人教版八年级下册特殊的平行四边形测试题
(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(包含答案解析)(2)

一、选择题1.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .242.如图,在ABC 中,90ACB ∠=︒,点D 在AC 边上且AD BD =,M 是BD 的中点.若16AC =,8BC =,则CM 等于( )A .5B .6C .8D .103.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A .4B .5C .8D .104.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个5.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个6.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠; D .OAB OAD ∠=∠.7.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB =;④150∠=︒AOE ;⑤AOE COE S S =,其中正确的结论有( )A .2个B .3个C .4个D .5个8.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243 D .12539.如图,在矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=︒,FO FC =.则下列结论:①FB 垂直平分OC ;②四边形DEBF 为菱形;③OC FB =;④2AM BM =;⑤:3:2BOM AOE S S =.其中正确结论的个数是( )A .5个B .4个C .3个D .2个10.矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,连接AG ,取AG 的中点H ,连接EH .若4AB CF ==,2BC CE ==,则EH =( )A .2B .2C .3D .511.如图,在ABC 中,D 是BC 的中点,E 在AB 上,且:1:2AE BE =,连接AD ,CE 交于点F ,若60ABC S =△,则DBEF S =四边形( )A .15B .18C .20D .2512.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A 3B 423C .2D 352二、填空题13.如图,在菱形纸片ABCD 中,4AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 边的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上,则GE =_______.14.如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为_____.15.如图,在ABC 中,已知AB =8,BC =6,AC =7,依次连接ABC 的三边中点,得到111A B C △,再依次连接111A B C △的三边中点,得到222A B C △,,按这样的规律下去,202020202020A B C △的周长为____.16.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).17.如图,90MON ∠=︒,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当点B 在边ON 上移动时,点A 随之在边OM 上移动,2AB =,1BC =,运动过程中,点D 到点O 的最大距离为______.18.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上,连接DF ,点H 为DF 的中点,若20AB =,12BC =,则CH 的长为__________.19.如图,将一张长方形纸片折叠成一个等腰梯形,则这个梯形的面积是_____cm 2.20.如图所示,在ABCD 中,AC 与BD 相交于点O ,若DAC EAC ∠=∠,4AE =,3AO =,则AEC S ∆的面积为____.三、解答题21.如图,在四边形ABCD 中,AB ∥CD ,∠ADC =90°,AD =12cm ,AB =18cm ,CD =23cm ,动点P 从点A 出发,以1cm/s 的速度向点B 运动,同时动点Q 从点C 出发,以2cm/s 的速度向点D 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t =3时,PB = cm .(2)当t 为何值时,直线PQ 把四边形ABCD 分成两个部分,且其中的一部分是平行四边形?(3)四边形PBQD 能否成为菱形?若能,求出t 的值;若不能,请说明理由.22.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接CE 并延长交BA 的延长线于点F ,连接AC ,DF .(1)求证:AEF ≌DEC ;(2)求证:四边形ACDF 是平行四边形.23.如图,在正方形ABCD 中,10cm AB BC CD AD ====,90A B C D ∠=∠=∠=∠=︒,点E 在边AB 上,且4cm AE =,如果点P 在线段BC 上以2cm/秒的速度B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动,设运动时间为t 秒.(1)若点Q 与点P 的运动速度相等,经过2秒后,BPE 与CQP 是否全等?请说明理由;(2)若点Q 与点P 的运动速度不相等,则当t 为何值时,BPE 与CQP 全等?此时点Q 的运动速度为多少?24.如图,在正方形中ABCD ,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)若点G 在AD 上,且45GCE ︒∠=,判断线段GE BE GD 、、之间的数量关系,并说明理由.25.(问题提出)小颖发现某座房屋的侧面是一种特殊的五边形,她决定好好研究一下它的特点,并计算它的面积.(问题探究)定义:如图()1,我们把满足,,90AB AE CB DE C D ︒==∠=∠=的五边形ABCDE 叫做屋形.其中,AB AE 叫做脊,,BC DE 叫做腰,CD 叫做底.性质:边:屋形的腰相等,脊相等;角:①屋形腰与底的夹角相等;②脊与腰的夹角相等;对角线:①②屋形有两组对角线分别相等,且其中一组互相平分.对称性:屋形是以底的垂直平分线为对称轴的轴对称图形;(1)请直接填写屋形对角线的性质①;(2)请你根据定义证明“屋形的脊与腰的夹角相等”;己知:如图,五边形ABCDE 是屋形.求证:证明:(问题解决)(3)如图,在屋形ABCDE 中,若5,8,6AB BC CD ===,试求出屋形ABCDE 的面积.26.如图1,创建文明城市期间,路边设立了一块宣传牌,图2为从此场景中抽象出的数学模型,宣传牌(AB )顶端有一根绳子(AC ),自然垂下后,绳子底端离地面还有0.7m (即0.7BC =),工作人员将绳子底端拉到离宣传牌3m 处(即点E 到AB 的距离为3m),绳子正好拉直,已知工作人员身高(DE)为1.7m,求宣传牌(AB)的高度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【详解】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=6,AB=CD,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故选:C.【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD是解题的关键.2.A【分析】 根据直角三角形斜边的中线等于斜边的一半,得出12CM BD =,设CM x =,则2BD AD x ==,再根据勾股定理列方程求解即可得出答案.【详解】 解:90ACB ∠=︒,M 是BD 的中点,12CM BD ∴= 设CM x =,则2BD AD x ==16AC =162CD AC AD x ∴=-=-在Rt BCD △中,根据勾股定理得222BC CD BD +=即()()22281622x x +-=解得:5x =,故选A .【点睛】本题考查了直角三角形斜边的中线性质、勾股定理,熟练掌握性质定理是解题的关键. 3.C解析:C【分析】根据三角形中位线定理求出DE ,根据题意求出EF ,根据直角三角形的性质计算即可.【详解】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=6, ∵DE=3DF ,∴EF=4,∵∠AFC=90°,E 是AC 的中点,∴AC=2EF=8,故选:C .【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.A解析:A由平行四边形性质和等腰三角形“三线合一”即可得ED⊥CA,根据三角形中位线定理可得EF=12AB;由直角三角形斜边上中线等于斜边一半可得EG=12CD,即可得EF=EG;连接EG,可证四边形DEFG是平行四边形,即可得EH=12 EG.【详解】解:如图,连接FG,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD=BC,AD∥BC,AB=CD,AB∥CD,∵BD=2AD,∴OD=AD,∵点E为OA中点,∴ED⊥CA,故①正确;∵E,F,G分别是OA,OB,CD的中点,∴EF∥AB,EF=12AB,∵∠CED=90°,CG=DG=12CD,∴EG=12CD,∴EF=EG,故②正确;∵EF∥CD,EF=DG,∴四边形DEFG是平行四边形,∴EH=HG,即EH=12EG,故③正确;故选:A.【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线等于斜边一半,等腰三角形性质等;熟练运用三角形中位线定理、等腰三角形“三线合一”、直角三角形斜边上中线等于斜边一半等性质是解题关键.5.C解析:C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件; ③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 6.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠OAB=∠ACD ,∵∠OAB=∠OAD ,∴∠DAC=∠DCA ,∴AD=CD ,∴四边形ABCD 是菱形(邻边相等的平行四边形是菱形)故选:D .【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.7.B解析:B【分析】判断出△ABE 是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB =30°,再判断出△ABO ,△DOC 是等边三角形,可判断①;根据等边三角形的性质求出OB =AB ,再求出OB =BE ,可判断②,由直角三角形的性质可得BC 3AB ,可判断③,由等腰三角形性质求出∠BOE =75°,再根据∠AOE =∠AOB +∠BOE =135°,可判断④;由面积公式可得AOE COE SS 可判断⑤;即可求解. 【详解】解:∵AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴∠AEB =45°,∴△ABE 是等腰直角三角形,∴AB =BE ,∵∠CAE =15°,∴∠ACE =∠AEB−∠CAE =45°−15°=30°,∴∠BAO =90°−30°=60°,∵矩形ABCD 中:OA =OB =OC =OD ,∴△ABO 是等边三角形,△COD 是等边三角形,故①正确;∴OB =AB ,又∵ AB =BE ,∴OB =BE ,∴△BOE 是等腰三角形,故②正确;在Rt △ABC 中∵∠ACB=30°∴BC 3,故③错误;∵∠OBE =∠ABC−∠ABO =90°−60°=30°=∠ACB ,∴∠BOE =12(180°−30°)=75°, ∴∠AOE =∠AOB +∠BOE =60°+75°=135°,故④错误;∵AO =CO ,∴AOE COE S S ,故⑤正确;故选:B .【点睛】本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.8.A解析:A【分析】由题意可得对角线EF ⊥AD ,且EF 与平行四边形的高相等,进而利用面积与边的关系求出BC 边的高即可.【详解】解:如图,连接AD 、EF ,则可得对角线EF ⊥AD ,且EF 与平行四边形的高相等.∵平行四边形纸片ABCD 的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120, ∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A .【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.9.C解析:C【分析】证明△OFB ≌△CFB ,可判断结论①正确;利用菱形的定义,可判断结论②正确; 根据OC=OB ,斜边大于直角边,可判断结论③错误;根据30度角的性质,可判断AB=2BM ,故结论④是错误的;证NE ∥BM ,AN=NO=OM ,所以BM=3NE ,AO=2OM ,利用三角形面积公式计算判断,结论⑤正确.【详解】连接BD ,∵四边形ABCD 是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,∵FO=FC,BF=BF∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∴△AOE≌△COF,∴OE=OF,FC=AE,∴DF=BE,DF∥BE,∴四边形EBFD是平行四边形,∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴BE=BF,∴四边形EBFD是菱形,∴结论②正确;∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴FB>OB,∵OB=OC,∴FB>OC,∴③错误,在直角三角形AMB中,∵∠BAM=30°,∠AMB=90°,∴AB=2BM,∴④错误,设ED 与AC 的交点为N ,设AE=OE=2x ,则NE=x ,BE=4x ,∴AB=6x ,∴BM=3x , ∴11::22BOM AOE S SOM BM AO NE =⋅⋅ =3:2OM x OM x ⋅⋅=3:2,结论⑤正确.故选C .【点睛】本题考查了矩形的性质,等腰三角形三线合一性质,全等三角形,直角三角形30°角的性质,菱形的判定,熟练掌握,灵活运用是解题的关键.10.A解析:A【分析】延长GE 交AB 于点R ,连接AE ,设AG 交DE 于点M ,过点E 作EN ⊥AG 于N ,先计算出RG=6,∠ARG=90︒,AR=2,根据勾股定理求出210AG =10,利用1122AEG S EG AR AG EN =⋅⋅=⋅⋅,求出105EN =,即可利用勾股定理求出NG 、EH .