)在(1)的条件下,猜想PA、PB、PQ三者之间的数量关系并证明;(3)如图2,若点P在AB的延长线上,求证:PA2+PB2=PQ2.【答案】(1)23(2)PA2+PB2=PQ2,证明见解析(3)证明见解析【分析】(1)在Rt△ABC中,利用勾股定理可求得AB,由PB=AB-PA可求得PB;(2)过C作CD⊥AB于点D,则△ADC是等腰直角三角形,则可求得AD=CD=12AB=1+3,进而得出PD的长,在Rt△PCD中利用勾股定理可求得PC的长,进而求出PQ的长即可得到结论;(3)过C作CD⊥AB于点D,把PA2和PB2都用PC和CD表示出来,在Rt△PCD中,由勾股定理得到PC和PD、CD的关系,从而可证得结论;【详解】(1)解:∵△ABC是等腰直角三角形,AC=6+2,∴AB=AC2+BC2=6+22=23+2,2+6+2∵PA=2,∴PB=AB-PA=23+2-2=23,(2)解:PA2+PB2=PQ2,证明如下:如图1,过C作CD⊥AB于点D,则△ADC是等腰直角三角形,∴AD=CD=12AB=1+3,∴PD=AD-PA=3-1,在Rt△PCD中,PC=CD2+PD2=3+12=22,2-3-1∵△PCQ是等腰直角三角形,∠PCQ=90°,∴PC=QC=22,∴PQ=PC2+QC2=4,∵PA2=4,PQ2=16,PB2=12,∴PA2+PB2=PQ2;(3)证明:如图2,过C作CD⊥AB于点D,∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB,∵PA2=AD+PD2=CD2+2CD⋅PD+PD2,2=CD+PDPB2=PD-BD2=CD2-2CD⋅PD+PD2,2=PD-CD∴PA2+PB2=2CD2+2PD2=2CD2+PD2,在Rt△PCD中,由勾股定理可得PC2=CD2+PD2,∴PA2+PB2=2PC2,∵△PCQ为等腰直角三角形,且∠PCQ=90°,∴PQ2=PC2+CQ2=2PC2,∴PA2+PB2=PQ2.【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,正确作出辅助线,构造直角三角形是解题的关键.3.(2022·广东·惠州市惠阳区朝晖学校九年级阶段练习)阅读理解:如图,等腰直角△ABC中,∠ABC =90∘,AB=BC,点A,B分别在坐标轴上.(1)如图①,过点C作CG⊥y轴于点G,若点C的横坐标为5,求点B的坐标.(2)如图②,将△ABC摆放至x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD⊥x轴于点D,求CDAM的值.(3)如图③,若点A坐标为(-4,0),分别以OB,AB为直角边在第一、第二象限作等腰Rt△OBF与等腰Rt△ABE,连接EF交y轴于点P.当B点在y轴正半轴上移动时,PB的长度是否会发生改变?若改变,请说明理由,若不改变,请直接写出PB的长度.【答案】(1)(0,5)(2)12(3)2【分析】(1)过点C作CG⊥y轴于点G,根据余角的性质,得出∠ABO=∠BCG,证明△ABO≌△BCG,得出BO=CG=5,即可得出答案;(2)分别延长AB,CD相交于点H,根据“AAS”证明△ABM≌△CBH,得出AM=CH,根据等腰三角形的性质,得出CD=DH,即可得出答案;(3)作EG⊥y轴于G,证明△BAO≌△EBG,得到BG=AO=4,EG=OB,证明△EGP≌△FBP,得到PB=PG,得到答案.【详解】(1)解:∵∠ABC=90∘,CG⊥y轴,∴∠1+∠ABO=90∘,∠1+∠BCG=90∘,∴∠ABO=∠BCG(同角的余角相等),∵∠ABC=90∘,CG⊥y轴,∠ABO=∠BCG,AB=BC,∴△ABO≌△BCG(两角及其中一角的对边对应相等的两个三角形全等),∴BO=CG(全等三角形的对应边相等),∵C点的横坐标为5,∴CG=5,∵CG=5,BO=CG,B点在y轴上,∴B点的坐标是0,5.(2)解:分别延长AB,CD相交于点H,如图所示:∵∠ABC=90∘,CH⊥x轴,∴∠1+∠A MB=90∘,∠3+∠CMD=90∘,∠CBH=90∘,∵∠A MB=∠CMD,∴∠1=∠3(等角的余角相等),∵∠ABC=∠CBH=90∘,∠1=∠3,AB=BC,∴△ABM≌△CBH(两角及其中一角的对边对应相等的两个三角形全等),∴AM=CH(全等三角形的对应边相等),∵AD平分∠BAC,CH⊥x轴,∴∠1=∠2,∠ADH=∠ADC=90°,∵AD=AD,∴△ADH≅△ADC,∴DH=DC,∴AM=CH=2CD,∴CD AM=1 2.(3)解:PB的长度不变,作EG⊥y轴于G,如图所示:∵点A的坐标为-4,0,∴OA=4,∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,∴∠BAO=∠EBG,在△BAO 和△EBG 中∠AOB =∠BGE∠BAO =∠EBG AB =BE,∴△BAO ≌△EBG AAS ,∴BG =AO =4,EG =OB ,∵OB =BF ,∴BF =EG ,在△EGP 和△FBP 中∠EPG =∠FPB∠EGP =∠FBP EG =FB,∴△EGP ≌△FBP AAS ,∴PB =PG ,∴PB =12BG =2.【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.4.(2022·河北·八年级期中)如图,在△ABC 中,已知AB =AC ,∠ABC =∠ACB =45°,AH 是△ABC 的高,BC =10cm ,射线CM ⊥BC ,动点D 从点C 开始沿射线CB 的方向以每秒2厘米的速度运动,动点E 也同时从点C 开始在射线CM 上以每秒1厘米的速度运动,连接AD 、AE ,设运动时间为t t >0 s .(1)请直接写出CD 、CE 的长度(用含有t 的式子表示):CD =______cm ,CE =______cm ;(2)当点D 到点H 的距离为2cm 时,求t 的值;(3)请直接写出当t =103s 时,△ABD 与△ACE 是否全等?【答案】(1)2t ,t (2)32s 或72s (3)全等,理由见解析【分析】(1)直接根据路程=速度×时间可得结论;(2)分当点D 位于点H 右边时;当点D 位于点H 左边时,两种情况进行讨论即可;(3)分别求出BD ,CD 的长度,然后根据“SAS ”证明全等即可.