数学分析-数列极限

数学分析-数列极限
数学分析-数列极限

第二章

数列极限

§1 数列极限概念

教学目的与要求:

使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点:

数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入

1°预备知识:数列的定义、记法、通项、项数等有关概念。

2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰,

日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺)

21,221,321,……,n 21

,…… 或简记作数列:?

?????n 21

分析:1°、?

??

???n 21随n 增大而减小,且无限接近于常数0;

2

二、数列极限定义

1°将上述实例一般化可得:

对数列{}n

a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称

该数为收敛数列,a 为它的极限。

例如:?

??

???n 1, a=0;

???

?

??-+n n )1(3, a=3; {}2

n , a 不存在,数列不收敛;

{}n

)1(-, a 不存在,数列不收敛;

2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对?

??

?

??-+n n

)1(()3以3为极限,对ε=

10

1

3)1(3--+

=-n

a a n

n =10

11π

n

只需取N=10,即可

3°“抽象化”得“数列极限”的定义

定义:设{}n

a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在

某一自然数N ,使得当n >N 时,都有

a

a n -<ε

则称数列{}n

a 收敛于a ,a 为它的极限。记作

a a n n =∞

→lim {(或a n →a,(n →∞)) 说明

(1)若数列{}n

a 没有极限,则称该数列为发散数列。

(2)数列极限定义的“符号化”记法:a a n n =∞

→lim ?

ε

?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

的,由“任意性”可知,不等式a

a

n

-<ε,可用a

a

n

-<2ε,a

a

n

-<ε2

……来代

替 “<”号也可用“≤”号来代替(为什么)(4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,是即:N 是对应确定....的!但N 又不是唯一....的,只要存在一个N ,就会存在无穷多个N

(5)如何用肯定的语气叙述a a n n ≠∞

→lim : 0ε?>0,?N ,?n 。尽管n 。>N ,但a

a

o

n

-(6)如何用肯定的语气叙述,数列{}n

a 发散:

R

a ∈? ,)(a O O

εε

=?>0,?N ,?n o,尽管

n o >N ,但a

a

o

n -≥εo 。

(7)a n n ∞

→lim

即a 的任给ε邻城,都存在一个足够大的确定的自然数N ,使数列{}n a 中,所有下标大于N 的a n ,都落在a 的ε邻城内。

.的例题 例1.证明01

lim =∞

→k

n n (K 为正实数)

证:由于

k

k n n 1

01=- 所以?ε>0,取N=???

?

?

?

??k 11ε,当n >N 时,便有

ε?-01

k n

注:或写作:?ε>0,取N=???

?

?

?

??k

11ε,当n >N 时,有

ε?=-K K n

n 101,∴01lim =∞

→k

n n

例2. 证明34

3lim

22

=-∞

→n n n 分析,要使ε?≤-=--n n n n 12

412343222(为简化,限定n 3≥

只要n ε

12

?

证.?

??

?????????=??3,12max ,0εεN 取,当n N ?,有

ε?≤-=--n

n n n 12

41234322

2

由定义34

3lim 22=-∞

→n n n 适当予先限定n >n 。是允许的!但最后取N 时要保证n >n 。 例3.证明n

n q ∞

→lim =0,这里q <1

证.若q=0,结果显然成立 若0<q <1,令q =h h

(11

+>0) 由于由贝努利不等式n n

n h q q )1(1+=

=≤nh +11<nh

1

所以,ε?>0,取N=n h 当,1??

?

???ε>N ,有0-n q <ε

注:1°特别地写当q=

2

1

时,此即为上述实例中的0)

21(lim =∞

→n

n

2°贝努利不等式(1+h )n ≥1+nh.

3°由例2、例3看出,在由a a n -<ε中求N 时,适当的 “放大”不等式,可以简化运算。而“放大”的技巧应引起同学们注意体验、总结。如:用已知不等式,用限定“n >n 。”等方法。 例4.证明1lim

=∞

→n

n a ,其中a >1

证.令a n

1-1=α,则α>0

由贝努利不等式 α=(1+α)n ≥1+n α=1+n (11-n

a

)或11

-n a ≤

n

a 1

-

ε

? >0,取

N=?