【详解】如图,延长GE 交AB 于点R ,连接AE ,设AG 交DE 于点M ,过点E 作EN ⊥AG 于N , ∵矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,∴RG=BF=BC+CF=2+4=6,∠ARG=90︒,AR=AR-CE=4-2=2, ∴222222061AG AR RG =+==+,∵H 是AG 中点,∴10,∵1122AEG S EG AR AG EN =⋅⋅=⋅⋅, ∴21204EN ⨯=,∴2105EN=,在Rt△ENG中,22610EG ENNG=-=,∴10NH NG HG=-=,∴222NHEH EN+==,故选:A.【点睛】此题考查矩形的性质,勾股定理,线段中点的性质,三角形面积法求线段长度,熟记矩形的性质及熟练运用勾股定理是解题的关键.11.D解析:D【分析】过D作DG∥AB,交CE于G,连接DE,根据三角形中位线的定理可得CG=EG,通过△DGF≅△AEF,可得AF=DF,再利用三角形的面积可求解.【详解】过D作DG∥AB,交CE于G,连接DE,∵D为BC的中点,∴DG为△BCE的中位线,∴BE=2GD,CG=EG,∵:1:2AE BE=,∴AE=GD,∵DG ∥AB ,∴∠AEF=∠DGF ,∠EAF=∠GDF ,∴△DGF ≅△AEF ,∴AF=DF ,∵60ABC S =△,∴S △ABD =30,S △AED =10,∴S △AEF =5,∴S 四边形DCEF =S △ABD −S △AEF =30−5=25,故选:D .【点睛】本题主要考查三角形的面积,全等三角形的判定与性质,三角形的中位线,添加辅助线,构造全等三角形,是解题的关键.12.D解析:D【分析】首先设AG =x ,由矩形纸片ABCD 中,AB =4,AD =3,可求得BD 的长,又由折叠的性质,可求得A′B 的长,然后由勾股定理可得方程:x 2+22=(4-x )2,解此方程即可求得AG 的长,继而求得答案.【详解】解:设AG =x ,∵四边形ABCD 是矩形,∴∠A =90°,∵AB =4,AD =3,∴BD5,由折叠的性质可得:A′D =AD =3,A′G =AG =x ,∠DA′G =∠A =90°,∴∠BA′G =90°,BG =AB-AG =4-x ,A′B =BD-A′D =5-3=2,∵在Rt △A′BG 中,A′G 2+A′B 2=BG 2,∴x 2+22=(4-x )2,解得:x =32, ∴AG =32,∴在Rt △ADG 中,DG =. 故选:D .【点睛】 此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.二、填空题13.28【分析】过点作于根据菱形的性质得到继而可证再利用含30°角的直角三角形性质解得结合勾股定理解得的长根据折叠的性质得到最后在中利用勾股定理得据此整理解题即可【详解】过点作于是菱形是中点在中折叠在中 解析:2.8【分析】过点E 作EH AD ⊥于H , 根据菱形的性质,得到//AB CD ,4AD BC CD AB ====,继而可证60A HDE ∠=∠=︒,再利用含30°角的直角三角形性质,解得12DH DE =,结合勾股定理解得HE 的长,根据折叠的性质,得到,AG GE AF EF ==,最后在Rt HGE 中利用勾股定理得222GE GH HE =+,据此整理解题即可.【详解】过点E 作EH AD ⊥于H ,ABCD 是菱形//AB CD ∴,4AD BC CD AB ====60A HDE ∴∠=∠=︒E 是CD 中点2DE ∴=在Rt DHE △中,2DE =HE DH ⊥60HDE ∠=︒30HED ∴∠=︒221,213DH HE ∴==-=折叠,AG GE AF EF ∴==在Rt HGE 中222GE GH HE =+22(41)3GE GE ∴=-++2.8GE ∴=故答案为:2.8.【点睛】本题考查翻折变换、菱形的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.14.【分析】连接CM 由题意易证即得到PC=DC=3设AN=x 则PN=xBN=3-xCN=3+x 在中利用勾股定理即可求出x 即可得到CN 的长【详解】如图连接CM 由题意可知在和中∴∴PC=DC=3设AN=x 则 解析:133 【分析】连接CM ,由题意易证DMC PMC ≅,即得到PC=DC=3.设AN=x ,则PN= x ,BN=3-x ,CN=3+ x .在Rt BCN △中利用勾股定理即可求出x ,即可得到CN 的长.【详解】如图,连接CM ,由题意可知122AM DM PM AD ====, 在Rt DMC 和Rt PMC 中,PM PD MC MC=⎧⎨=⎩, ∴DMC PMC ≅,∴PC=DC=3. 设AN=x ,则PN= x ,BN=3-x ,CN=3+ x .在Rt BCN △中,222BC BN CN +=,即2224(3)(3)x x +-=+,解得:43x =, ∴CN=3+413333CN +==.故答案为:133. 【点睛】 本题考查翻折的性质,矩形的性质,三角形全等的判定和性质以及勾股定理.作出常用的辅助线是解答本题的关键.15.【分析】由再利用中位线的性质可得:再总结规律可得:从而运用规律可得答案【详解】解:探究规律:AB=8BC=6AC=7分别为的中点同理:总结规律:运用规律:当时故答案为:【点睛】本题考查的是图形周长的 解析:2020212 【分析】 由21ABCC AB BC AC =++=,再利用中位线的性质可得:111121,22A B C ABC C C ==2221112121,22A B C A B C C C ==再总结规律可得:21,2n n n A B C n C =从而运用规律可得答案.【详解】解:探究规律:AB =8,BC =6,AC =7, 21ABC C AB BC AC ∴=++=, 111,,A B C 分别为,,BC AC AB 的中点,111111111,,,222A B AB B C BC AC AC ∴=== 111121,22A B C ABC C C ∴== 同理:2221112112121,2222A B C A B C C C ==⨯= ······总结规律:21,2n n n A B C nC =运用规律: 当2020n =时,202020202020202021.2A B C C= 故答案为:202021.2 【点睛】本题考查的是图形周长的规律探究,三角形中位线的性质,掌握探究规律的方法与三角形中位线的性质是解题的关键. 16.18-【分析】过A 作AE ⊥y 轴于EAD ⊥x 轴于D 构造正方形AEOD 再证△AEB ≌△ADC (SAS )得BE=CD 由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a .【分析】过A 作AE ⊥y 轴于E ,AD ⊥x 轴于D ,构造正方形AEOD ,再证△AEB ≌△ADC (SAS ),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.17.【分析】取AB的中点E则OE=1DE=利用三角形原理可确定最大值【详解】如图取AB的中点E连接OEDE∵OE是直角三角形ABO斜边上的中线AB=2∴OE=1在直角三角形DAE中根据勾股定理得DE==21【分析】取AB的中点E,则OE=1,2.【详解】如图,取AB的中点E,连接OE,DE,∵OE是直角三角形ABO斜边上的中线,AB=2,∴OE=1,在直角三角形DAE 中,根据勾股定理,得DE=22DA AE +=2,∴当O ,D ,E 三点共线时,DO 最大,且最大值为2+1, 故应该填21+.【点睛】本题考查了线段的最值,构造斜边上的中线,灵活运用三角形原理是解题的关键. 18.【分析】连接并延长交于Q 由矩形的性质得出由平行线的性质得出由证得得出则是等腰直角三角形得出由直角三角形斜边上的中线性质即可得出结果【详解】如图所示:连接并延长交于Q ∵矩形全等于矩形∴∴∵点H 为的中点 解析:42【分析】连接GH 并延长GH 交CD 于Q ,由矩形的性质得出20AB CD BG ===,12BC FG ==,////,90FG AE CD GCQ ∠=,由平行线的性质得出HFG HDQ ∠=∠,由ASA 证得HFG HDQ ≌,得出12DQ FG ==,HG HQ =,8CG BG BC =-=,8CQ CD DQ =-=,则GCQ 是等腰直角三角形,得出282GQ CQ ==,由直角三角形斜边上的中线性质即可得出结果.【详解】如图所示:连接GH 并延长GH 交CD 于Q ,∵矩形ABCD 全等于矩形BEFG ,∴20AB CD BG ===,12BC FG ==,////FG AE CD ,90GCQ ∠=,∴HFG HDQ ∠=∠,∵点H 为DF 的中点,∴HF HD =,在HFG 和HDQ 中,HFG HDQ HF HD GHF QHD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()HFG HDQ ASA ≌,∴12DQ FG ==,HG HQ =,20128CG BG BC =-=-=,20128CQ CD DQ =-=-=,∴GCQ 是等腰直角三角形, ∴282GQ CQ ==, 在Rt GCQ 中,HG HQ =,∴11824222CH GQ ==⨯=, 故答案为:42.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,通过作辅助线构建全等三角形是解题的关键.19.40【分析】先由矩形的性质得AD=BC=13cm ∠A=∠D=90°AD ∥BC 再由折叠的性质得AB=AB=4cmAE=AE=3cmCD=CD=4cmDF=DF=3cm 求出EF 的长然后由梯形面积公式即可解析:40【分析】先由矩形的性质得AD=BC=13cm ,∠A=∠D=90°,AD ∥BC ,再由折叠的性质得AB=A'B=4cm ,AE=A'E=3cm ,CD=CD'=4cm ,DF=D'F=3cm ,求出EF 的长,然后由梯形面积公式即可得出答案.【详解】解:如图所示:∵四边形ABCD 是矩形,∴AD=BC=13cm ,∠A=∠D=90°,AD ∥BC ,∴EF ∥BC ,AB ⊥AD ,由折叠的性质得:AB=A'B=4cm ,AE=A'E=3cm ,CD=CD'=4cm ,DF=D'F=3cm ,∴EF=AD-AE-DF=13-3-3=7(cm ),∴等腰梯形BCFE 的面积=12(EF+BC )×AB=12(7+13)×4=40(cm 2), 故答案为:40.【点睛】本题考查了翻折变换的性质、矩形的性质、等腰梯形的性质等知识;熟练掌握翻折变换和矩形的性质是解题的关键. 20.【分析】先证明△AEC 是等腰三角形再证OE ⊥AC 然后用勾股定理求出OE 即可求【详解】解:如图1连接OE ∵四边形ABCD 是平行四边形∴OA=OC=3AD ∥BC ∴∠DAC=∠ACB 又∵∴∠ACB=∠EA解析:37【分析】先证明△AEC 是等腰三角形,再证OE ⊥AC ,然后用勾股定理求出OE ,即可求AEC S ∆. 【详解】解:如图1,连接OE ,∵四边形ABCD 是平行四边形,∴OA=OC=3,AD ∥BC ,∴∠DAC=∠ACB ,又∵DAC EAC ∠=∠,∴∠ACB=∠EAC ,∴AE=EC=4,∴△AEC 是等腰三角形,∴OE ⊥AC ,在Rt △AOE 中,由勾股定理得,AO 2+OE 2=AE 2,∴32+OE 2=42,∴7∴167372AEC s =⨯= 故答案是:37【点睛】本题综合考查了平行四边形的性质,等腰三角形的判定与性质和勾股定理等相关知识,证明△AEC 是等腰三角形是解本题的关键.三、解答题21.(1)15;(2)t=6或233;(3)能,t=5.【分析】(1)先求出AP,即可求解;(2)分两种情况讨论,由平行四边形的性质可求解;(3)由菱形的性质可求DP=BP,由勾股定理可求解.【详解】解:(1)当t=3时,则AP=3×1=3cm,∴PB=AB﹣AP=18﹣3=15cm,故答案为:15.(2)若四边形PBCQ是平行四边形,∴PB=CQ,∴18﹣t=2t,∴t=6,若四边形PQDA是平行四边形,∴AP=DQ,∴t=23﹣2t,∴t=233,综上所述:t=6或233;(3)如图,若四边形PBQD是菱形,∴BP=DP,∵222AP AD DP+=,∴22144(18) AP AP+=-,∴AP=5,∴t=51=5,∴当t=5时,四边形PBQD为菱形.【点睛】本题考查了平行四边形,菱形的判定,勾股定理,分类思想,熟练掌握菱形的判定定理,灵活运用分类思想是解题的关键.22.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质可得AB//CD ,根据平行线的性质可得就爱∠FAE=∠CDE ,利用ASA 即可证明△AEF ≌△DEC ;(2)根据全等三角形的性质可得AF=DC ,根据有一组对边平行且相等的四边形是平行四边形即可得结论.【详解】(1)∵在平行四边形ABCD 中,AB ∥CD ,∴∠FAE =∠CDE ,∵点E 是边AD 的中点,∴AE =DE ,在△AEF 和△DEC 中FAE CDE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△DEC (ASA ).(2)∵△AEF ≌△DEC ,∴AF =DC ,∵AF ∥DC ,∴四边形ACDF 是平行四边形.【点睛】本题考查平行四边形的判定与性质,平行四边形的对边互相平行;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质与判定定理是解题关键.23.(1)全等,理由见解析;(2)52t =秒,点Q 的运动速度为12cm/s 5. 【分析】(1)由题意可得BP =CQ ,BE =CP ,由“SAS”可证△BPE ≌△CQP ;(2)由全等三角形的性质可得BP =CP =5,BE =CQ =6,即可求点Q 的速度.【详解】解:(1)全等.理由:由题意:2BP CQ t ==,当2t =时,4BP CQ ==, 10AB BC ==,4AE =,1046BE CP ∴==-=,在BPE ∆与CQP ∆中BP CQ B C BE CP =⎧⎪∠=∠⎨⎪=⎩,BPE CQP ∴∆≅∆;(2)P 、Q 运动速度不相等,BP CQ ∴≠,90B C ∠=∠=︒,∴当BP CP =,CQ BE =时,BPE CPQ ∆≅∆,152BP CP BC ∴===,6CQ BE ==, ∴当5522t =÷=(秒)时,BPE CPQ ∆≅∆, 此时点Q 的运动速度为5126(/)25cm s ÷=. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,熟练运用全等三角形的性质解决问题是本题的关键.24.(1)见解析;(2)GE=BE+GD ,理由见解析【分析】(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF ;(2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD .【详解】解:(1)证明:∵四边形ABCD 是正方形,∴BC=CD ,∠B=∠CDA ,∴∠B=∠CDF ,在△CBE 与△CDF 中,BC CD B CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△CBE ≌△CDF (SAS ),∴CE=CF ;(2)GE=BE+GD ,理由:由(1)得△CBE ≌△CDF ,∴∠BCE=∠DCF ,CE=CF .∵∠GCE=45°,∴∠BCE+∠DCG=45°,∴∠GCF=∠DCF+∠DCG=45°,在△ECG 与△FCG 中,CE CF GCE GCF GC GC ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ),∴GE=GF ,∴GE=DF+GD=BE+GD .【点睛】本题主要考查正方形的性质以及全等三角形的判定和性质,证两条线段相等往往转化为证明这两条线段所在三角形全等,在第二问中也考查了通过全等找出和GE 相等的线段,从而得出线段GE ,BE ,GD 之间的数量关系.25.(1)屋形有一条对角线与底平行且相等;(2)见解析;(3)60【分析】(1)根据屋形的特点可得结论;(2)连接BE ,证明四边形BCDE 为平行四边形,再根据+CBE ABE DEB AEB ∠=∠+得出结论;(3)连接BE ,过A 作AH BE ⊥,先利用勾股定理得出AH 的值,再利用三角形和矩形的面积公式求解即可.【详解】解:(1)屋形有一条对角线与底平行且相等(2)求证:屋形的脊与腰夹角相等证明:连接BEAB AE =,ABE AEB ∴∠=∠,C D ∠=∠,//BC DE ∴,又BC DE =,∴四边形BCDE 为平行四边形,90CBE DEB ︒∴∠=∠=∵ABE AEB ∠=∠,∴+CBE ABE DEB AEB ∠=∠+,ABC AED ∴∠=∠.【问题解决】连接BE ,过A 作AH BE ⊥,5AB =,5AE ∴=,,AH BE AB AE ⊥=, 142BH EH BE ∴===, 2222543AH AB BH ∴=-=-=,∴BE=2BH=6,183122ABE S ∆∴=⨯⨯=, BCDE 8648S =⨯=矩,481260+=,∴屋形ABCDE 的面积为60.【点睛】本题考查了平行四边形的判定与性质及勾股定理,解题的关键是正确作出辅助线. 26.5.7m【分析】过点E 作EF AB ⊥于点F ,构造直角三角形,设m AF x =,根据勾股定理列方程,求出AF ,再根据矩形性质,加上DE 长即可.【详解】解:如图,过点E 作EF AB ⊥于点F .由题意,得AC AE =,0.7CB =, 1.7BF DE ==,3EF BD ==,∴ 1.70.71m CF BF BC DE BC =-=-=-=.设m AF x =,则(1)m AE AC x ==+,在Rt AEF 中,90AFE ︒∠=,由勾股定理,得222AE AF EF =+,即222(1)3x x +=+,解得4x =.∴4 1.7 5.7(m)AB AF BF =+=+=.答:宣传牌(AB )的高度为5.7m .【点睛】本题考查了勾股定理的应用和矩形的性质,恰当的作出辅助线,构造直角三角形,应用勾股定理建立方程是解题关键.。