【详解】(1)解:根据题意可得CD =2t cm ,CE =t cm ,故答案为:2t ,t ;(2)解:∵AB=AC,∠ABC=∠ACB=45°,∴△ABC为等腰直角三角形,∵AH是△ABC的高,BC=10cm,∴BH=CH=5,当点D位于点H右边时,CD=CH-HD=5-2=2t,解得:t=3 2;当点D位于点H左边时,CD=CH+DH=5+2=7=2t,解得:t=7 2,综上所示:当点D到点H的距离为2cm时,t的值为32s或72s;(3)解:△ABD与△ACE全等,理由如下:当t=103s时,CD=2t=2×103=203cm,CE=t=103cm,∴BD=BC-CD=10-203=103cm,∴BD=CE,∵CM⊥BC,∠ABC=∠ACB=45°,∴∠ACE=45°,在△ABD和△ACE中,AB=AC∠B=∠ACEBD=CE,∴△ABD≌△ACE(SAS).【点睛】本题考查了全等三角形判定与性质,一元一次方程的应用,等腰直角三角形的性质,灵活运用相关知识点列方程求解是关键.5.(2022·江苏徐州·八年级期中)如图,△ABC中,∠ACB=90°,AC=BC,点D是斜边AB的中点,点E、F分别在边AC、BC上,且DE⊥DF,垂足为D.(1)如图1,当DE⊥AC时,DE、DF的大小关系是______;(2)如图2,将∠EDF绕点D点旋转,(1)中的关系还成立吗?请说明理由;(3)如图3,连接EF,试探究AE、BF、EF之间的数量关系,并证明你的结论.【答案】(1)DE=DF(2)成立,理由见解析(3)EF2=AE2+BF2,证明见解析【分析】(1)连接CD,由DE⊥AC,得∠DEC=90°=∠ACB=∠EDF,可得DF⊥BC,而AC= BC,D为AB中点,知CD是∠ACB的平分线,即得DE=DF;(2)过D作DM⊥AC于M,DN⊥BC于N,同(1)可得DM=DN,由∠DMC=∠DNC=∠ACB= 90°,可得∠MDN=90°=∠EDF,从而∠MDE=∠NDF,可证△DME≌△DNF(AAS),故DE= DF;(3)过D作DM⊥AC于M,DN⊥BC于N,由(2)知△DME≌△DNF,可得ME=NF,DE=DF,DM=DN,即可得EF2=2DE2,而AC=AB,∠ACB=90°,有∠A=∠B=45°,从而AM=DM= DN=BN,设ME=NF=x,则AM=AE-x=DM,BN=BF+x=DN,由AM=BN,得AE-x=BF+x,x=AE-BF2,即ME=AE-BF2,DM=AE-x=AE+BF2,又DE2=DM2+ME2,即可得EF2=2DE2=AE2+BF2.【详解】(1)解:DE=DF,理由如下:连接CD,如图:∵DE⊥AC,∴∠DEC=90°=∠ACB=∠EDF,∴∠DFC=90°,即DF⊥BC,∵AC=BC,D为AB中点,∴CD是∠ACB的平分线,∵DE⊥AC,DF⊥BC,∴DE=DF(角平分线上的点到两边的距离相等);故答案为:DE=DF;(2)将∠EDF 绕点D 点旋转,(1)中的关系还成立,理由如下:过D 作DM ⊥AC 于M ,DN ⊥BC 于N ,如图:同(1)可得DM =DN ,∵∠DMC =∠DNC =∠ACB =90°,∴∠MDN =90°=∠EDF ,∴∠MDN -∠EDN =∠EDF -∠EDN ,即∠MDE =∠NDF ,∵∠DME =90°=∠DNF ,∴△DME ≌△DNF (AAS ),∴DE =DF ;(3)EF 2=AE 2+BF 2,证明如下:过D 作DM ⊥AC 于M ,DN ⊥BC 于N ,如图:由(2)知△DME ≌△DNF ,∴ME =NF ,DE =DF ,DM =DN ,∵∠EDF =90°,∴DE 2+DF 2=EF 2,∴EF 2=2DE 2,∵AC =AB ,∠ACB =90°,∴∠A =∠B =45°,∵DM ⊥AC 于M ,DN ⊥BC 于N ,∴AM =DM =DN =BN ,设ME =NF =x ,则AM =AE -x =DM ,BN =BF +x =DN ,∵AM =BN ,∴AE -x =BF +x ,∴x =AE -BF 2,即ME =AE -BF 2,∴DM =AE -x =AE +BF 2,∵DE 2=DM 2+ME 2=AE +BF 2 2+AE -BF 2 2=AE 2+BF 22,∴EF 2=2DE 2=AE 2+BF 2.【点睛】本题考查等腰直角三角形中的旋转问题,涉及三角形全等的判定与性质,勾股定理及应用等知识,解题的关键是作辅助线,构造全等三角形.6.(2022·湖北·武汉市黄陂区教学研究室八年级期中)如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE .(1)如图1,求证:BD =CE ;(2)如图2,当AD =CD 时,过点C 作CM ⊥AD 于点M ,如果DM =2,求CD -BD 的值.【答案】(1)见解析(2)4【分析】(1)过A 作AH ⊥BC 于点H ,根据三线合一可得:BH =CH ,DH=EH ,即可证明;(2)过A 作AH ⊥BC 于点H ,易证△AHD ≌△CMD ,可得MD =DH ,即可求解.【详解】(1)证明:如图过A 作AH ⊥BC 于点H ,∵AB =AC ,AH ⊥BC ,∴BH =CH ,∵AD =AE ,∴DH =EH ,∴BD =CE ;(2)解:过A 作AH ⊥BC 于点H ,在△AHD 和△CMD 中,∠CDM =∠ADH∠CMD =∠AHD =90°CD =AD∴△AHD ≌△CMD AAS ,∴DH =MD ,∴CD -BD =CH +DH -BH -DH =2DH =2MD =4.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质“三线合一”,熟练掌握全等三角形的判定方法是解题的关键.7.(2022·浙江·杭州市大关中学九年级期中)如图,在△ABC 中,AB =AC ,∠A =30°,AB =10,以AB 为直径的⊙O 交BC 于点D ,交AC 于点E ,连接DE ,过点B 作BP 平行于DE ,交⊙O 于点P ,连接CP ,OP .(1)求证:点D 为BC的中点;(2)求AP 的长度.【答案】(1)见解析(2)5π2【分析】(1)连接AD ,可得AD ⊥BC ,再由等腰三角形的性质,即可求证;(2)由等腰三角形的性质,可得∠ABC =75°,再根据四边形ABDE 为⊙O的内接四边形,可得∠EDC =∠BAC =30°,然后根据BP ∥DE ,可得∠PBC =∠EDC =30°,从而得到∠OBP =∠ABC -∠PBC =45°,然后根据圆周角定理可得∠AOP =90°,再根据弧长公式计算,即可求解.