?

????-ε1a ,当n >N 有

1

1

-n a <ε

四、等价定义与无穷小数列

定义1' 任给ε>0,若在U (a;ε)之外数列{}n a 中的项至多只有有限个,

则称数列{}n a 收敛于极限a 。

由定义1' 可知,若存在某ε0>0,使得数列{}n a 中有无穷多个项落在U(a ;ε0)之外,则{}n a 一定不以a 为极限。

例5 证明{}2n 和{}n )1(-都是发散数列。 分析 利用定义1' 证

例6 设a y x n n n n ==∞

→∞

→lim lim ,作数列﹛z n ﹜如下:

﹛z n ﹜:x 1,y 1,x 2,y 2,…,x n ,y n ,…。

证明 a z n n =∞

→lim 。

分析 利用定义1' 证

例7 设{}n a 为给定的数列,{}n b 为对{}n a 增加、减少或改变有限项之后得到的数列。证明:数列{}n b 与{}n a 同时为收敛或发散,且在收敛时两者的极限相等。

分析 利用定义1'

证 设{}n a 为收敛数列,且n n a ∞

→lim =a 。按定义1',……。

现设{}n a 发散,倘若{}n b 收敛,则因{}n a 可看成是对{}n b 增加、减少或改变有限项之后得到的数列,故由刚才所证,{}n a 收敛,矛盾。所以当{}n a 发散时{}

n b

也发散。

在所有收敛数列中,有一类重要的数列,称为无穷小数列,其定义如下: 定义2 若0lim =∞

→n n a ,则称{}n a 为无穷小数列。

前面例1、2、4中的数列都是无穷小数列。由无穷小数列的定义,读者不难证明如下命题:

定理2. 1 数列{}n a 收敛于α的充要条件是:{}α-n a 为无穷小数列。 五、小结:(可以师生共同总结,或教师引导学生小结,然后教师再条理一下)

本节课重点在于“数列极限的概念”,而“用极限定义证明极限”的例

题学习也是为了巩固

极限概念。为此,同学们要注意:

°极限概念的“ε-N ”叙述要熟练掌握,并注意理科ε,N 的双重性。

°用极限定义证明极限时,关键是由任给的ε>0通过反解不等式|

a n -a |<ε求N ,其中的若干技巧在于化简不等式。特别注意不等式的“放大”要适度;即要尽可能化简,又不要过度,N 的表达式一定仅依赖于ε,当然N 是否是自然数,倒是无关紧要的。

3°同学们在学习这部分知识的同时要反复体验其中渗透看的重要数学思维方法,如:抽象化法,数形结合法,符合化法等,这对于大家体验数学的本着特点及培养数学思维能力是十分有益的。关于这一点希望同学们在课下复习

时反复体会一下,并结合以前学过的知识中的类似方法对照思考。

复习思考题、作业题:

数列收敛发散的定义是什么收敛发散的概念是不是相反的 1(1),2,3,4,6

§§2 收敛数列的性质

教学目的与要求:

掌握收敛数列的性质如唯一性,有界性,四则运算等及应用。

教学重点,难点:

收敛数列的性质应用,数列子列的定义及数列子列收敛与数列收敛之间的关系。

教学内容:

收敛数列主要有唯一性、有界性、保号性、保序性、迫敛性、四则运算性、子列性等重要性质,通过这些性质的学习,可使学生掌握数列极限的定义与应用定义证明有关命题。

1、唯一性

定理若数列{}n a收敛,则它只有一个极限。

分析使用几何定义——定义1'