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。
人教版八年级数学下册 特殊平行四边形 解答题训练(word版含解析)

人教版八年级数学下册《18-2特殊平行四边形》解答题优生辅导训练(附答案)1.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD,BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,菱形BNDM的面积为120,求菱形BNDM的周长.2.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.(1)求证:四边形AECD是菱形;(2)过点E作EF⊥CD于点F,若AB=3,BC=5,求EF的长.3.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AD=10,EC=4,求AC的长度.4.如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NED≌△MEA.(2)当AM的值为何值时,四边形AMDN是矩形?并说明理由.5.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,点G为EF 中点,连接BD、DG.(1)试判断△ECF的形状,并说明理由;(2)求∠BDG的度数.6.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=8,求CE的长.7.如图,在正方形ABCD中,E,F分别在边AB,BC上,△DEF是等边三角形,连接BD交EF于点G.(1)求证:BE=BF;(2)若DE=2,求BD的长.8.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF,过点D作DG⊥CF于点G.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?(3)在(2)的条件下,若AB=6,BC=10,求DG的长.9.如图,在正方形ABCD中,AB=,E为正方形ABCD内一点,DE=AB,∠EDC=α(0°<α<90°),连结CE,AE,过点D作DF⊥AE,垂足为点F,交CE的延长线于点G,连结AG.(1)当α=20°时,则∠AEC=;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.10.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合),连接AF并延长交直线BC于点E,交BD于点H,连接CH,过点C作CG⊥HC交AE于点G.(1)若点F在边CD上,如图1.①证明:∠DAH=∠DCH;②猜想线段CG与EF的关系并说明理由;(2)取DF中点M,连结MG,若MG=4,正方形边长为6,求BE的长.11.在△ABC中,过A作BC的平行线,交∠ACB的平分线于点D,点E是BC上一点,连接DE,交AB于点F,∠CAD+∠BED=180°.(1)如图1,求证:四边形ACED是菱形;(2)如图2,若∠ACB=90°,BC=2AC,点G、H分别是AD、AC边中点,连接CG、EG、EH,不添加字母和辅助线,直接写出图中与△CEH所有的全等的三角形.12.如图,四边形ABCD为正方形,E为AD上一点,连接BE,∠AEB=60°,M为BE的中点,过点M的直线交AB、CD于P、Q.(1)如图1,当PQ⊥BE时,求证:BP=2AP;(2)如图2,若∠APQ为锐角,且PQ=BE,延长BE、CD交于点N,请你猜想QM与QN的数量关系,并说明理由.13.如图,点G在正方形ABCD的边CD上,且四边形CEFG也是正方形,连接BG,DE,AF,取AF的中点M,连接CM.求证:(1)BG=DE;(2)CM=AF.14.如图,在正方形ABCD中,点E是BC上一点,点F是CD延长线上的一点,且BE=DF,连接AE、AF、EF.(1)求证:AE=AF;(2)已知∠AEB=75°,若点P是EF的中点,连接CP,DP,求∠CPD的度数.15.如图,点O为矩形ABCD对角线的交点,过点D作DE⊥AC于点E,过点B作BF∥AC,交DE的延长线于F,在BF的延长线上取FG=OD,连接AG,OF.(1)求证:四边形AOFG为菱形;(2)若AD=5,DF=8,求BG的长.16.已知:在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.17.如图,▱ABCD,BE⊥AD于E,交AC于M,DF⊥BC于F,交AC于N,连接DM、BN.(1)求证:△ABM≌△CDN;(2)当▱ABCD是菱形时,判断四边形MBND的形状,并说明理由.18.如图,矩形ABCD中,对角线AC、BD相交于点O,BD的垂直平分线分别交边AD、BC于点E、F,连接BE、DF.(1)求证:四边形BEDF是菱形;(2)若∠BOC=120°,AB=6,求FC的长.19.如图,在△ABC中,∠ABC=90°,点O是斜边AC的中点,过点O作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD、DE.(1)求证:四边形ABCD是矩形;(2)若BC=3,∠BAC=30°,求DE的长.20.如图,四边形ABCD为正方形,E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC 于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度.参考答案1.(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵菱形BNDM的面积为120=×BD×MN,∴MN=10,∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.2.证明:(1)∵∠BAC=90°,E是BC的中点,∴AE=BC=CE,又∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形.∴四边形AECD是菱形.(2)过点A作AG⊥BC于点G,∵AB=3,BC=5,∴AC=,∵,∴,∴AG=,又∵S菱形AECD=CD•EF=CE•AG,∵CD=CE,∴EF=AG=.3.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=,在Rt△AEC中,AC=.4.(1)证明:∵四边形ABCD为菱形,∴CD∥AB,∴∠DNE=∠AME,∵E为AD的中点,∴DE=AE,在△NED和△MEA中,∴△NDE≌△MAE(AAS);(2)当AM=2时,四边形AMDN是矩形.理由如下:由(1)知△NED≌△MEA,∴NE=ME,又∵DE=AE,∴四边形AMDN是平行四边形,∵菱形ABCD,AB=4,E为AD中点,∴AE=2=AM,又∵∠DAB=60°,∴△MEA为等边三角形,∴AE=ME,∴AD=MN,∴平行四边形AMDN为矩形.5.(1)解:△ECF是等腰直角三角形;理由如下:∵四边形ABCD是矩形,∴AD∥BC,∠DAB=∠ABC=∠BCD=90°,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE=45°,∴∠BEA=∠BAE=45°,∴∠CEF=45°,AB=BE,∴∠F=90°﹣45°=45°,∴EC=FC,又∵∠ECF=90°,∴△ECF是等腰直角三角形;(2)∵四边形ABCD是矩形,∴AB=CD,∵AB=BE,∴BE=CD,∵EC=FC,∠ECF=90°,∴CG=EF=EG,∠ECG=∠ECF=45°,∴∠DCG=90°+45°=135°,∵∠BEG=180°﹣45°=135°,∴∠DCG=∠BEG,在△DCG和△BEG中,,∴△DCG≌△BEG(SAS),∴DG=BG,∠DGC=∠BGE,∴∠BGD=∠EGC=90°,又∵DG=BG,∴∠BDG=45°.6.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=8,∴OA=OC,BD⊥AC,OB=OD=BD=4,∴∠AOB=90°,∴OA===2,∴AC=2OA=4,∴菱形ABCD的面积=AC×BD=×4×8=16,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=6CE=16,∴CE=.7.(1)证明:∵四边形ABCD为正方形,∴AD=CD=AB=BC,∠A=∠C=90°,∵△DEF为等边三角形,∴DE=DF,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL),∴AE=CF.又∵AB=BC,∴AB﹣AE=BC﹣CF,∴BE=BF;(2)解:由(1)可知BE=BF,∴△BEF为等腰直角三角形,∵四边形ABCD为正方形,∴BD平分∠ABC,∴点G为EF的中点,BD⊥EF,∵△DEF为等边三角形,DE=2,∴EF=DE=2,BG=EG=1,在Rt△EDG中,由勾股定理得,DG===,∴BD=BG+DG=1+.8.证明:(1)∵点D、E分别是边BC、AC的中点,∴DE∥AB,∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形;(2)当△ABC是直角三角形时,四边形ADCF是菱形,理由:∵点D是边BC的中点,△ABC是直角三角形,∴AD=DC,∴平行四边形ADCF是菱形;(3)∵△ABC是直角三角形,AB=6,BC=10,BD=DC,∴AD=DC=5,AC=,∵四边形ADCF是菱形,∴AC⊥DF,∴DE=,∴,即,解得:DG=.9.解:(1)∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD=DC,∵∠CDE=20°,∴∠ADE=70°,∵DE=AB,∴DC=DE,DA=DE,∴∠DEC=∠DCE=×(180°﹣20°)=80°,∠DAE=∠DEA=×(180°﹣70°)=55°,∴∠AEC=∠AED+∠DEC=80°+55°=135°,故答案为:135°;(2)结论:△AEG是等腰直角三角形.理由:∵AD=DE,DF⊥AE,∴DG是AE的垂直平分线,∴AG=GE,∴∠GAE=∠GEA,∵DE=DC=AD,∴∠DAE=∠DEA,∠DEC=∠DCE,∵∠DAE+∠DEA+∠DEC+∠DCE+∠ADC=360°,∴∠DEA+∠DEC=135°,∴∠GEA=45°,∴∠GAE=∠GEA=45°,∴∠AGE=90°,∴△AEG为等腰直角三角形.(3)如图,连接AC,∵四边形ABCD是正方形,∴AC=AB=,∵△AEG为等腰直角三角形,GF⊥AE,∴GF=AF=EF=1,∴AG=GE=,∵AC2=AG2+GC2,∴10=2+(EC+)2,∴EC=(负根已经舍弃).10.证明:(1)①∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,AD=DC,在△ADH和△CDH中,,∴△ADH≌△CDH(SAS),∴∠DAH=∠DCH;②结论:EF=2CG,理由如下:∵△DAH≌△DCH,∴∠DAF=∠DCH,∵CG⊥HC,∴∠FCG+∠DCH=90°,∴∠FCG+∠DAF=90°,∵∠DF A+∠DAF=90°,∠DF A=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∵∠GCE+∠GCF=90°,∠CFG+∠E=90°,∴∠GCE=∠GCF,∴CG=GE,∴EF=2CG;(2)①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=8,在Rt△DCE中,CE===2,∴BE=BC+CE=6+2;②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE=2,∴BE=BC﹣CE=6﹣2综上所述,BE的长为6+2或6﹣2.11.(1)证明:∵AD∥BC,∴∠ADC=∠BCD,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠ADE=∠DEB,∵∠DEB+∠DEC=180°,∠DEB+∠CAD=180°,∴∠DEC=∠DAC,∴∠ADE+∠DAC=180°,∴DE∥AC,∴四边形ACED是菱形;(2)解:∵∠ACB=90°,∴菱形ACED是正方形,∴∠D=∠CAG=∠DEC=90°,AC=AD=CE,∵G是AD的中点,H是AC边中点,∴AG=DG=CE,∴△EDG≌△CAG≌△ECH(SAS),∵BC=2AC,∴BE=CE=AD,∵AD∥BE,∴∠B=∠DAF,∵∠AFE=∠BFE,∴△BFE≌△AFD(AAS),∵AD=CE=BE,∴△BEF≌△ECH,∴图中与△CEH全等的三角形有△ADF,△EDG,△CAG,△EBF.12.(1)证明:连接PE,如图1,∵点M是BE的中点,PQ⊥BE,∴PQ垂直平分BE,∴PB=PE,∴∠PEB=∠PBE=90°﹣∠AEB=90°﹣60°=30°,∴∠APE=∠PBE+∠PEB=60°,∴∠AEP=90°﹣∠APE=90°﹣60°=30°,∵∠A=90°,∴BP=EP=2AP;(2)解:NQ=2MQ或NQ=MQ.理由如下:分两种情况:如图3所示,过点Q作QF⊥AB于点F,交BN于点G,则FQ=CB,∵正方形ABCD中,AB=BC,∴FQ=AB.在Rt△ABE和Rt△FQP中,,∴Rt△ABE≌Rt△FQP(HL),∴∠FQP=∠ABE=30°,又∵∠MGQ=∠BGF=∠AEB=60°,∴∠GMQ=90°,∵CD∥AB.