【详解】(1)证明:如图,连接AD ,∵AB 为⊙O 的直径,∴∠ADB =90°,即AD ⊥BC ,∵AB =AC ,∴BD =CD ,即点D 为BC 的中点;(2)解:∵∠BAC =30°,AB =AC ,∴∠ABC =12×180°-30° =75°,∵四边形ABDE 为⊙O 的内接四边形,∴∠EDB +∠BAC =180°,∵∠EDB +∠EDC =180°,∴∠EDC =∠BAC =30°,∵BP ∥DE ,∴∠PBC =∠EDC =30°,∴∠OBP =∠ABC -∠PBC =45°,∵OB =OP ,∴△OBP 为等腰直角三角形,∴∠BOP =90°,∴∠AOP =90°,∵AB =10,∴半径OA =5,∴AP 的长度为90π×5180=5π2.【点睛】本题主要考查了求弧长,圆周角定理,圆内接四边形的性质,等腰三角形的性质,熟练掌握弧长公式,圆周角定理,圆内接四边形的性质,等腰三角形的性质是解题的关键.8.(2022·湖北黄石·九年级期中)如图,△ABC 中,AB =AC ,AH ⊥BC 于H ,BD ⊥AC 于D ,AH ,BD 相交于点O ,以O 为圆心、OD 为半径的⊙O 交BC 于点E 、F ,已知AD =6,BD =8.(1)求证:AB 是⊙O 的切线;(2)求⊙O 的半径;(3)求弦EF 的长.【答案】(1)见解析;(2)3;(3)4.【分析】(1)过点O 作OM ⊥AB 于点M ,利用角平分线的性质得到OM=OD ,即可;(2)利用勾股定理求得AC =AB =10,从而得到CD =4,再由勾股定理求得BC =45,则BH =CH =25,再由勾股定理得到AH =45,由△AOD ∽△ABH 得到AD AH=OD BH ,即可求解;(3)连接OE ,求得OH ,利用勾股定理得到EH ,即可求解.【详解】(1)证明:过点O 作OM ⊥AB 于点M ,如图∵AH ⊥BC ,AB =AC∴AH 平分∠BAC又∵OM ⊥AB ,OD ⊥AC∴OM =OD∴AB 是⊙O 的切线;(2)解:由勾股定理可得,AB =AD 2+BD 2=10,AC =10,则CD =4,由勾股定理可得:BC =BD 2+CD 2=45,由题意可得:AH 为中线,∴BH =CH =25由勾股定理可得:AH =AB 2-BH 2=45由(1)可得∠BAH =∠OAD ,又∵∠ADB =∠AHB =90°∴△AOD ∽△ABH ,∴AD AH =OD BH ,即645=OD 25解得:OD =3,即半径为3.(3)连接OE ,如下图:由题意可得:OE =3,OH ⊥EF∴EH =HF在Rt △AOD 中,由勾股定理可得:AO =OD 2+AD 2=35∴OH =AH -AO =5,在Rt△OEH中,由勾股定理可得:EH=OE2-OH2=2∴EF=2EH=4【点睛】此题考查了切线的判定,垂径定理,相似三角形的判定与性质,勾股定理,等腰三角形的性质,解题的关键是熟练掌握相关性质.9.(2022·江苏·泰州中学附属初中八年级阶段练习)按要求作图.(1)如图(1),在平行四边形ABCD中,AC为对角线,AC=BC,AE是△ABC的中线.①在AD取一点F使得EF∥CD;(仅使用无刻度的直尺画图).②画出△ABC的高CH.(仅使用无刻度的直尺画图).(2)如图(2),四边形ABCD是平行四边形,在线段CD找一点E,使得BE平分∠AEC.(仅使用圆规画图)【答案】(1)①见解析;②见解析(2)见解析【分析】(1)①连接BD交AC于O点,则OB=OD,则OE为△BCD的中位线,可得OE∥CD,延长EO交AD于F,则EF满足条件;②设BD交AE于P点,则P点为△ABC的三条中线的交点,然后延长CP交AB于H,CH为AB边上的中线,再由AC=BC,根据等腰三角形的性质得到CH⊥AB;(2)以A点为圆心,AB为半径画弧交DC于E点,则AE=AB,可得∠AEB=∠ABE,再根据CD∥AB,可知∠ABE=∠CEB,从而得到∠CEB=∠AEB,即可.【详解】(1)解:①如图1,连接BD交AC于O点,并延长EO交AD于F,F点即为所作;理由:∵四边形ABCD是平行四边形,∴OB=OD,∵AE是△ABC的中线.∴OE为△BCD的中位线,∴OE∥CD,即EF∥CD;②如图1,设BD交AE于P点,延长CP交AB于H,CH即为所作;理由:∵四边形ABCD是平行四边形,∴OA=OC,∵AC=BC,AE是△ABC的中线.∴P点为△ABC的三条中线的交点,∴CH为AB边上的中线,∴CH⊥AB,即CH是△ABC的高;(2)解:如图2,以A点为圆心,AB为半径画弧交DC于E点,则线段BE为所作.理由:根据作法得:AE=AB,∴∠AEB=∠ABE,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CEB,∴∠CEB=∠AEB,即BE平分∠AEC.【点睛】本题考查了作图--复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质,三角形中位线的性质,等腰三角形的性质以及平行线的性质.10.(2022·湖南长沙·九年级期中)如图,在△ABC中,AB=AC,以AC为直径的⊙O,与AB边相交于点D,与BC边相交于点E,过点E作EF⊥AB,垂足为点F.(1)求证:EF是⊙O的切线;(2)求证:点E是CD的中点;(3)若⊙O的直径为18,BC=12,求AD的长.【答案】(1)见解析;(2)见解析;(3)AD的长为14.【分析】(1)连接OE,利用等腰三角形的性质,证明OE∥AB即可证明;(2)利用圆周角定理以及等腰三角形三线合一的性质即可证明;(3)连接AE、CD,利用直径所对的圆周角是直角、等腰三角形三线合一以及证明△ABE∽△CBD,即可解答.【详解】(1)证明:连接OE,∵EF⊥AB,∴∠EFD=∠EFB=90°,∵AB=AC,∴∠B=∠C,∵OC=OE,∴∠C=∠OEC,∴∠OEC =∠B ,∴OE ∥AB ,∴∠OEF =∠EFB =90°,∵OE 是⊙O 的半径,∴EF 是⊙O 的切线;(2)证明:如图,连接AE ,∵AC 是直径,∴AE ⊥BC ,∵AB =AC ,∴∠BAE =∠CAE ,∴DE =CE ,∴点E 是CD 的中点;(3)解:连接AE 、CD ,∵AC 是⊙O 的直径,AB =AC ,BC =12,∴∠CDB =∠AEC =∠AEB =90°,BE =CE =6,∵∠B =∠B ,∴△ABE ∽△CBD ,∴AB CB=BE BD ,即1812=6BD ,解得:BD =4,∴AD =AB -BD =18-4=14,故AD 的长为14.