注1:本性质证明使用几何定义。为让学生学会取特殊的ε,可讲解反证法

ε”定义。

证明。这样更可体现极限的“N

-

注2:一个收敛数列一般含有无穷多个数,而它的极限只是一个数。体现了无限与有限之间的转化关系,这样由这一个数就能精确地估计出几乎全体项的大小,以下收敛数列的一些性质,大都基于这一事实。

2、有界性

定理若数列{}n a收敛,则{}n a为有界数列,即存在正数M,使得对一切正整数n有

≤。

M

a

n

分析

注1:ε的取法

注2:有界性只是数列收敛的必要条件,而非充分条件,例如数列{}n)1(-

有界,但它并不收敛(见§1例6)。

3、保号性

定理若0lim a >a n n =∞

→或<0,则对任何∈'a (0,a )(或)0,('a a ∈),存在正

数N ,使得当n >N 时有a n >'a (或a n <'a )。

分析 证

注1:ε的取法

注2: 在应用保号性时,经常取2

'a

a =。 4、保序性

定理 设{}n a 与{}n b 均为收敛数列,若存在正数N 0,使得当n >N 0时有a n ≤b n ,则n n n n b a ∞

→∞

→≤lim lim 。

分析 定义与第一章§1例2 证

注1:N 的取法

思考:如果把定理中的条件a n ≤b n ,换成严格不等式a n <b n ,那么能否把结论换成n n n n b <a ∞

→∞

→lim lim

例1 设an ≥0(n=1,2,…)。证明:若a a n n =∞

→lim ,则a a n n =∞

→lim 。

分析 定理、定义与分类讨论 证

4、迫敛性

定理 设收敛数列{}n a ,{}n b 都以a 为极限,数列{}n c 满足:存在正数N 0,当n >N 0时有

n n n b c a ≤≤ (4) 则数列{}n c 收敛,且a c n n =∞

→lim 。

例2 求数列{}n

n 的极限。

分析 解

5、四则运算法则

定理 若{}n a 与{}n b 为收敛数列,则{}n n b a +,{}n n b a -,{}n n b a ?也都是收敛数列,且有

,lim lim )(lim n n n n n n n b a b a ∞

→∞

→∞

→±=±

n n n n n n n b a b a ∞

→∞

→∞

→?=?lim lim )(lim 。

特别当b n ,为常数c 时有

n n n n n n n n a c ca c a c a ∞

→∞

→∞

→∞

→=+=+lim lim ,lim )(lim 。

若再假设b n ≠0及0lim ≠∞

→n n b ,则?

??

???n n b a 也是收敛数列,且有

n n n n n

n

n b a b a ∞

→∞→∞→=lim /lim lim

。 分析 只须用定义证明关于和、积与倒数运算的结论 证

例3 求

1110

111lim

b n b n b n b a n a n a n a k k k k m m m m n ++++++++----∞→ΛΛ, 其中m ≤k ,a m ≠0,b k ≠0。