∴∠N=∠ABE=30°,∴NQ=2MQ;如图2所示,过点Q作QF⊥AB于点F,则QF=CB,同理可证:△ABE≌△FQP,此时∠FPQ=∠AEB=60°,又∵∠FPQ=∠ABE+∠PMB=60°,∠N=∠ABE=30°,∴∠EMQ=∠PMB=30°,∴∠N=∠EMQ,∴NQ=MQ.13.(1)证明∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CG=CE,在Rt△BGC和Rt△DEC中,∴Rt△BGC≌Rt△DEC(HL),∴BG=DE,(2)连接AC,FC,∴∠ACD=∠FCD=45°,∠ACF=90°,∴△ACF为直角三角形,又∵M是AF的中点,∴CM=AF.14.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠ADF=90°,在△ABE和△ADF中,∴△ABE≌△ADF(SAS);∴AE=AF,(2)连接AP,∵△ABE≌△ADF,∴∠BAE=∠DAF,∠F AE=90°,在Rt△EAF和Rt△ECF中,P是EF中点,∴P A=PC=PE=PF=EF,又∵AE=AF,∠AEB=75°,∴∠AEP=45°,∠CEP=∠ECP=60°,∴∠DCP=30°,在△APD和△CPD中,∴△APD≌△CPD(SSS),∴∠CDP=45°,∴∠CPD=180°﹣30°﹣45°=105°.15.证明:(1)∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵DE⊥AC,BF∥AC,∴OF=OD=OA,∵FG=OD,∴FG=OA,∵FG∥OA,∴四边形AOFG为菱形;(2)∵AD=5,DF=8,∴DE=EF=4,AE=3,在Rt△DEO中,设OE=x,由勾股定理得:(x+3)2﹣42=x2,解得:x=,∴OD=,OE=,∴BF=2OE=,FG=OD=,∴BG=GF+BF=.16.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);(2)解:当AB=AC时,四边形ADCF是正方形,理由:由(1)知,△AEF≌△DEB,∴AF=DB,∵D是BC的中点,∴DB=DC,∴AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形,∵AB=AC,D是BC的中点,∴AD⊥BC,∴四边形ADCF是正方形.17.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠DAB=∠DCB,∴∠BAC=∠DCA,∵BE⊥AD,DF⊥BC,∴∠DAB+∠ABM=90°,∠DCB+∠CDN=90°,又∵∠DAB=∠DCB,∴∠ABM=∠CDN,在△ABM和△CDN中,,∴△ABM≌△CDN(ASA);(2)解:四边形MBND是菱形,理由如下:∵BE⊥AD,DF⊥BC,AD∥BC,∴BE∥DF,由(1)知△ABM≌△CDN,∴BM=DN,∴四边形MBND是平行四边形,连接BD,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,即MN⊥BD,∴平行四边形MBND是菱形.18.(1)证明:∵EF垂直平分BD,∴EB=ED,FB=FD,BO=DO,∵四边形ABCD是矩形,∴∠OBF=∠ODE,∵∠DOE=∠BOF,∴△EOD≌△FOB(AAS),∴DE=BF,∴EB=ED=FB=FD,∴四边形BEDF是菱形;(2)解:∵四边形ABCD是矩形,∴OB=OC,CD=AB=6,∴∠OBC=∠OCB,∵∠BOC=120°,∴∠OBC=∠OCB=30°,∵四边形EBFD为菱形,∴FB=FD,∴∠FBD=∠FDB=30°,∴∠DFC=60°,∴∠FDC=30°,设CF=x,则FD=2x,根据勾股定理得:(2x)2﹣x2=62,解得:x=2,∴FC的长为2.19.(1)证明:∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(AAS),∴AD=BC,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∵∠ABC=90°,∠BAC=30°,∴AC=2BC=6,∴OA=3,∵OE⊥AC,∴∠AOE=90°,∵∠BAC=30°,∴OE=OA=,∴AE=2OE=2,∴DE===.20.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在△EQF和△EPD中,,∴△EQF≌△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中,AC=AB=2,∵CE=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴四边形DECG是正方形,∴CG=CE=.。
人教版八年级下册数学 第18章 平行四边形 单元测试卷

人教版八年级下册数学第18章平行四边形单元测试卷一.选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 下列条件中,能判定四边形是平行四边形的条件是( )A. 一组对边平行,一组邻角互补B. 一组对边平行,另一组对边相等C. 一组对边平行,一组对角相等D. 一组对边相等,一组邻角相等2. 下列命题,其中是真命题的为( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 一组邻边相等的矩形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形3. 如下图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AB的长为1.6km,则M,C 两点间的距离为( )A. 0.5kmB. 0.6kmC. 0.8kmD. 1.2km4. 下列命题是假命题的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直且平分的四边形是正方形C. 对角线互相垂直的矩形是正方形D. 对角线互相垂直且相等的平行四边形是正方形5. 如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 46. 如图四边ABCD中∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E.若线段AE=5,则S=( )四边形ABCDA. 20B. 25C. 18D. 247. 如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为( )A. 4B. 4.8C. 5D. 5.58. 如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是( )A. 18B. 18√3C. 36D. 36√3二、填空题(本大题共8小题,共24分)9. 如图,两条射线AM//BN,点C,D分别在射线BN,AM上,只需添加一个条件,即可证明四边形ABCD 是平行四边形,这个条件可以是(写出一个即可).10. 如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为______.11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P 为对角线BD上一点,则PM−PN的最大值为______.12.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为______.13. 已知正方形ABCD的边长为6,如果P是正方形内一点,且PB=PD=2√5,那么AP的长为.14. 已知两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.15如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为..16. 如图,在△ABC中,∠B=45°,AB的垂直平分线交AB于点D,交BC于点E(BE>CE),点F是AC的中点,连接AE、EF,若BC=7,AC=5,则△CEF的周长为______ .三、解答题(本大题共9小题,共72分。
人教版八年级下册数学平行四边形证明题专题训(带答案)

人教版八年级下册数学平行四边形证明题专题训练1.ABCD 中,点E 、F 是AC 上的两点,并且AE CF =.求证:四边形BFDE 是平行四边形.2.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且//,//DE AC CE BD .求证:四边形OCED 是菱形.3.如图,在ABC 中,90CAB ∠=︒,DE ,DF 是ABC 的中位线,连接EF ,AD .求证:EF AD =.4.如图,将▱AECF 的对角线EF 向两端延长,分别至点B 和点D ,且使EB =FD .求证:四边形ABCD 为平行四边形.5.如图,在四边形ABCD 中,AB CD =,BE DF =;AE BD ⊥,CF BD ⊥,垂足分别为E ,F .(1)求证:ABE △≌CDF ;(2)若AC 与BD 交于点O ,求证:AO CO =.6.如图,在ABCD中,点E,F分别在AD、BC上,且AE CF=,连接EF,AC交于点O.求证:OE OF=.7.已知:如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.8.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF =BD,连接BF.(1)求证:D是BC的中点(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.AC,连接CE、OE,连接AE交9.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.10.如图,在矩形ABCD中,AB=6,BC=10,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得'',且B C''恰好经过点D.到多边形AB C E(1)线段DC′的长度;(2)求ADE的面积.11.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.12.如图将矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,且CE与AD相交于点F,求证:EF=DF.13.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.14.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF,(1)证明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.15.如图,在ABCD中,过点D作DE AB=,连接AF,BF.⊥于点E,点F在边CD上,CF AE(1)求证:四边形BFDE是矩形;AD=,求DC的长度.(2)已知60∠=︒,AF是DABDAB∠的平分线,若316.如图,在▱ABCD中,对角线AC、BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形.(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.17.如图,DE是△ABC的中位线,延长DE至F,使EF=DE,连接BF.(1)求证:四边形ABFD是平行四边形;(2)求证:BF=DC.18.如图,在□ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF 是平行四边形.19.如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论20.如图,在矩形ABCD 中,8AB cm =,16BC cm =,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1/cm s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.参考答案:1.证明:如图,连接,BD 交AC 于,OABCD ,,,OA OC OB OD ∴==,AE CF =,OA AE OC CF ∴-=-,OE OF ∴=∴四边形BFDE 是平行四边形.2.∵////DE AC CE BD ,,∴四边形OCED 是平行四边形.∵矩形ABCD 的对角线AC ,BD 相交于点O ,∴OC=OD ,∴四边形OCED 是菱形.3.证明:∵DE 、DF 是△ABC 的中位线,∴DE ∥AB ,DF ∥AC ,∴四边形DEAF 是平行四边形,∵∠CAB =90°,∴四边形DEAF 是矩形,∴EF =AD .4.解:连接AC 交EF 于点O∵四边形AECF 为平行四边形∴OF OE =,OA OC =∵EB FD =∴OF FD OE EB +=+∴OD OB =∴四边形ABCD 为平行四边形5.【详解】(1)证明:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,∵AB CD =,BE DF =,∴ABE △≌CDF .(2)由(1)ABE △≌CDF ,∴AE CF =,∵AE BD ⊥,CF BD ⊥,∴90AEO CFO ∠=∠=︒,∵AOE COF ∠=∠,∴()AEO CFO AAS ≌∴AO CO =.6. 证明:四边形ABCD 是平行四边形,//AD BC ∴,AEO CFO在AOE △和COF 中AOE COF AEO CFO AE CF ∠=∠⎧⎪∴∠=∠⎨⎪=⎩AOE COF ∴≅OE OF ∴=.7.(1)证明:∵四边形ABCD 是矩形,∴OB =OD ,∵AE //CF ,∴∠E =∠F ,∠OBE =∠ODF ,在△BOE 与△DOF 中,E F OBE ODF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)当EF ⊥AC 时,四边形AECF 是菱形.证明:∵△BOE ≌△DOF ,∴OE =OF ,∵四边形ABCD 是矩形,∴OA =OC ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.8.证明: (1)∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点,∴AE =DE ,∵∠AFE =∠DCE , ∠AEF =∠DEC ,AE =DE ,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD,∴D是BC的中点;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AF=BD,过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.9.(1)∵四边形ABCD是菱形,∴OC=1AC,AC⊥BD,2AC,∵DE=12∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)∵在菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2,AC=1,AC⊥BD,AD=2,∵OA=12∴OD=∴在矩形OCED 中,CE =OD∴在Rt △ACE 中,AE10.