【点睛】本题考查了切线的判定与性质,等腰三角形的性质,勾股定理,垂径定理,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.11.(2022·广东·广州市白云区白云实验学校八年级期中)在Rt △ABC 中,∠ACB =90°,∠A =30°,BD 是△ABC 的角平分线,DE ⊥AB 于点E .(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是AC边上一个动点(不与点D重合),以BM为一边,在BM的下方作∠BMG=60°,MG 交射线DE于点G.请画出完整图形,探究MD,DG与AD数量之间的关系,并说明理由.【答案】(1)见详解(2)画图见详解,当分M点在线段AD上时,AD+MD=DG;当M点在线段DC上时,AD-MD= DG.【分析】(1)根据含30°角的直角三角形的性质可得∠ABC=60°,BC=12AB,根据BD是△ABC的角平分线,可得∠ABD=∠CBD=30°,即有可得△ABD是等腰三角形,结合DE⊥AB和DE是△ABD的中线,可得AE=BE=12AB,问题随之得解;(2)分M点在线段AD上和M点在线段DC上两种情况来补全图形:当分M点在线段AD上时,延长BD至N点,使得MD=ND,连接MN,先证明△MND是等边三角形,再证明△MNB≌△MDG ASA,即可得解;当M点在线段DC上时,延长GD至H,使得DH=MD,连接HM,BD与MG交于点Q,先证明△MDH是等边三角形,再证明△HMG≌△D MB AAS,即可得解.【详解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=12AB,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=30°,∴∠ABD=∠A,∴AD=BD,∴△ABD是等腰三角形,∵DE⊥AB,∴DE是△ABD的中线,∴AE=BE=12AB,∵BC=12AB,∴BC=BE,∵∠ABC=60°,∴△EBC是等边三角形;(2)补全图形如下:(分M点在线段AD上和M点在线段DC上两种情况)当分M点在线段AD上时,延长BD至N点,使得MD=ND,连接MN,如图,在(1)中求得:∠ABD=∠CBD=30°=∠A,∵∠DEA=∠DEB=90°,∴∠EDA=∠EDB=60°,∵∠BMG=60°,∴∠EDA=∠EDB=60°=∠BMG,∴∠NDM=180°-∠EDB-∠EDA=60°,∵MD=ND,∴△MND是等边三角形,∴MD=ND=MN,∠NMD=60°=∠N,∴∠N MB=∠NMD+∠D MB=∠G MB+∠D MB=∠GMD,∵∠ADE=60°=∠N,MD=MN,∴△MNB≌△MDG ASA,∴NB=DG,∴DB+ND=DG,根据(1)可知AE=BE=12AB,DE⊥AB,∴DG是线段AB的垂直平分线,∴AD=BD,∵MD=ND,∴AD+MD=DG;当M点在线段DC上时,延长GD至H,使得DH=MD,连接HM,BD与MG交于点Q,如图,∵∠EDA=∠EDB=60°=∠BMG,∴∠HDM=∠EDA=60°,∠MDB=180°-∠EDA-∠EDB= 60°,∵DH=MD,∴△MDH是等边三角形,∴DM=HM,∠H=60°,∵∠EDB=60°=∠BMG,∠DQG=∠BQM,∴∠DGQ=∠QBM,∵∠H=∠MDB,DM=HM,∴△HMG≌△D MB AAS,∴HG=BD,∵HD=MD,AD=BD,∴AD=BD=HG=HD+DG=MD+DG,∴AD-MD=DG;综上:当分M点在线段AD上时,AD+MD=DG;当M点在线段DC上时,AD-MD=DG.【点睛】此题是三角形的综合题,主要考查了等边三角形的判定与性质以及全等三角形的判定与性质,根据已知正确作出辅助线是解题关键.12.(2022·福建·上杭县教师进修学校八年级期中)数学活动课上老师出示如下问题,供同学们探究讨论:如图,在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是线段BD上的一个动点(不与点B重合,且BC≠BE),在线段BE上截取BA=BC,连接AC.试探究线段AE,BF,CD之间的数量关系.小敏与同桌小聪经过深入的思考讨论后,进行了如下探究:特殊入手,探索结论:(1)①如图,若点C与点D重合,即线段CD=0,观察此时线段AE,BF之间的数量关系是AE=BF,即有:AE=BF+CD,请你说明AE=BF的理由;特例启发,猜测结论:②若点C不与点D重合,猜测线段AE,BF,CD之间的数量关系是___________,并给予证明;完成上面的问题后,老师继续提出下列问题,请同学们探究讨论:深入探究,拓展结论:(2)在上面的问题中,若把“点C是线段BD上的一个动点”改为“点C是射线BD上的一个动点,其它条件都不变.”,则当点C在线段BD的延长线上时,请你用等式表示线段AE,BF,CD之间的数量关系(自行画图探究,直接写出结果,不需要证明).【答案】(1)①见解析,②AE=BF+CD,见解析(2)当BC<BE时,数量关系是:BF=AE+CD,当BC>BE时,数量关系是:CD=AE+BF,见解析【分析】(1)①过D作DG⊥EF于G,利用等腰和等边三角形的性质,即可得证;②在BE上截取BG =BD,连接DG,利用等腰和等边三角形的性质,即可得证;(2)分BC<BE和BC>BE两种情况分类讨论,求解即可.【详解】(1)证明:①∵BA=BC,∠EBD=60°,∴△ABC是等边三角形过D作DG⊥EF于G,则有:EG=FG;AG=BG∴EG-AG=FG-BG,∴AE=BF;②数量关系为:AE=BF+CD,证明如下:在BE上截取BG=BD,连接DG,∵BA=BC∴BG-BA=BD-BC,∴AG=CD∵∠EBD=60°,BG=BD,∴△GB D是等边三角形∴由①的结论可得:EG=BF∴AE=EG+AG=BF+CD。
中考数学中点四大模型专题知识解读

中点四大模型专题知识解读【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行等的应用。