分析 四则运算法则

例4 求1

lim +∞→n n

n a a ,其中1-≠a 。

分析 分类讨论与四则运算法则 解

例5 求)1(lim n n n n -+∞

→。

6、子列定理

定义1 设{}n a 为数列,{}k n 为正整数集N+的无限子集,且n 1<n 2<…<n k

<…,则数列

ΛΛ,,,,21k n n n a a a

称为数列{}n a 的一个子列,简记为{}k

n

a 。

注1 由定义1可见,{}n a 的子列{}k n a 的各项都选自{}n a ,且保持这些项在

{}n a 中的先后次序。{}k

n

a 中的第k 项是{}n

a 中的第n k

项,故总有k n

k

≥。实际上

{}k n 本身也是正整数列{}n 的子列。

例 数列{}n a 的子列{}k a 2、{}12-k a 、{}n a 。

注2 数列{}n a 本身以及{}n a 去掉有限项后得到的子列,称为{}n a 的平凡子列;不是平凡子列的子列,称为{}n a 的非平凡子列。

例如{}n a 的非平凡子列{}k a 2和{}12-k a 。

性质 由上节例8,数列{}n a 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限。

定理 数列{}n a 收敛的充要条件是:{}n a 的任何非平凡子列都收敛。 分析 必要性由定义,充分性利用必要性与上节例7 证

注:定理的你否命题是判断数列发散的有力工具:若数列{}n a 有一个子列发散,或有两个子列收敛而极限不相等,则数列{}n a 一定发散。

应用举例:数列{}n )1(-,其偶数项组成的子列{}n 2)1(-收敛于1,而奇数项组

成的子列{}12)1(--k 收敛于-1,从而{}n )1(-发散,再加数列???

???2sin πn ,它的奇数项

组成的子列??????-π212sin k 即为{}1)1(--k ,由于这个子列发散,故数列???

?

??2sin πn 发

散。

复习思考题、作业题: 1(2)(4)(6),4,5,6. 难题解答

§3 数列极限存在的条件

教学目的与要求:

掌握数列极限存在性的判断准则:单调有界性定理,Cauchy 准则及应用 教学重点,难点:

单调有界性定理, Cauchy 准则的证明及应用 教学内容:

极限理论的两个基本问题:一、数列是否有极限(极限的存在性问题);二、若极限存在,如何计算此极限(及限值的计算问题)。

困难:依定义需将每个实数用定义一一验证,不可能。 解决方法:直接从数列本身的特征来做出判断。

本节介绍的两个定理非常重要,他们不仅是判断数列是否存在极限的充分条件和充要条件,而且也与实数完备性定理等价。

一、单调有界定理

定义 若数列{}n a 的各项满足关系式

1+≤n n a a (a n ≥a n+1)

则称{}n a 为递增(递减)数列,递增数列和递减数列统称为单调数列,如?

?????n 1为

递减数列,??????+1n n 与{}2

n 为递增数列,而??????-n n )1(则不是单调数列。

定理在实数系中,有界的单调数列必有极限。 分析 找到极限即可,用确界原理 证

注:通过证明可知,单增有上界数列有极限且其极限为其上确界,单减有下界数列有极限且其极限为其下确界。

例1 设

a n =1+

ΛΛ,2,1,13121=+++n n

a a a , 其中实数a ≥2。证明数列{}n a 收敛。

分析 证

例2 证明数列

ΛΛΛ,222,,22,2++++

n 个根号

收敛,并求其极限。

分析 证

例3 设S 为有界数集。证明:若supS=a S ∈,则存在严格递增数列{}n x ?S ,使得

a x n n =∞

→lim 。

分析 构造性证明方法,常用 证

例4 证明n n n

)1

1(lim +∞→存在。

分析

证 先建立一个不等式。设b >a >0,对任一正整数n 有

11++-n n a b <(n+1)b n (b-a)。

1+n a >b n [(n+1)a-nb]。 (1)

以a=1+

n b n 11,11+=+代入(1)式证明????

??

+n n )11(为递增数列。

再以a=1,b=n 211+

代入(1)式得数列????

??

+n n )11(有上界。

由单调有界定理推知数列????

??

+n n )11(是收敛的。

通常无理数(待证)e 的定义为e n

n n =+∞→)1

1(lim ,以e 为底的对数称为自然对

数,通常记x x e log ln =。

注:单调有界定理只是数列收敛的充分条件,但却与下面数列收敛的充分必要条件等价。

二、柯西(Cauchy )收敛准则

定理 数列{}n a 收敛的充要条件是:对任给的ε>0,存在正整数N ,使得当n ,m >N 时有

m n a a -<ε。

注:应再给出两种等价形式。

注:这个定理从理论上完全解决了数列极限的存在性问题,它的证明将在第七章给出。

柯西收敛准则的条件称为柯西条件。

其直观意义:收敛数列各项的值愈到后面,彼此愈是接近,以至充分到后面的任何两项之差的绝对值可小于预先给定的任意小正数。或者形象地说,收敛数列的各项越到后面越是“挤”在一起。