解:(1)∵四边形ABCD 是矩形∴AD=BC=10,AB=CD=6,∠B=∠C=90°∵将四边形ABCE 沿直线AE 折叠,得到多边形AB′C′E , ∴AB=AB'=6,CE=C'E ,B'C'=BC=10,∠B'=∠B=90°,∠C=∠C'=90°∵8∴C'D=B'C'-B'D=2,(2)设DE=x ,则EC′=6-x ,由(1)可知∠C'=90°,C'D=2∴在Rt △C′DE 中,222(6)2x x -+=,解得:103x =∴ADE 的面积为111050102233AD DE ⋅=⨯⨯= 11.证明:(1)∵BF=DE ,∴BF EF DE EF -=-,即BE=DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在Rt △ABE 与Rt △CDF 中,AB CD BE DF=⎧⎨=⎩, ∴Rt ABE Rt CDF ∆∆≌(HL );(2)如图,连接AC 交BD 于O ,∵Rt ABE Rt CDF ∆∆≌,∴ABE CDF ∠=∠,∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形,∴AO CO =.12.∵四边形ABCD 是矩形,∴∠D =∠E ,AE =CD ,又∵∠AFE =∠CFD ,在△AEF 和△CDF 中,E D AFE CFD AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△CDF (AAS ),∴EF =DF .13.(1)证明:在△ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC(SSS),∴∠BAC=∠DAC ,在△ABF 和△ADF 中,AB AD BAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADF(SAS),∴∠AFB=∠AFD ,∵∠CFE=∠AFB ,∴∠AFD=∠CFE ,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.14.(1)在△ABC和△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∵AB=AD,∠BAC=∠DAC,AF=AF,∴△ABF≌△ADF,∴∠AFB=∠AFD.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC ,∴∠ACD=∠CAD ,∴AD=CD ,∵AB=AD ,CB=CD ,∴AB=CB=CD=AD ,∴四边形ABCD 是菱形.15.解:(1)证明:四边形ABCD 是平行四边形, //DC AB ∴,DC AB =,CF AE =,DF BE ∴=且//DC AB ,∴四边形DFBE 是平行四边形,又DE AB ⊥,∴四边形DFBE 是矩形;(2)60DAB ∠=︒,3AD =,DE AB ⊥,32AE ∴=,DE =四边形DFBE 是矩形,BF DE ∴==AF 平分DAB ∠,1302FAB DAB ∴∠=∠=︒,且BF AB ⊥, 92AB ∴==, 92CD ∴=. 16.证明:(1)∵▱ABCD ,∴AO =OC ,∵△ACE 是等边三角形,∴EO ⊥AC (三线合一)即 BD ⊥AC ,∴▱ABCD是菱形;(2)∵△ACE是等边三角形,∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形∴∠EAO=60°,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD是正方形.17.(1)∵DE是△ABC的中位线,∴DE∥AB,AB=2DE,AD=CD,∵EF=DE,∴DF=2DE,∴AB=DF,且AB∥DF,∴四边形ABFD是平行四边形;(2)∵四边形ABFD是平行四边形,∴AD=BF,且AD=CD,∴BF=DC.18.证明:∵四边形ABCD是平行四边形,∴CD=AB,AD=CB,∠DAB=∠BCD,又∵△ADE和△CBF都是等边三角形,∴DE=BF,AE=CF,∠DAE=∠BCF=60°,∴∠BCD-∠BCF=∠DAB-∠DAE,即∠DCF=∠BAE,∴△DCF≌△BAE(SAS),∴DF=BE,∴四边形BEDF是平行四边形.19.(1)证明:延长CE 交AB 于点G∵AE ⊥CE∴90AEG AEC ︒∠=∠=在AEG ∆和AEC ∆GAE CAE AE AEAEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEG ∆≅AEC ∆∴GE=EC∵BD=CD∴DE 为CGB ∆的中位线∴DE //AB∵DE=BF∴四边形BDEF 是平行四边形(2)1()2BF AB AC =- 理由如下:∵四边形BDEF 是平行四边形∴BF=DE∵D ,E 分别是BC ,GC 的中点∴BF=DE=12BG∵AEG ∆≅AEC ∆∴AG=AC BF=12(AB-AG )=12(AB-AC ).20.解:(1)在矩形ABCD 中,8AB cm =,16BC cm =, 16BC AD cm ∴==,8AB CD cm ==,由已知可得,BQ DP tcm ==,(16)AP CQ t cm ==-, 在矩形ABCD 中,90B ∠=︒,//AD BC ,当BQ AP =时,四边形ABQP 为矩形,16t t ∴=-,得8t =,故当8t s =时,四边形ABQP 为矩形;(2)AP CQ =,//AP CQ ,∴四边形AQCP 为平行四边形,∴当AQ CQ =时,四边形AQCP 为菱形16t -时,四边形AQCP 为菱形,解得6t =, 故当6t s =时,四边形AQCP 为菱形;(3)当6t s =时,16610AQ CQ CP AP cm ====-=, 则周长为41040cm cm ⨯=;面积为210880cm cm cm ⨯=.。
人教版数学八年级下册:第十八章 平行四边形 专题练习(附答案)

第十八章平行四边形专题练习专题1平行四边形的证明思路类型1若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等1.如图,在△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,点B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.4.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.5.如图,已知点D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长到点G,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.6.如图,在▱ABCD中,E,F分别是AD,BC的中点,AF与BE交于点G,CE与DF交于点H,求证:四边形EGFH是平行四边形.类型2若已知条件(已证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,在▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.专题2与正方形有关的四个常考模型模型1正方形中相交垂线段问题——教材P68复习题T8的变式与应用1.如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?【探究】若去掉“DE=CF”这一条件,将两个结论中的一个作为条件能推出另一个结论成立吗?(1)若已知BE=AF,则BE⊥AF成立吗?正方形内,分别连接两组对边上任意两点,得到的两条线段(如:图1中的线段AF与BE,图2中的线段AF与EG,图3中的线段HF与EG)满足:若垂直,则相等.模型2正方形中过对角线交点的直角问题2.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么这两个正方形重叠部分的面积等于多少?为什么?【变式1】如图,正方形ABCD的边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.判断线段OA,OP的数量关系,并说明理由.【变式2】如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.n B.n-1 C.4(n-1) D.4n正方形ABCD中,O为两条对角线的交点,点E,F分别在AB,BC上.若∠EOF为直角,OE,OF分别与DA,AB的延长线交于点G,H,则△AOE≌△BOF,△AOG≌△BOH,△OGH是等腰直角三角形,且S四边形OEBF=14S正方形ABCD.模型3正方形中三垂直全等模型——教材P69复习题T14的变式与应用3.正方形ABCD的边长为6,点P在对角线BD上,点E是线段AD上或AD的延长线上的一点,且PE⊥PC.(1)如图1,点E在线段AD上,求证:PE=PC;(2)如图2,点E在线段AD的延长线上,请补全图形,并判断(1)中的结论是否仍然成立?请说明理由.模型4正方形中的半角模型4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(1)如图,正方形ABCD中,若∠EAF=45°,则:①EF=BE+DF;②△CEF的周长为正方形ABCD边长的2倍;③FA平分∠DFE,EA平分∠BEF.(2)如图,正方形ABCD中,若∠EAF=45°,FA平分∠DFE,则EF=DF-BE.专题3特殊平行四边形的性质与判定1.如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.如图,四边形ABCD,BEFG均为正方形,连接AG,CE.求证:(1)AG=CE;(2)AG⊥CE.3.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)请求出AM的长为何值时,四边形AMDN是矩形,并说明理由.4.已知:如图,四边形ABCD四条边上的中点分别为E,F,G,H,顺次连接EF,FG,GH,HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.5.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.6.如图所示,在▱ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)你能说明四边形EHFG是平行四边形吗?(2)当四边形ABCD满足什么条件时,四边形EHFG是一个菱形?(3)四边形EHFG会成为一个正方形吗?专题4四边形中的动点问题——教材P68复习题T13的变式与应用【例】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s 的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为t s.(1)CD边的长度为cm,t的取值范围为;(2)从运动开始,当t取何值时,PQ∥CD?(3)从运动开始,当t取何值时,PQ=CD?【拓展变式1】在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.【拓展变式2】从运动开始,当t取何值时,四边形PQBA是矩形?【拓展变式3】在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.【拓展变式4】是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.专题5特殊平行四边形中的折叠问题——教材P64“数学活动”的变式与应用【例】如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.图1【拓展延伸】再沿MN所在的直线折叠,点B落在AD上的点B′处,得到折痕MG,同时得到线段B′G,展开如图2.探究四边形MBGB′的形状,并证明你的结论.图2在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段中的适当运用.1.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O.若AE =5,BF =3,则AO 的长为( )A . 5B .32 5 C .2 5 D .452.如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .3.如图,将一张菱形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EF =4,EH =3,则AB = .4.如图,在矩形ABCD 中,AB>AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE.求证: (1)△ADE ≌△CED ; (2)△DEF 是等腰三角形.专题6特殊平行四边形中的最值问题【例】如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P 为AC上一个动点,求PF+PE的最小值.【思路点拨】(1)先确定点P的位置:作点E关于AC的对称点E′,连接FE′,交AC于点P,则点P即为所求;(2)求E′F的长度:将E′F放到一个直角三角形中,利用勾股定理求出E′F的长,即求出了PF+PE的最小值.求线段和最小时,若已知的两点在动点所在直线的同侧,将动点所在直线当作对称轴,作出其中一点的对称点,再将另一点与这个对称点连接,则其与直线的交点即为所求动点所在位置,再求出所连接的线段长即为所求.1.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为.2.如图,在矩形ABCD 的边AD 上找一点P ,使得点P 到B ,C 两点的距离之和最短,则点P 的位置应该在 .3.如图,四边形ABCD 是菱形,AB =8,且∠ABC =60°,M 为对角线BD(不含B 点)上任意一点,则AM +12BM 的最小值为 .4.如图,以边长为2的正方形的对角线的交点O 为端点,引两条相互垂直的射线,分别与正方形的边交于A ,B 两点,求线段AB 的最小值.参考答案:专题1 平行四边形的证明思路1.证明:∵AB =AC ,∴∠B =∠C. ∵EF =EC ,∴∠EFC =∠C. ∴∠B =∠EFC. ∴AB ∥EF. 又∵DE ∥BC ,∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形. 3.证明:∵AB ∥DE ,∴∠B =∠DEF. ∵AC ∥DF ,∴∠ACB =∠F.∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF(ASA ).∴AB =DE. ∵AB ∥DE ,∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形. 5.解:ED 与AG 互相平分. 理由:连接EG ,AD. ∵DE ∥AF ,DE =AF , ∴四边形AEDF 是平行四边形. ∴AE ∥DF ,AE =DF. 又∵FG =2DF , ∴DG =DF. ∴AE =DG. 又∵AE ∥DG ,∴四边形AEGD 是平行四边形. ∴ED 与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,FC =12BC.∴AE ∥FC ,AE =FC.∴四边形AECF 是平行四边形. ∴GF ∥EH.同理可证:ED ∥BF 且ED =BF. ∴四边形BFDE 是平行四边形. ∴GE ∥FH.∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证:OG =OH.