【方法技巧】模型1 :倍长中线法如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种方法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进而得到AC=BE且AC//BE.模型2:平行线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.模型3:中位线如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:由中位线的性质可得,DE//BC且DE=1/2BC.模型4:连接直角顶点,构造斜中定理【典例分析】【模型1 倍长中线法】【典例1】【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.【变式1-1】(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.【变式1-2】如图,在△ABC中,已知:点D是BC中点,连接AD并延长到点E,连接BE.(1)请你添加一个条件使△ACD≌△EBD,并给出证明.(2)若AB=5,AC=3,求BC边上的中线AD的取值范围.【变式1-3】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.(1)延长DE到F,使得EF=DE;(2)作CG⊥DE于G,BF⊥DE于F交DE的延长线于F;(3)过点C作CF∥AB交DE的延长线于F.【模型2 平行线夹中点】【典例2】如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC =10,点E是CD的中点,求AE的长.【变式2-1】如图,AB∥CD,∠BCD=90°,AB=1,BC=4,CD=3,取AD的中点E,连结BE,则BE=.【变式2-2】如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F 处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.【变式2-3】如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.【模型3 中位线】【典例3】如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为()A.1B.2C.D.【变式3-1】如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.【变式3-2】如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:CD=EF;(2)四边形DEFC的面积为.【变式3-3】如图,在平行四边形ABCD中,点E在BC的延长线上,CE=DE=2BC.CD 的中点为F,DE的中点为G,连接AF,FG.(1)求证:四边形AFGD为菱形;(2)连接AG,若BC=2,,求AG的长.【模型4 连接直角顶点,构造斜中定】【典例4】用三种方法证明:直角三角形斜边上的中线等于斜边的一半.已知:如图,∠BCA =90°,AD=DB.求证:CD=AB.【变式4-1】直角三角形斜边上的中线长为10,则该斜边长为()A.5B.10C.15D.20【变式4-2】如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE 交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【变式4-3】用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.证法1:如图2,在∠ACB的内部作∠BCE=∠B,CE与AB相交于点E.∵∠BCE=∠B,∴.∵∠BCE+∠ACE=90°,∴∠B+∠ACE=90°.又∵,∴∠ACE=∠A.∴EA=EC.∴EA=EB=EC,即CE是斜边AB上的中线,且CE=AB.又∵CD是斜边AB上的中线,即CD与CE重合,∴CD=AB.请把证法1补充完整,并用不同的方法完成证法2.专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用。
初中几何:“中点问题”七大模型

初中几何:“中点问题”七大模型
很多同学遇到几何题就头疼,很大的原因是没有掌握一些解题模型,也就是套路。
今天就给大家梳理下几何中的中点问题怎么解,这七大模型一定要记好哦!
模型一多个中点出现或平行+中点(中点在平行线上)时,常考虑或构造三角形中位线
练一练
答案:
模型二直角三角形中遇到斜边上的中点,常联想“斜边上的中线等于斜边的一半”
练一练
答案:
模型三等腰三角形中遇到底边上的中点,常联想“三线合一”的性质
练一练
答案:
模型四遇到三角形一边垂线过这边中点时,可以考虑用垂直平分线的性质
练一练
答案:
模型五中线等分三角形面积
练一练
答案:
模型六圆中弦(或弧)的中点,考虑垂径定理及圆周角定理
练一练答案:
模型七遇到三角形一边上的中点(中线或与中点有关的线段),考虑倍长中线法构造全等三角形
练一练
答案:。
中点模型

15
(3)AG⊥DG,DG=AG×tan(α/2) 证明:延长DG与BC交于H,连接AH、AD,
16
∵四边形CDEF是菱形, ∴DE=DC,DE∥CF, ∴∠GBH=∠GED,∠GHB=∠GDE, ∵G是BE的中点,∴BG=EG, ∴△BGH≌△EGD(AAS), ∴BH=ED,HG=DG, ∴BH=DC, ∵AB=AC,∠BAC=∠DCF=α, ∴∠ABC=90°﹣α/2,∠ACD=90°﹣α/2, ∴∠ABC=∠ACD, ∴△ABH≌△ACD(SAS), ∴∠BAH=∠CAD,AH=AD, ∴∠BAC=∠HAD=α; ∴AG⊥HD,∠HAG=∠DAG=α/2, ∴tan∠DAG=tan(α/2), ∴DG=AGtan(α/2).
3
模型三 如图,在△ABC中,点D是AB边的中点.可作另一边AC 的中点,构造三角形中位线.如下图所示:由中位线的性 质可得,DE//BC且DE=1/2BC.
4
模型四:连接直角顶点,构造斜中定理
5
模型运用
6
例1、如图,在平行四边形ABCD中,AD=2AB,点E 是BC边的中点.连接AE,DE.求∠AED的度数.
19
小试身手 如图1,在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的 中点G,连接EG、CG.易证:EG=CG且EG⊥CG. (1)将△BEF绕点B逆时针旋转90°,如图2所示,则线段EG和CG有怎样的 数量和位置关系?请直接写出你的猜想. (2)将△BEF绕点B逆时针旋转180°,如图3所示,则线段EG和CG又有怎样 的数量和位置关系?请写出你的猜想,并加以证明. (3)将△BEF绕点B旋转一个任意角度α,如图4所示,则线段EG和CG有怎样 的数量和位置关系?请直接写出结论.