优点:柯西收敛准则把ε—N 定义中a n 与a 的关系换成了a n 与a m 的关系,其好处在于无需借助数列以外的数a ,只要根据数列本身的特征就可以鉴别其(收)敛(发)散性。

例5 证明:任一无限十进小数a=…b n …的n 位不足近似(n=1,2,…)所组成的数列

ΛΛΛ,101010,,1010,102212211n

n b b

b b b b ++++ (2)

满足柯西条件(从而必收敛),其中bk 为0,1,2…,9中的一个数,k=1,2,…。

分析 证

复习思考题、作业题: 1,2,3,6,7

《数学分析》中关于极限概念教学的一点探讨

《数学分析》中关于极限概念教学的一点探讨 作者:张彩霞 来源:《科技创新导报》2011年第12期 摘要:在初学数学分析时,共有二十八种极限概念,这些极限概念是数学分析的基础,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。教师在教学过程中要引导学生将各种极限概念的定性描述准确地转化为定量描述,并能深刻理解,逐渐灵活运用。 关键词:数学分析极限概念教学 中图分类号:G6 文献标识码:A 文章编号:1674-098X(2011)04(c)-0147-02 《数学分析》课程是大学数学系一门重要的基础课,对这门课程学习的好坏,直接影响到学生思维能力的形成及对后续课程的接受能力。学生从高中刚入大学,学习内容从原来的具体到抽象、从离散到连续、从有限到无限,使学生感到《数学分析》很难,特别是刚开始接触各种极限概念的定量描述,理解起来很吃力.而数学分析这门课程就其自身而言,有着理论上的严密性和前后的连贯性,极限概念是数学分析的基石,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。本人在教学过程中,深刻体会到关于极限概念教学的重要性。 在初学数学分析时,就有二十八种极限概念(包括正常极限和非正常极限),教师在教学过程中的任务是引导学生将这二十八种极限概念从定性描述准确地转化为定量描述。并使学生对各种极限概念的定量描述能深刻理解,逐渐灵活运用。 1 正常极限概念 1.1 数列极限概念 数列极限的概念是最开始要学习的极限概念,如果学生对这个概念能准确理解的话,对于理解接下来要学习的函数极限概念就容易多了,所以对数列极限概念的教学至关重要。 首先观察数列:: 特征:当无限增大时,无限接近于 此时称该数列收敛于0,或称0为该数列的极限。 “无限增大”和“无限接近”是对数列变化性态的一种形象描述,是定性的说明,而不是定量的描述,这在数学上无法进行严谨地论证。所以我们要定量地描述该数列的特征。

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1: (1 (2(3)若B ≠ ((5)[] 0lim ()lim () n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商. 例1。 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()22222 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+ ==-- 例2. 求3 x →

33 22 x x →→ = 3 x→ = 1 4 = 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3。已知() 111 1223 1 n x n n =+++ ??-?, 解:观察 11 =1 122 - ? 111 = 2323 - ? 因此得到() 111 12231 n x n n =+++ ??-? 1111111 1 22 11 n n n =-+-+-+- -- 所以 1 lim lim11 n n n x n →∞→∞ ?? =-= ? ?? 2 利用导数的定义求极限 导数的定义:函数f(x) 如果 ()( ) 00 lim lim x x f x x f x y x x ?→?→ +?- ? = ?? 存在, 则此极限值就称函数f(x) () 'f x。 即

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高等数学中极限问题的解法详析

数学分析中极限的求法 摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则 求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。 关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中 值定理, 定积分, 泰勒展开式, 级数收敛的必要条件. 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y =f(x)在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。 1:利用两个准则求极限。 (1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则 有 lim n x y a →∞ = . 利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{ } n y 和 { } n z ,使得n n n y x z ≤≤。 例[1] 222111 ....... 1 2 n x n n n n = + ++++ 求n x 的极限 解:因为n x 单调递减,所以存在最大项和最小项

高数 数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x) 当x →x 0时的极限,记作。[2] 单侧极限:①.左极限:或 ②.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0)()()()()(0000lim x f x f x f x f x f x x ==?=+ -→)(x f 0x x →)()()(lim 0 00x f x f x f x x →+ -==0,,,x x x x x →-∞→+∞→∞→0x x →

数学分析中求极限的方法总结

数学分析中求极限的方 法总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

数学分析中求极限的方法总 结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5) [] 0lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 2 lim 3x x →-的极限 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11 =112 2- ? 111=2323-?