∴四边形EGFH 是平行四边形.专题2 与正方形有关的四个常考模型1.解:BE =AF 且BE ⊥AF ,理由: ∵四边形ABCD 是正方形,∴AB =AD =CD ,∠BAD =∠D =90°. 又∵DE =CF ,∴AE =DF. ∴△ABE ≌△DAF(SAS ). ∴BE =AF ,∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°. ∴∠AGB =90°,即BE ⊥AF.【探究】解:成立.理由:∵四边形ABCD 是正方形, ∴∠BAD =∠D =90°,AB =AD. 在Rt △ABE 和Rt △DAF 中,⎩⎨⎧AB =DA ,BE =AF ,∴Rt △ABE ≌Rt △DAF(HL ). ∴∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°.∴∠AGB =90°,即BE ⊥AF. (2)若已知BE ⊥AF ,则BE =AF 成立吗? 解:成立.理由:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠D =90°. 又∵BE ⊥AF ,∴∠AGB =90°. ∴∠ABE +∠BAF =90°.∵∠DAF +∠BAF =90°,∴∠ABE =∠DAF. ∴△ABE ≌△DAF(ASA ). ∴BE =AF.2.解:(1)证明:在正方形ABCD 中,AO =BO ,∠AOB =∠A 1OC 1=90°,∠OAB =∠OBC =45°. ∴∠AOE +∠EOB =90°,∠BOF +∠EOB =90°. ∴∠AOE =∠BOF. 在△AOE 和△BOF 中,⎩⎨⎧∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF ,∴△AOE ≌△BOF(ASA ).(2)两个正方形重叠部分的面积等于14a 2.理由如下:∵△AOE ≌△BOF ,∴S 四边形OEBF =S △EOB +S △BOF =S △EOB +S △AOE =S △AOB =14S 正方形ABCD =14a 2.【变式1】 解:OA =OP ,理由:过点O 作OG ⊥AB 于点G ,过点O 作OH ⊥BC 于点H ,∵四边形ABCD 是正方形, ∴∠ABO =∠CBO ,AB =BC. ∴OG =OH.∵∠OGB =∠GBH =∠BHO =90°, ∴四边形OGBH 是正方形. ∴∠GOH =90°.∵∠AOP =∠GOH =90°,∴∠AOG =∠POH. ∴△AGO ≌△PHO(ASA ). ∴OA =OP. 【变式2】 B3.解:(1)证明:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 易得∠PFD =∠CGP =90°. ∵BD 为正方形ABCD 的对角线, ∴∠BDF =∠FPD =45°. ∴PF =FD.又∵FG ∥DC ,FD ∥GC ,∠ADC =90°, ∴四边形FGCD 为矩形. ∴DF =CG. ∴PF =CG. ∵PE ⊥PC ,∴∠FPE +∠GPC =90°. ∵∠FEP +∠FPE =90°, ∴∠FEP =∠GPC. ∴在△PFE 和△CGP 中,⎩⎨⎧∠PFE =∠CGP ,∠FEP =∠GPC ,PF =CG ,∴△PFE ≌△CGP(AAS ). ∴PE =CP.(2)成立.理由:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 同理可证△PFE ≌△CGP(AAS ). ∴PE =PC.4.解:(1)证明:∵四边形ABCD 是正方形, ∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS ).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG(SAS ).∴GE =GF.∴GE =DF +GD =BE +GD.专题3 特殊平行四边形的性质与判定1.证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC.∴∠BPF =∠DAE.∵∠ABC =∠AED ,∴∠BAF =∠ADE.∵∠ABF =∠BPF ,∴∠ABF =∠DAE.∵AB =DA ,∴△ABF ≌△DAE(ASA ).(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF.∵AF =AE +EF =BF +EF ,∴DE =BF +EF.2.证明:(1)∵四边形ABCD ,BEFG 均为正方形,∴AB =CB ,∠ABC =∠GBE =90°,BG =BE.∴∠ABG =∠CBE.在△ABG 和△CBE 中,⎩⎨⎧AB =CB ,∠ABG =∠CBE ,BG =BE ,∴△ABG ≌△CBE(SAS ).∴AG =CE.(2)设AG 交BC 于点M ,交CE 于点N.∵△ABG ≌△CBE ,∴∠BAG =∠BCE.∵∠ABC =90°,∴∠BAG +∠AMB =90°.∵∠AMB =∠CMN ,∴∠BCE +∠CMN =90°.∴∠CNM =90°.∴AG ⊥CE.3.解:(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME.又∵点E 是AD 边的中点,∴DE =AE.∴△NDE ≌△MAE(AAS ).∴ND =MA.∴四边形AMDN 是平行四边形.(2)当AM 的长为1时,四边形AMDN 是矩形.理由如下:∵AM =1=12AD =AE ,∠DAB =60°, ∴△AEM 是等边三角形.∴∠AME =∠AEM =60°,EM =AE =ED.∴∠EMD =∠EDM =30°.∴∠AMD =∠AME +∠EMD =90°.∴四边形AMDN 是矩形.4.(1)四边形EFGH 的形状是平行四边形,证明你的结论;(2)当四边形ABCD 的对角线满足互相垂直条件时,四边形EFGH 是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.证明:连接BD.∵E ,H 分别是AB ,AD 中点,∴EH ∥BD ,EH =12BD. 同理FG ∥BD ,FG =12BD , ∴EH ∥FG ,EH =FG.∴四边形EFGH 是平行四边形.5.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠BEC.∴∠FGE =∠BEF.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =BF 2-AB 2=8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103.∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203. 6.解:(1)能说明四边形EHFG 是平行四边形.∵四边形ABCD 是平行四边形,∴AB 綊CD.而AE =12AB ,CF =12CD , ∴AE 綊CF.∴四边形AECF 是平行四边形.∴GF ∥EH.同理可得GE ∥HF.∴四边形EHFG 是平行四边形.(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.由(1)知,四边形EHFG 是平行四边形.连接EF.当四边形ABCD 是矩形时,四边形EBCF 也是矩形,∴EH =FH ,∴四边形EHFG 是菱形.(3)当四边形ABCD 是矩形且AB =2AD 时,四边形EHFG 是正方形.由(2)知,当四边形ABCD 是矩形时,四边形EHFG 是菱形.又由AB =2AD 可知,四边形EBCF 是正方形.根据正方形的性质知,EC⊥BF,即∠EHF=90°,∴四边形EHFG是正方形.专题4四边形中的动点问题【例】(1)CD边的长度为10cm,t的取值范围为0≤t≤9;解:(2)设经过t s时,PQ∥CD,此时四边形PQCD为平行四边形,则PD=CQ.∵PD=(12-t)cm,CQ=2t cm,∴12-t=2t.∴t=4.∴当t=4时,PQ∥CD.(3)设经过t s时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.∵∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形.∴AD=BF.∵AD=12 cm,BC=18 cm,∴CF=BC-BF=6 cm.①当四边形PQCD为梯形(腰相等)时,PD+2(BC-AD)=CQ,∴(12-t)+12=2t.∴t=8.∴当t=8时,PQ=CD;②当四边形PQCD为平行四边形时,由(2)知当t=4 s时,PQ=CD.综上,当t=4或t=8时,PQ=CD.【拓展变式1】解:不存在.理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由例知当t=4 s时,四边形PQCD是平行四边形.此时DP=12-t=8≠10,即DP≠DC,所以按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.【拓展变式2】解:如图,由题意,得AP =t ,DP =12-t ,CQ =2t ,BQ =18-2t.要使四边形PQBA 是矩形,已有∠B =90°,AD ∥BC ,即AP ∥BQ ,只需满足AP =BQ ,即t =18-2t ,解得t =6.所以当t =6时,四边形PQBA 是矩形.【拓展变式3】 解:不存在.理由:要使四边形PQBA 是正方形,则四边形PQBA 一定是矩形.由变式2知,当t =6时,四边形PQBA 是矩形.此时AP =t =6≠8,即AP ≠AB ,所以按已知速度运动,四边形PQBA 只能是矩形,不可能是正方形.【拓展变式4】 解:△DQC 是等腰三角形时,分三种情况讨论:图1 图2 图3①如图1,当QC =DC 时,即2t =10,∴t =5.②如图2,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t. 在矩形ABHD 中,BH =AD =12,∴CH =BC -BH =6,∴t =6.③如图3,当QD =QC 时,过点D 作DH ⊥CQ ,DH =8,CH =6,DC =10,CQ =QD =2t ,QH =|2t -6|.在Rt △DQH 中,DH 2+QH 2=DQ 2.∴82+|2t -6|2=(2t)2.解得t =256. 综上,当t =5或6或256时,△DQC 是等腰三角形专题5 特殊平行四边形中的折叠问题【例】 解:∠MBN =30°.证明:连接AN .∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN =AB ,∴△ABN 是等边三角形.∴∠ABN =60°.∴∠MBN =∠ABM =12∠ABN =30°. 【拓展延伸】 解:四边形MBGB′是菱形.证明:∵∠ABM =30°,∠A =∠ABC =90°,∴∠MBG =∠AMB =60°.根据折叠的性质,得BM =MB′,BG =B′G ,∠BMN =∠AMB.∴∠BMN =∠MBG =60°.∴△MBG 是等边三角形.∴BM =BG.∴BM =MB′=BG =B′G.∴四边形MBGB′是菱形.1.C2. 94cm . 3.5.4.证明:(1)由折叠相关性质可知,AE =AB ,CE =CB.∵四边形ABCD 是矩形,∴AE =AB =DC ,CE =CB =AD.在△ADE 和△CED 中,⎩⎨⎧AD =CE ,AE =CD ,DE =ED ,∴△ADE ≌△CED(SSS ).(2)由(1)知,△ADE ≌△CED ,∴∠AED =∠CDE.∴△DEF 是等腰三角形.小专题(十) 特殊平行四边形中的最值问题【例】 解:作点E 关于直线AC 的对称点E′(易知点E′在CD 上),连接E′F ,交AC 于点P.则PE =PE′,CE ′=CE.∴PE +PF =PE′+PF =E′F.∴P 即为所求的使PF +PE 最短的点.∵正方形ABCD 的边长为4,BE =1,F 为AB 的中点, ∴BF =2,CE =CB -BE =3.∴CE ′=CE =3.过点F 作FG ⊥CD 于点G ,则∠FGE′=∠FGC =90°. ∵四边形ABCD 是正方形,∴∠B =∠BCD =∠FGC =90°.∴四边形FBCG 是矩形.∴CG =BF =2,FG =BC =4.∴E ′G =E′C -CG =1.∴在Rt △E ′FG 中,E ′F =FG 2+E′G 2=42+12=17. ∴PF +PE 的最小值为17.12.AD 的中点.34.解:∵四边形CDEF 是正方形,∴∠OCA =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°. ∴∠COA =∠DOB.在△COA 和△DOB 中,⎩⎨⎧∠OCA =∠ODB ,OC =OD ,∠COA =∠DOB ,∴△COA ≌△DOB(ASA ).∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形. 由勾股定理,得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,得OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴OD =OC.又∵OA ⊥CD ,∴CA =DA.∴OA =12CF =1.∴AB = 2.∴AB的最小值为 2.。
人教版八年级数学下册第十八章-平行四边形章节测评试题(含答案解析)