【中考专题】中点模型(通关篇)—三种方法

【中考专题】中点模型(通关篇)—三种⽅法以微课堂⾼中版奥数国家级教练与四位⾼中特级教师联⼿打造,⾼中精品微课堂。
35篇原创内容公众号线段中点是⼏何部分⼀个⾮常重要的概念,和后⾯学习的中线,中位线等概念有着密切的联系.在⼏何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三⾓形三线合⼀;直⾓三⾓形斜边上的中线等于斜边的⼀半;还是中位线定理?今天我们重点探究“倍长中线”法以及平⾏线间夹中点,延长中线交平⾏的应⽤。
建⽴模型模型⼀倍长中线如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种⽅法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进⽽得到AC=BE且AC//BE.模型⼆平⾏线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.平⾏线间夹中点.处理这种情况的⼀般⽅法是:延长过中点的线段和平⾏线我们把这种情况叫做平⾏线间夹中点相交.即“延长中线交平⾏”此时,易证△BEF≌△CED模型三中位线如图,在△ABC中,点D是AB边的中点.可作另⼀边AC的中点,构造三⾓形中位线.如下图所⽰:由中位线的性质可得,DE//BC且DE=1/2BC.模型运⽤例1、如图,在平⾏四边形ABCD中,AD=2AB,点E是BC边的中点.连接AE,DE.求∠AED的度数.分析:本题的证明⽅法有很多,⽐如利⽤“双平等腰”模型等(前⽂已对这种做法做过讲解,不再赘述.链接:课本例题引出的基本图形——双平等腰模型),这⾥主要讲⼀下平⾏线间夹中点的做法.根据平⾏四边形的性质可知,AB//CD,⼜点E是BC中点,构成了平⾏线间夹中点.当题中出现这些条件时,只需将AE延长和DC的延长线相交,就⼀定会得到全等三⾓形,进⽽得到我们需要的结果.证明:如图,延长AE交DC的延长线于点F.∵四边形ABCD是平⾏四边形∴AB//CD,即AB//DF∴∠BAE=∠CFE,∠B=∠FCE⼜∵点E是BC中点∴BE=CE∴△ABE≌△FCE∴CF=AB=CD,AE=FE∴DF=2CD, ⼜∵AD=2CD∴AD=DF,⼜因为点E是AF的中点∴DE⊥AF即∠AED=90°.反思:对于本题,还可以延长AE⾄点F使EF=AE,连接CF.通过证明△ABE≌△FCE得到AB//CF,利⽤经过直线外⼀点有且只有⼀条直线与已知直线平⾏,得到D、C、F三点共线.再证明△DAF 是等腰三⾓形,利⽤等腰三⾓形三线合⼀得到结论.对于第⼆种⽅法,同学们可以⾃⼰尝试.例2、在△ABC中,AB=AC,点F是BC延长线上⼀点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.分析:由题可知,DE//BF,且点G是BE的中点,满⾜平⾏线间夹中点,所以可将DG延长与BF 相交.证明:(1)AG=DG,且AG⊥DG.如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是正⽅形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF⼜∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等腰直⾓三⾓形∴AB=AC,∠ACD=180°-45°-90°=45°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=90°∴△DAH是等腰直⾓三⾓形,⼜∵点G是DH的中点∴AG=DG且AG⊥DG.反思:若将正⽅形绕点C旋转任意⾓度,在旋转的过程中,上述结论还成⽴吗?试试看动画链接:/svg.html#posts/16428(选择复制并打开,可操作演⽰动画效果)(2)AG⊥DG,AG=√3DG如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是菱形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF⼜∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等边三⾓形∴AB=AC,∠ACD=180°-60°-60°=60°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=60°∴△DAH是等边三⾓形,⼜∵点G是DH的中点∴AG⊥DG.∠DAG=1/2∠DAH=30°∴AG=√3DG动画链接:/svg.html#posts/16429(选择复制并打开,可操作演⽰动画效果)(3)AG⊥DG,DG=AG×tan(α/2)证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是菱形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BE的中点,∴BG=EG,∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=α,∴∠ABC=90°﹣α/2,∠ACD=90°﹣α/2,∴∠ABC=∠ACD,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=α;∴AG⊥HD,∠HAG=∠DAG=α/2,∴tan∠DAG=tan(α/2),∴DG=AGtan(α/2).动画链接:/svg.html#posts/16430(选择复制并打开,可操作演⽰动画效果)反思:在本题的证明中,我们结合题⽬中给出的平⾏线间夹中点这⼀条件,将DG进⾏延长和BC相交,通过全等使问题得证.对于本题我们也可以采⽤倍长中线法进⾏证明.下⾯⽤倍长中线法对第⼀种情况加以证明.证明:如图,延长AG⾄点H,使GH=AG.连接EH,AD,DH.在△ABG和△HEG中BG=EG,∠AGB=∠HGE,AG=HG∴△ABG≌△HEG∴AB=HE,∠ABG=∠HEG∵AB=AC∴AC=HE∵DE//BC∴∠DEG=∠EBC∴∠HED=∠HEB+∠DEG=∠ABG+∠EBC=∠ABC=45°⼜∠ACD=180°-45°-90°=45°∴∠ACD=∠HED在△ACD和△HED中AC=HE,∠ACD=∠HED,DC=DE∴△ACD≌△HEDDA=DH,∠ADC=∠HDE∴∠ADC-∠HDC=∠HDE-∠HDC即∠ADH=∠CDE=90°所以△ADH是等腰直⾓三⾓形⼜因为点G是AH的中点所以DG=AG,DG⊥AG.上⾯我们⽤倍长中线证明了第⼀种情况,请你对第⼆三问加以证明.反思:在本题的证明过程中,容易犯的⼀个错误是,许多同学看到HE经过点C,就说∠HED=45°.⽽这⼀结论是需要证明的.⼩试⾝⼿如图1,在正⽅形ABCD的边AB上任取⼀点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG.易证:EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图2所⽰,则线段EG和CG有怎样的数量和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图3所⽰,则线段EG和CG⼜有怎样的数量和位置关系?请写出你的猜想,并加以证明.(3)将△BEF绕点B旋转⼀个任意⾓度α,如图4所⽰,则线段EG和CG有怎样的数量和位置关系?请直接写出结论.前两问较简单,请同学们⾃⾏完成,这⾥只给出第三问的⼏种解法,仅供⼤家参考.解法⼀:如图,延长EG⾄点H,使GH=EG.连接DH,CE,CH.因为点G是DF的中点,所以GF=GD.根据SAS易证△GEF≌△GHDEF=HD且∠GEF=∠GHD,所以EF//DH.分别延长HD与EB交于点K,HD的延长线交BC于点M.如下图:因为EB⊥EF,⽽EF//DH,所以EK⊥HK,即∠BKM=∠MCD=90°.⼜∠BMK=∠CMD.根据三⾓形的内⾓和,可得∠KBM=∠MDC.所以∠EBC=∠HDC.⼜EB=HD,BC=DC所以△EBC≌△HDC.所以CE=CB且∠ECB=∠HCD.所以∠ECB=90°,即△BCE是等腰直⾓三⾓形,⼜因为点G是斜边EB的中点,所以CG⊥GE且CG=GE.⽹址链接:/svg.html#posts/16284(选中并打开⽹址看动态图)解法⼆:如图,延长CG⾄点N,是GN=CG.连接FN,EN,EC.以下过程可参照解法⼀⾃⾏完成解法三:延长FE⾄点P使得EP=EF,连接BP;延长DC⾄点Q,使得CQ=CD,连接BQ.连接FQ,DP。
中点四大模型

∴∠BME=∠CNE.