因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点0 x 的导数。 例4. 3 利用两个重要极限公式求极限 两个极限公式: (1 (2)1lim 1x x e x →∞ ?? += ??? 但我们经常使用的是它们的变形: (1,

高考数学一轮复习数列的极限知识点

17年高考数学一轮复习数列的极限知识点 极限是微积分中的基础概念,下面是整理的数列的极限知识点,希望考生可以认真学习。 1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限; 2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在; 3、渐近线,(垂直、水平或斜渐近线); 4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在. 下面我们重点讲一下数列极限的典型方法. 重要题型及点拨 1.求数列极限 求数列极限可以归纳为以下三种形式. ★抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证. ★求具体数列的极限,可以参考以下几种方法: a.利用单调有界必收敛准则求数列极限. 首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极

限,解方程, 从而得到数列的极限值. b.利用函数极限求数列极限 如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解. ★求项和或项积数列的极限,主要有以下几种方法: a.利用特殊级数求和法 如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果. l b.利用幂级数求和法 若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值. c.利用定积分定义求极限 若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限. d.利用夹逼定理求极限 若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解. e.求项数列的积的极限,一般先取对数化为项和的形式,然

数学分析 数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,32 1,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得: 对数列{}n a ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛;

{}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对??? ? ??-+n n )1(()3以3为极限,对ε =10 1 3)1(3--+ =-n a a n n =10 11 n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..的,由“任意性”可知,不等式a a n -<ε,可用a n -替 “<”号也可用“≤”号来代替(为什么?)(4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,是即:N 是对应确定....的!但N 又不是唯一.... 的,只要存在一个N ,就会存在无穷多

《数列的极限》教学设计

《高等数学》——数列极限 教学设计

教学过程设计 A、【课前准备】1、安排学生提前预习本节内容。 2、分组:4~6人为一个学习小组,确定一人为组长。教师需要做好协调工 作,确保每位学生都参加。 B、【组织教学】检查学生出勤情况,填写教学日志,教材、用具准备等(2分钟) C、【复习回顾】数列的定义(2分钟) D、【教学内容、方法和过程】接下表 ” 截去一半,这样的过程可以无限制地进行下去 无限增大时,下列数列的项的变化趋势 …递减 递增 摆动

2.解决问题:[共同特征]不论这些变化趋势如何,随着项数的无限增大,数列的项无限地趋近于常数.(即无限地接近于0) 3.强化认识:(学生回答)观察下面三个数列 :分析当n 无限 增大时,下列数列的项 的变化趋势 (1)1, (2)0.9, 0.99, 0.999, 0.9999……… (3) ,,,…,,…; 提出问题: 当n 无限增大时,上述数列趋近常数的方式有哪几种类型? 4.概念形成:一般地,如果当项数无限增大时,无穷数列的项无限地趋近于某个常数(即无限地接近0),那么就说数列以为极限或者说是数列的极限. 记作: 读作:“当趋向于无穷大时,的极限等于a.” 注意:(1)是无穷数列. (2)数值变化趋势:递减的、递增的、摆动的 (三)尝试探究,深化概念: (时间10分钟) 例1.考察下面的数列,写出它们的极限 (1) (2)6.5,6.95,6.995,…, (3) 解:(1)数列的项随的增大而减小,但大于0,且当无限 这一阶段 的教学 中,采取“启发式 谈话法”与“启发 式讲解法”, 注 意不“一 次到位” 通过讨论,在教 师的引导 下,使学 生得到结 论 师生共同解决例 (1),第(2)(3) 学生分析完成. 学生合作 讨论,发挥教师的 引导,学 生的主体作用, 前知识相比,接受起来有困难,似乎这个概念是突然产生的,甚至于不明概念所云,故我在这一阶段计划主要解决这样几个问题: ①使学生了解以研究函数值的变化趋势的观点研究无穷数列,从而发现数列极限的过程; ②使学生形成对数列极限的初步认识; (二)概念建立阶段 归纳共同点,是锻炼学生分析和总结的思维能力。同时培养学生动手能力,提高教学效果 ,进一步理解数列极限的定义 进一步理解定义 学生通过教师引导和练习,去体会数列极限蕴含的数学思想,深化对定义的认识。