人教版八年级数学下册第十八章-平行四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA C的坐标为()A.,1)B.(1,1)C.(1D.,1)2、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.103、如图,已知P 是AOB ∠平分线上的一点,60AOB ︒∠=,PD OA ⊥,M 是OP 的中点,4cm DM =,如果C 是OB 上一个动点,则PC 的最小值为( )A .8cmB .5cmC .4cmD .2cm4、顺次连接矩形各边中点得到的四边形是( )A .平行四边形B .矩形C .菱形D .正方形5、如图所示,公路AC 、BC 互相垂直,点M 为公路AB 的中点,为测量湖泊两侧C 、M 两点间的距离,若测得AB 的长为6km ,则M 、C 两点间的距离为( )A .2.5kmB .4.5kmC .5kmD .3km6、如图,已知四边形ABCD 和四边形BCEF 均为平行四边形,∠D =60°,连接AF ,并延长交BE 于点P ,若AP ⊥BE ,AB =3,BC =2,AF =1,则BE 的长为( )A .5B .C .D .7、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A.125B.245C.6 D.4858、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,BC AC⊥于点C.已知16AC=,6BC=.点B到原点的最大距离为()A.22 B.18 C.14 D.109、如图,已知在正方形ABCD中,10AB BC CD AD====厘米,90A B C D∠=∠=∠=∠=︒,点E在边AB 上,且4AE=厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使BPE与CQP全等时,则t的值为()A.2 B.2或1.5 C.2.5 D.2.5或210、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A .46.5cmB .22.5cmC .23.25cmD .以上都不对第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在直角三角形ABC 中,∠B =90°,点D 是AC 边上的一点,连接BD ,把△CBD 沿着BD 翻折,点C 落在AB 边上的点E 处,得到△EBD ,连接CE 交BD 于点F ,BG 为△EBD 的中线.若BC =4,△EBG 的面积为3,则CD 的长为____________2、如图,在▱ABCD 中,BC =3,CD =4,点E 是CD 边上的中点,将△BCE 沿BE 翻折得△BGE ,连接AE ,A 、G 、E 在同一直线上,则AG =______,点G 到AB 的距离为______.3、如图,在ABC 中,2AB AC ==,90BAC ∠=︒,M ,N 为BC 上的两个动点,且MN AM AN +的最小值是________.4、一个三角形三边长之比为4∶5∶6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为_________cm .5、如图,在长方形ABCD 中,9DC =.在DC 上找一点E ,沿直线AE 把AED 折叠,使D 点恰好落在BC上,设这一点为F,若ABF的面积是54,则FCE△的面积=______________.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.2、如图,在Rt△ABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形.3、如图:在Rt ABC中,90∠=,点O为AB的中点,点P为直线BC上的动点(不与点A︒ACB︒∠=,30∆,连接BQ.B,C重合),连接OC,OP,以OP为边在OC的上方作等边OPQ(1)OBC是________三角形;=;(2)如图1,当点P在边BC上时,运用(1)中的结论证明CP BQ(3)如图2,当点P在CB的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.4、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.5、已知:如图,30∠=︒,45B∠=︒,AD是BC上的高线,CE是AB边上的中线,DG CE于G.ACDAB=,求线段AC的长;(1)若6(2)求证:CG EG.---------参考答案-----------一、单选题1、B【解析】【分析】作CD⊥x轴,根据菱形的性质得到OC=OA Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA∴OC=OA又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.2、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:5AB=,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.3、C【解析】【分析】根据题意由角平分线先得到OPD △是含有30角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP ,DP 的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC 的最小值.【详解】解:∵点P 是∠AOB 平分线上的一点,60AOB ∠=︒, ∴1302AOP AOB ∠=∠=︒,∵PD ⊥OA ,M 是OP 的中点,4cm DM =∴28cm OP DM ==, ∴14cm 2PD OP ==∵点C 是OB 上一个动点∴当PC OB ⊥时,PC 的值最小,∵OP 平分∠AOB ,PD ⊥OA ,PC OB ⊥∴PC 最小值4cm PD ==,故选C .【点睛】本题主要考查了角平分线的性质、含有30角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.4、C【解析】【分析】如图,矩形ABCD 中,利用三角形的中位线的性质证明111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥,再证明四边形ABCD 是平行四边形,再证明,EF FG 从而可得结论.【详解】解:如图,矩形ABCD 中,,AC BD ∴=,,,E F G H 分别为四边的中点,111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥, ,,EF GH EF GH ∥∴ 四边形ABCD 是平行四边形,11,,,22AC BD EF BD FG AC === ,EF FG ∴= ∴ 四边形EFGH 是菱形.故选C .【点睛】本题考查的是矩形的性质,菱形的判定,三角形的中位线的性质,熟练的运用三角形的中位线的性质解决中点四边形问题是解本题的关键.5、D【解析】【详解】根据直角三角形斜边上的中线性质得出CM =12AB ,即可求出CM .【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,AB,∴CM=12∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.6、D【解析】【分析】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,先证∠DHC=90º,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果.【详解】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,∵四边形ABCD是平行四边形,AB=3,∠ADC=60º,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60º,∵DH⊥BC,∴∠DHC =90º,∴∠ADC +∠CDH =90°,∴∠CDH =30°,在Rt △DCH 中,CH =12CD =32,DH ,∴222223(2)192BD BH DH =+=++=, ∵四边形BCEF 是平行四边形,∴AD =BC =EF ,AD ∥EF ,∴四边形ADEF 是平行四边形,∴AF ∥DE ,AF =DE =1,∵AF ⊥BE ,∴DE ⊥BE ,∴22219118BE BD DE =-=-=, ∴BE =故选D .【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.7、B【解析】【分析】根据菱形的性质求得BD 的长,进而根据菱形的面积等于12AC BD CD BE ⋅=⋅,即可求得BE 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是菱形AC BD ∴⊥,142AO CO AC ===,DO BO =,5CD AB == 在Rt AOB 中,5AB =,4AO =3BO ∴26BD BO ∴== 菱形的面积等于12AC BD CD BE ⋅=⋅1168242255AC BD BE CD ⋅⨯∴==⨯= 故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得BD 的长是解题的关键.8、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CE12=AC=8,∵BC⊥AC,BC=6,∴BE=10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、D【解析】【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.解:当2a =,即点Q 的运动速度与点P 的运动速度都是2厘米/秒,若△BPE ≌△CQP ,则BP =CQ ,BE =CP ,∵AB =BC =10厘米,AE =4厘米,∴BE =CP =6厘米,∴BP =10-6=4厘米,∴运动时间t =4÷2=2(秒);当2a ≠,即点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵∠B =∠C =90°,∴要使△BPE 与△OQP 全等,只要BP =PC =5厘米,CQ =BE =6厘米,即可.∴点P ,Q 运动的时间t =252 2.5BP ÷=÷=(秒).综上t 的值为2.5或2.故选:D .【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.10、C【解析】【分析】如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线,则14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==,即可得到△DEF 的周长==12cm DE DF EF ++,由此即可求出其他四个新三角形的周长,最后求和即可.解:如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线, ∴14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==, ∴△DEF 的周长==12cm DE DF EF ++,同理可得:△GHI 的周长==6cm HI HG GI ++,∴第三次作中位线得到的三角形周长为3cm ,∴第四次作中位线得到的三角形周长为1.5cm∴第三次作中位线得到的三角形周长为0.75cm∴这五个新三角形的周长之和为1263 1.50.75=23.25cm ++++,故选C .【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1【解析】【分析】由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,由勾股定理可得,CE =得,26BCD BDE BEG S S S ===△△△,求得CF 的长度,即可求解.【详解】解:由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,BCD BDE △≌△ ∴BCE 为等腰直角三角形,F 为CE 的中点,BCD BDE SS = ∴12BF CF EF CE ===由勾股定理可得,CE∴12BF CF EF CE ====∵BG 为△EBD 的中线,△EBG 的面积为3∴26BCD BDE BEG S S S ===△△△162BCD S BD CF =⨯=△,解得BD =∴DF BD BF =-=由勾股定理得:CD =【点睛】此题考查了折叠的性质,勾股定理以及直角三角形的性质,解题的关键是灵活利用相关性质进行求解.2、【解析】【分析】根据折叠性质和平行四边形的性质可以证明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值.【详解】解:如图,GF⊥AB于点F,∵点E是CD边上的中点,∴CE=DE=2,由折叠可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在▱ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,AGB DBAG AED BG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于点F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=118,∴GF2=AG2-AF2=4-12164=13564,∴GF,故答案为2.【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明△ABG≌△EAD是解题的关键.3【解析】【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,AM AN最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN 是平行四边形,∴MD =AN ,AD =MN ,作点A 关于BC 的对称点A ′,连接A A ′交BC 于点O ,连接A ′M , 则AM =A ′M ,∴AM +AN =A ′M +DM ,∴三点D 、M 、A ′共线时,A ′M +DM 最小为A ′D 的长, ∵AD //BC ,AO ⊥BC ,∴∠DA A '=90°,∵2AB AC ==,90BAC ∠=︒,,∴BC=BO=CO =AO ,∴AA '=在Rt△AD A '中,由勾股定理得:A 'D =∴AM AN +【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.4、24【解析】【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可.【详解】∵ 如图,H、I、J分别为BC,AC,AB的中点∴12HI AB=,12IJ BC=,12HJ AC=又∵30HI IJ HJ++=∴60AB BC AC++=∵AB:AC:BC=4:5:6,即BC边最长∴660=244+5+6BC=⨯故填24.【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.5、6【解析】【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形∴AB=CD=9,BC=AD∵12•AB•BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,15AF=.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.设DE=x,则CE=9-x,EF=DE=x.则x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面积=1122CF CE⨯⨯=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB =4,BC =3,5AC =,利用勾股定理逆定理即可得到△ABC 是直角三角形;(2)如图,AB =AC =BC ==△ABC 是直角三角形;(3)如图,AB BC CD AD =====AC =222AC AB BC =+,∠ABC =90°,即可得到四边形ABCD 是正方形,10ABCD SAB BC =⋅=.【详解】解:(1)如图所示,AB =4,BC =3,5AC =,∴222AC AB BC =+,∴△ABC 是直角三角形;(2)如图所示,AB ==AC =BC =∴222AC AB BC =+,∴△ABC 是直角三角形;(3)如图所示,AB BC CD AD ==== AC =∴222AC AB BC =+,∴∠ABC =90°,∴四边形ABCD 是正方形,∴10ABCDS AB BC =⋅=.【点睛】 本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明CED ∠与EDF ∠都是90︒,最后加上90ACB ∠=︒,即可证明结论.