答图
华安一中· 数学(福建)
第一部分 教材同步复习
针对训练 3.如图,在△ABC中,∠ABC=90°,AB= BC,BD⊥AC于点D,CE平分∠ACB,交AB于点 E,交BD于点F. (1)求证:△BEF是等腰三角形;
华安一中· 数学(福建)
第一部分 教材同步复习
证明:在△ABC中,∵AB=BC,BD⊥AC, ∴∠ABD=∠CBD,AD=CD. ∵∠ABC=90°, ∴∠ACB=45°. ∵CE平分∠ACB, ∴∠ECB=∠ACE=22.5°, ∴∠BEF=∠CFD=∠BFE=67.5°, ∴BE=BF, ∴△BEF是等腰三角形.
【模型分析】在直角三角形中,当遇见斜边中点时,经常会作斜边 上的中线,利用直角三角形斜边上的中线等于斜边的一半来证明线段间 的数量关系,而且可以得到两个等腰三角形:△ACD和△BCD,该模型经 常会与中位线定理一起综合应用.
华安一中· 数学(福建)
第一部分 教材同步复习
例4 如图,在四边形ABCD中,AB⊥BC,AD⊥DC, P是AC的中点.求证:点P在BD的垂直平分线上.
华安一中· 数学(福建)
答图
第一部分 教材同步复习
(2)若BC=10,DE=6,求△MDE的面积. 解:∵BC=10,ED=6, ∴DM=21BC=5,DN=12DE=3. 由(1)可知∠MND=90°, ∴MN= DM2-DN2= 52-32=4, ∴S△MDE=12DE·MN=21×6×4=12.
华安一中· 数学(福建)
第一部分 教材同步复习
【解答】如答图,连接 BD,取 BD 的中点 H,连接 HE,HF. ∵E,F 分别是 BC,AD 的中点,
∴FH∥BM,FH=21AB,EH∥CN,EH=12CD, ∴∠BME=∠HFE,∠CNE=∠HEF.
初中数学中点模型的构造及应用

中点模型的构造及应用一、遇到以下情况考虑中点模型:任意三角形或四边形中点或与中点有关的线段出现两个或三个中点考虑三角形中线定理已知直角三角形斜边中点,可以考虑构造斜边中线已知等边、等腰三角形底边中点,可以考虑与顶角连接用“三线合一”有些题目不直接给出中点,我们可以挖掘其中隐含中点,比如等腰三角形、等边三角形、直角三角形、平行四边形、圆中圆心是直径中点等可以出现中点的图形通常考虑用中点模型三角形中线的交点称为重心,它把中线分的线段比为2:1二、中点模型辅助线构造方法分类(一)倍长中线法(构造全等三角形,八字全等)当已知条件中出现中线时,常常将此中线倍长构造全等三角形解决问题。
如图,在∆ABC中,D为BC中点,延长AD到E使AD=DE,连接BE,则有:∆ADC≌∆EDB。
作用:转移线段和角。
(二)倍长类中线法(与中点有关线段,构造全等三角形,八字全等)当已知条件中出现类中线时,常常将此类中线倍长构造全等三角形解决问题。
如图,在∆ABC中,D为BC中点,延长ED到F使ED=DF,连接CF,则有:∆BED≌∆CFD。
作用:转移线段和角。
(三)直角三角形斜边中线法当已知条件中同时出现直角三角形和中点时,常构造直角三角形斜边中线,然后再利用直角三角形斜边的中线性质解决问题。
如下图,在Rt ∆ABC 中,A C B 90∠=︒,D 为AB 中点,则有:12CD AD BD AB ===(四)等腰三角形三线合一当出现等腰三角形时,常隐含有底边中点,将其与顶角连接,可构成三线合一。
在∆中:(1)AC=;(2)CD 平分ACB ∠;(3)AD=,(4)CD AB ⊥ “知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出剩下两条。
(五)中位线法当已知条件中同时出现两个及以上中点时,常考虑构造中位线;或出现一个中点,要求证明平行线段或线段倍分关系时也常考虑构造中位线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题19《中点模型》破解策略
1.倍长中线
在△ABC中.M为BC边的中点.
M E C
B
A
E M
C
A
B
D
图1 图2
(1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM.(2)如图2,点D在AB边上,连结DM并延长至点E.使得MF=DM.连结CE,则△BD M≌△CEM,
遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.
2.构造中位线
在△ABC中.D为AB边的中点,
A
B D E
C C F
A
B
D
图1 图2
(1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=1
2
B C.
(2)如图2.延长BC至点F.使得CF=BC.连结CD,AF.则DC∥AF,且DC=1
2
A
E.
三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,
3.等腰三角形“三线合一"
如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C.对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.
A
B D
C
4.直角三角形斜边中线
如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=1
2 AC.
反过来,在△ABC中,点D在AC边上,若BD=AD=CD=1
2
AC,则有∠ABC=900
例题讲解
例1 如图,在四边形ABCD中,E、F分别是AB、CD的中点,过点E作AB的垂线,过点F 作CD的垂线,两垂线交于点G,连结AG、BG、CG且∠AGD=∠BGC,若AD、BC所在直
线互相垂直,求AD
EF
的值
解由题意可得△AGB和△DGC为共顶点等顶角的两个等腰三角形,
所以△AGD≌△BGC,△AGD∽△EGF.