数学分析3.4两个重要的极限

第三章函数极限(下载后可解决看不到公式的问题) 4 两个重要的极限 一、证明:=1. 证:∵sinx

∴=e. 注:e的另一种形式:=e. 证:令a=,则当a→0时,→∞,∴==e. 例3:求. 解:==e2. 例4:求. 解:==. 例5:求. 解:<→e(n→∞),又当n>1时有 =≥→e(n→∞,即→0). 由迫敛性定理得:=e.

习题 1、求下列极限: (1);(2);(3);(4);(5);(6);(7);(8);(9);(10). 解:(1)==2; (2)==··=0; (3)== -1; (4)=·=1; (5)=== ====; (6)令arctan x=y,则x=tany,且x→0时,y→0, ∴===1; (7)==1; (8)==·2sin a =··2sin a= sin2a; (9)==8=8; (10)=== 2、求下列极限:

高中数学复习数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1- 31)(1-41)(1-51)…(1-21+n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

高考数学专题三 数列与极限

专题三数列与极限 【考点聚焦】 考点1:数列的有关概念,简单的递推公式给出的数列; 考点2:等差、等比数列的概念,等差、等比数列的通项公式,前n项和公式,并运用它们解决一些问题; 考点3:数列极限的意义,极限的四则运算,公比的绝对值小于1的无穷等比数列的前n 项和的极限; 考点4:数学归纳法 【自我检测】 1、_________________叫做数列。 3、无穷等比数列公比|q|<1,则各项和S=______。 4、求数列前n项和的方法:(1)直接法;(2)倒序相加法;(3)错位相减法;(4) 分组转化法;(5)裂项相消法. 【重点?难点?热点】 问题1:等差、等比数列的综合问题 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 例1:设等比数列{a n}的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n}的前多少项和最大?(取lg2=03,lg3=04) 思路分析突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列S n是n的二次函数,也可由函数解析式求最值