方法一:如图1,连结CE并延长到H,使EH=EC,连EH、AH,则
AH∥BC,AH=BC,而AD=BC,AD⊥BC
所以AD=AH,AD⊥AH,连结DH,则△ADH为等腰直角三角形,又因为E、F分别为CH、CD的中
点,
所以=2
1
2
AD AD
EF DH
=
方法二:如图2,连结BD并取中点H,连结EH,FH.则EH=
1
2
AD,且EH∥AD,FH=
1
2
BC,
而AD=BC,AD⊥BC,所以△EHF为等腰直角三角形,所以
2
=2
AD EH
EF EF
=
例2如图,在△ABC中,BC=22,BD⊥AC于点D,CE⊥AB于E,F、G分别是BC、DE 的中点,若ED=10,求FG的长.
解:连结EF、DF,由题意可得EF、DF分别为RT△BEC,RT△BDC斜边的中线,所以DF =EF=
1
2
BC=11,而G为DE的中点,所以DG=EG=5,FG⊥DE,所以RT△FGD中,FG=22
DF DG
-=6
例3已知:在RT△ACB和RT△AEF中,∠ACB=∠AEF=900,若P是BF的中点,连结PC、PE
(1)如图1,若点E、F分别落在边AB、AC上,请直接写出此时PC与PE的数量关系.(2)如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
解(1)易得PC=PE=1
2
BF,即PC与PE相等.
(2)结论成立.理由如下:
如图4,延长CP交EF的延长线于点D,则BC∥FD,易证△BPC≌△FPD,所以PC=PD,而∠
CED=900,所以PE=1
2
CD=PC
(3)结论仍成立,理由如下:
如图5,过点F作FD∥BC,交CP的延长线于点D,易得PD=PC,FD=BC
所以AE EF EF AC BC FD
==
而∠AFE=∠PBC=∠PFD,所以∠EAC=1800-2∠AFE=∠EFD,
如图,连结CE,ED,则△EAC∽△EFD,所以∠AEC=∠FED,∠CED=∠AEF=900,
所以PE=1
2
CD=PC
例4已知:△ABC是等腰三角形,∠BAC=900,DE⊥CE,DE=CE=1
2
AC,连结AE,M
是AE的中点
(1)如图1,若D在△ABC的内部,连结BD,N是BD的中点,连结MN,NE,求证:MN⊥AE (2)如图2,将图1中的△CDE绕点C逆时针旋转,使∠BCD=300,连结BD,N是BD的中
点,连结MN,求MN AC
解:(1)如图3,延长EN至点F,使得NF=NE,连结FB,易证△DEN≌△BFN,从而可得BF ∥DE,BF=DE,延长FB,CE交于点G,则∠G=900,从而A、B、G、C四点共圆
所以∠ABF=∠ACE,连结AF,所以△ABF≌△ACE(SAS),所以AF=AE,AF⊥AE,而MN∥
AF所以MN=1
2
AE,MN⊥AE
(2)如图4,同(1)可得,MN=1
2
AE,MN⊥
AE,由题意可得AC=2CE,作EH⊥AC于H,则∠ECH=600,所以CH=
1
2
EC=
1
4
AC,EH=
3
AC,从而AE=22
7
AH EH AC
+=,所以7
MN
AC
=
进阶训练
1.如图,△ABD和△ACE都是直角三角形,其中∠ABD =∠ACE=90°,且点C在
AB上,连结DE,M为DE的中点,连结BM,CM,求证:BM=CM.
M
C
D
E
A
B
【答案】略
【提示】延长CM,DB交于点F,则∠CBF=90°,△CME≌△FMD,从而BM=
1
2
CF=CM.
M
C
D
E
B
2.我们把两条中线互相垂直的三角形称为”中垂三角形”.如图1,AF,BE是△ABC的中线,且AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.
(1)猜想a 2,b2,c2三者之间的关系,并加以证明;
(2)如图2,在平行四边形ABCD中,E,F,G分别是AD,BC,CD上的中点.BE⊥EG,AD=5AB=3.求AF的长.
图1
A
图2
A
【答案】(1) a 2
+b 2
=5c2
,证明略;(2) A F=4.
【提示】(1)如图,连结EF ,由中位线定理可得
PE PB =PF PA =EF BA =1
2
.在Rt △APB ,Rt △A PE 和Rt △BPF 中,利用勾股定理即可得到a 2
+b 2
=5c 2
;
(2) 如图,取AB 的中点H,连结F H,AC ,由中位线定理可得F H∥AC ∥EG,从而FH ⊥BE ,易证△AP E≌△FPB ,所以AP =FP ,所以△ABF 是“中垂三角形”从而利用(1)中结论求得AF 的长.
D
E
B
A
3.巳知:△ABC 和△AD E是等腰直角三角形,∠ACB =∠A DE =90°,F 为BE的中点.连结DF ,CF .
图3
图2
图1
E
E
(1)如图,当点D 在A B上,点E 在A C上时,请直接写出此时线段DF ,CF 的数量关系和位置关系(不用证明);
(2)如图2.在(1)的条件下将△ADE 绕点A 顺时针旋转45°.请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3.在(1)的条件下将△ADE 绕点A 顺时针旋转角α,请你判断此时(1)中的结论是否仍然成立,井证明你的判断.
【答案】(1)DF =CF ,DF ⊥CF ;(2)成立;(3)成立.
【提示】(2)延长DF 交B C于点G ,则△DEF ≌△GBF ,从而得DF =GF ,CD =C G,即得证.
E
(3)延长CF 至点G,使得FG=CF ,连结EG ,则GE =C B=CA ,GE ⊥AC ,可得∠CA D=∠GE D .连结DG ,CD ,从而△AD C≌△EDG (SAS ).即得证.
E
4.巳知:P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(不与点A、C 重合).分别过点A 、C 向直线B P作垂线,垂足分别为E ,F,O为AC 的中点,如图1.将直线B P绕点B逆时针旋转,当∠OFE = 30°时,如图2所示,请你猜想线段CF ,AE ,OE 之间有怎样的数量关系,并给予证明.
图1
图2
【答案】图1中OE =C F-AE ;图2中OE =CF +AE .
【提示】如图1,延长E O交FC 于点G ,易证O E=OG ,AE =C G,从而R t△GF E中,OF =O G=OE .而∠OF E=30°,所以OE =CF-AE .
图1
如图2,同理可得O E=CF +A E.
图2。