解法一 设公比为q ,项数为2m ,m ∈N *,依题意有 ??? ? ?+=?--?=--?)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m ,化简得?????==?????+==+10831 , ),1(9114121 a q q q a q q 解得 设数列{lg a n }前n 项和为S n ,则 S n =lg a 1+lg (a 1q 2)+…+lg (a 1q n -1)=lg (a 1n ·q 1+2+…+(n - 1)) =n lg a 1+ 21n (n -1)·lg q =n (2lg2+lg3)-21 n (n -1)lg3 =(-23lg )·n 2+(2lg2+2 7lg3)·n 可见,当n =3lg 3lg 272lg 2+时,S n 最大 而4 .024.073.043lg 3 lg 272lg 2??+?= +=5, 故{lg a n }的前5项和最大 解法二 接前,3 1,1081= =q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31, ∴数列{lg a n }是以lg108为首项,以lg 3 1 为公差的等差数列, 令lg a n ≥0,得2lg2-(n -4)lg3≥0, ∴n ≤4 .04 .043.023lg 3lg 42lg 2?+?=+=5 5 由于n ∈N *,可见数列{lg a n }的前5项和最大 点评 本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力 演变1 等差数列{a n }的前m 项和为30,前2m 项和为100,则它前3m 项的和为_______ 点拨与提示:本题可以回到数列的基本量,列出关于d 1和a 的方程组,然后求解;或运用等差数列的性质求解. 问题2:函数与数列的综合题 数列是一特殊的函数,其定义域为正整数集,且是自变量从小到大变化时函数值的序列。注意深刻理解函数性质对数列的影响,分析题目特征,探寻解题切入点. 例2:已知函数f (x )= 4 12 -x (x <-2) (1) 求f (x )的反函数f -- 1(x ); (2) 设a 1=1, 1 1+n a =-f --1 (a n )(n ∈N *),求a n ; (3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 限是否存在在: (i )数列{} n x a 的 (ii )x f x ∞ →lim )( (iii) x f x x =→lim )( (iv)单调有界准则 (v (vi )柯西收必要条件是: ε?>?,01.2.洛必达(L ’ x 趋近告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()()(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; 3211253)! 32(cos )1()!12()1(!5!3sin ++++-++-+-+-=m m m m x m x m x x x x x θ cos=221242)!22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ 1132+-n n n n x x x x 4.5.6.1)设0>>>c b a , n x =n n ∞ →∞ →a x n n =∞ → (2)求??????++++∞→222)2(1)1(11lim n n n n 解:由n n n n n n n 1 111)2(1)1(1102222 22 =+++<++++< ,以及01 0lim lim ==∞ →∞ →n n n 可知,原式=0 (3)求???? ??++ ++++∞→n n n n n 2 22 1 2 11 1 lim 解 : 由 n n n n n n n n n n n n n n n n +=+++++<++++++<=++222222111121111111 , 以 及

数学分析中求极限的方法总结

精心整理 数学分析中求极限的方法总结 1利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1 (1 (2 (3 (4(5 例1.例2.例3.已知()11 1 1223 1n x n n = +++ ??-?解:观察 11=1122-?1 1=232-?因此得到()11 11223 1n x n n = +++ ??-?

所以1lim lim 11 n n n x n →∞→∞?? =-= ??? 2利用导数的定义求极限 导数的定义:函数f(x) 如果 存在, 即 的导数。 例 3(2 例5:x x x x 10 ) 1() 21( lim +-→ 解:为了利用极限e x x x =+→10 )1(lim 故把原式括号内式子拆成两项,使得第一项为1,第二项和括号外

的指数互为倒数进行配平。 x x x x 1 0) 1() 21(lim +-→=x x x x 1 0131(lim +-+→ =313 310]131[(lim -+--+→=+-+ e x x x x x x 例6:20cos 1lim x x x -→ 解:将分母变形后再化成“0/0”型所以 例7:求 4例8:x 解:因为复合函数arcsin 是初等函数,而x 1→是其定义区间内的点,所以极限值就等于该点处的函数值.因此 例8:求x x sin ln lim 2 π → 解:复合函数x sin ln 在2 π = x 处是连续的,所以在这点的极限值就等于该点处的函数值 即有2sin ln sin ln lim 2 π π =→ x x

=1 ln 2 sin lim =π =0 5利用两个准则求极限。 (1)函数极限的迫敛性:若一正整数N,当n>N 时,有n n n x y z ≤≤且lim lim ,n n x x x z a →∞→∞==则有lim n x y a →∞=。 利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{}n y 和{}n z ,使得n n n y x z ≤≤。 例9(2)例12)2,n 。试证数列解:由1x 即数列{令A x n n =∞ →lim 对n n x x +=+61两边取极限, 有A 2 60A -A -=解得A=3,或2A =-。 因为...)2,1(0 =>n x n ,所以0A ≥,舍去2A =-,故lim 3n n x →∞ = 6利用洛必达法则求未定式的极限 定义6.1:若当x a →(或x →∞)时,函数()f x 和()F x 都趋于零(或无穷大),则极限

相关文档
最新文档