【详解】(1)答案如下图所示:分别以A 、B 两点为圆心,以大于2AB 长为半径画弧,连接弧的交点的直线即为垂直平分线l ,其与AB 的交点为D ,以点D 为圆心,适当长为半径画弧,分别交DA 于点M ,交CD 于点N ,交BD 于点T ,然后分别以点M ,N 为圆心,大于2MN 为半径画弧,连接两弧交点与D 点的连线交AC 于点E ,同理分别以点T ,N 为圆心,大于2TN 为半径画弧,连接两弧交点与D 点的连线交BC 于点F . (2)证明:D 点是AB 与其垂直平分线l 的交点,D ∴点是AB 的中点,CD ∴是Rt △ABC 上的斜边的中线,2AB CD AD ∴==, DE 、DF 分别是∠ADC ,∠BDC 的角平分线,12CDE ADE ADC ∴∠=∠=∠,12CDF CDB ∠=∠,EDF CDE CDF ∠=∠+∠,11190222EDF ADC CDB ADB ∴∠=∠+∠=∠=︒ , CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩, ()CDE ADE SAS ∴∆∆≌,1902CED AED AEC ∴∠=∠=∠=︒, 在四边形CEDF 中,90ACB CED EDF ∠=∠=∠=︒,∴四边形CEDF 是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明12BC OC OB AB ===,即可证明△OBC 是等边三角形; (2)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =;(3)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =.【详解】(1)∵∠ACB =90°,∠A =30°,O 是AB 的中点, ∴12BC OC OB AB ===, ∴△OBC 是等边三角形,故答案为:等边;(2)由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒-∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=;(3)成立,CP BQ =证明:由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒+∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.4、(1)见解析;(2)正方形ABCD的面积为2a【分析】(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,∵△ACE是等边三角形,∴EO⊥AC(三线合一),即BD⊥AC,∴▱ABCD是菱形;(2)解:∵△ACE是等边三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD 为菱形是解题的关键.5、(1)(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD =3,根据等腰直角三角形,得到CD =AD =3,根据勾股定理,得到AC 的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE =DC ,根据等腰三角形三线合一性质,证明即可.【详解】(1)AD BC ⊥90ADB ADC ∴∠=∠=︒30B ∠=︒,6AB =132AD AB ∴== 45ACD ∠=︒45CAD ∴∠=︒3AD CD ∴==AC ∴=(2)连接DE90ADB ∠=︒,AE BE =12ED AB ∴=, 12AD AB =,AD CD =, ED CD ∴=,GD EC ⊥,EG CG ∴=.【点睛】 本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.。
人教版八年级数学下册第十八章平行四边形检测试题(附答案)

精品基础教育教学资料,仅供参考,需要可下载使用!第十八章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2019·十堰)矩形具有而平行四边形不一定具有的性质是CA .对边相等B .对角相等C .对角线相等D .对角线互相平分2.(株洲中考)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是DA .OE =12 DCB .OA =OC C .∠BOE =∠OBAD .∠OBE =∠OCE 第2题图 第3题图 第6题图3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为DA .3 cmB .2 cmC .23 cmD .4 cm4.(2019·泸州)四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是BA .AD ∥BCB .OA =OC ,OB =OD C .AD ∥BC ,AB =DC D .AC ⊥BD5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是CA .矩形B .一组对边相等,另一组对边平行的四边形C .对角线相等的四边形D .对角线互相垂直的四边形6.(2019·赤峰)如图,菱形ABCD 周长为20,对角线AC ,BD 相交于点O ,E 是CD 的中点,则OE 的长是AA .2.5B .3C .4D .57.(2019·泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为CA .8B .12C .16D .328.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是DA .12B .24C .123D .163第8题图 第9题图 第10题图9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为CA .1B .2C .4-22D .32 -410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是BA .①②③B .①②④C .②③④D .①②③④二、填空题(每小题3分,共15分)11.(2019·长沙)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50 m ,则AB 的长是100m.第11题图 第12题图 第13题图第14题图12.(江西中考)如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为50°.13.(2019·湘潭)如图,在四边形ABCD 中,若AB =CD ,则添加一个条件AD =BC ,能得到平行四边形ABCD .(不添加辅助线,任意添加一个符合题意的条件即可)14.如图,菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是5.15.(2019·内江)如图,点A ,B ,C 在同一直线上,且AB =23AC ,点D ,E 分别是AB ,BC 的中点,分别以AB ,DE ,BC 为边,在AC 同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作S 1,S 2,S 3,若S 1=5 ,则S 2+S 3=354. 三、解答题(共75分)16.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF .(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形 (2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm17.(9分)(2019·柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD 中,AB =CD ,AD =BC .求证:四边形ABCD 是平行四边形.证明:连接AC ,如图,在△ABC 和△CDA 中,⎩⎪⎨⎪⎧AB =CD CB =AD AC =CA,∴△ABC ≌△CDA (SSS),∴∠BAC =∠DCA ,∠ACB =∠CAD ,∴AB ∥CD ,BC ∥AD ,∴四边形ABCD 是平行四边形18.(9分)(2019·新疆)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 中点,连接OE .过点C 作CF ∥BD 交OE 的延长线于点F ,连接DF .求证:(1)△ODE ≌△FCE ;(2)四边形OCFD 是矩形. 证明:(1)∵CF ∥BD ,∴∠ODE =∠FCE ,∵E 是CD 中点,∴CE =DE ,在△ODE 和△FCE 中,⎩⎪⎨⎪⎧∠ODE =∠FCE ,DE =CE ,∠DEO =∠CEF , ∴△ODE ≌△FCE (ASA)(2)∵△ODE ≌△FCE ,∴OD =FC ,∵CF ∥BD ,∴四边形OCFD 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°,∴四边形OCFD 是矩形19.(9分)(2019·大庆)如图,在矩形ABCD 中,AB =3,BC =4.点M ,N 在对角线AC 上,且AM =CN ,E ,F 分别是AD ,BC 的中点.(1)求证:△ABM ≌△CDN ;(2)点G 是对角线AC 上的点,∠EGF =90°,求AG 的长.(1)证明∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠MAB =∠NCD .在△ABM 和△CDN 中,⎩⎪⎨⎪⎧AB =CD ,∠MAB =∠NCD ,AM =CN ,∴△ABM ≌△CDN (SAS)(2)解:如图,连接EF ,交AC 于点O .在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EOA =∠FOC ,∠EAO =∠FCO ,AE =CF ,∴△AEO≌△CFO (AAS),∴EO =FO ,AO =CO ,∴O 为EF ,AC 中点.∵∠EGF =90°,OG =12 EF =32 ,∴AG =OA -OG =1或AG =OA +OG =4,∴AG 的长为1或420.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF .(1)求证:AE =CF ;(2)当四边形AECF 为矩形时,请求出BD -AC BE的值. 解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC .∵四边形AECF 是矩形,∴AC =EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BE BE=221.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =1∶2时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12 AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形22.(10分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q .(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ .证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP (SAS),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ .证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ23.(11分)(2019·重庆)如图,在平行四边形ABCD 中,点E 在边BC 上,连接AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP .(1)若DP =2AP =4,CP =17 ,CD =5,求△ACD 的面积.(2)若AE =BN ,AN =CE ,求证:AD =2 CM +2CE .解:(1)作CG ⊥AD 于G ,如图①所示:设PG =x ,则DG =4-x ,在Rt △PGC 中,GC 2=CP2-PG 2=17-x 2,在Rt △DGC 中,GC 2=CD 2-GD 2=52-(4-x )2=9+8x -x 2,∴17-x 2=9+8x-x 2,解得:x =1,即PG =1,∴GC =4,∵DP =2AP =4,∴AD =6,∴S △ACD =12 ×AD ×CG =12×6×4=12(2)证明:连接NE ,如图②所示:∵BH ⊥AE ,AF ⊥BC ,AE ⊥EM ,∴∠AEB +∠NBF =∠AEB +∠EAF =∠AEB +∠MEC =90°,∴∠NBF =∠EAF =∠MEC ,在△NBF 和△EAF 中,⎩⎪⎨⎪⎧∠NBF =∠EAF ,∠BFN =∠AFE ,BN =AE ,∴△NBF ≌△EAF (AAS),∴BF =AF ,NF =EF ,∴∠ABC =45°,∠ENF =45°,∵∠ANB =90°+∠EAF ,∠CEA =90°+∠MEC ,∴∠ANB =∠CEA ,在△ANB 和△CEA 中,⎩⎪⎨⎪⎧AN =CE ,∠ANB =∠CEA ,BN =AE ,∴△ANB ≌△CEA (SAS),∴∠CAE =∠ABN ,∵∠NBF =∠EAF ,∴∠ABF =∠FAC =45°∴FC =AF =BF ,∴∠ANE =∠BCD =135°,AD =BC =2AF ,在△ANE 和△ECM 中,⎩⎪⎨⎪⎧∠EAF =∠MEC ,AN =EC ,∠ANE =∠ECM ,∴△ANE ≌△ECM (ASA),∴CM =NE ,又∵NF =22 NE =22 MC ,∴AF =22 MC +EC ,∴AD =2 MC +2EC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊的平行四边形小测
一、选择题
1.如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于()
A.2 B.C.D.
2.正方形面积为36,则对角线的长为()
A.6 B.C.9 D.
3.在菱形ABCD中,AC与BD相交于点O,则下列说法不正确的是()
A.AO⊥BO B.∠ABD=∠CBD C.AO=BO D.AD=CD 4.菱形ABCD的周长为24,其相邻两内角的度数比为1:5,则此菱形的面积()A.18 B.9 C.36 D.27
5.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()
A.3 B.3.5 C.4 D.4.5
6.若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22 B.26 C.22或26 D.28
二、填空题
7.在△ABC中,∠ACB=90°,∠A=30°,BC=4,则斜边AB上的中线长是.8.已知菱形的两条对角线的长分别为10,20,则菱形的面积为.
9.矩形ABCD中,AC、BD交于点O,AB=1,∠AOB=60°,则AD=.10.正方形的一条对角线长为4,这个正方形的周长是.
11.如图,AC是正方形ABCD的对角线,∠DCA的平分线交BA的延长线于点E,若AB =3,则AE=
三、解答题
12.已知:如图,△ABC中,O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;
(2)写出当点O运动到何处时,四边形AECF是矩形;
(3)当点O运动到问题(2)中的位置时,证明四边形AECF是矩形.
13.在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:(1)△BFO≌△DEO.
(2)四边形AFCE是矩形.
14.如图,已知:△ABC中,BD、CE分别是AC、AB边上的高,G、F分别是BC、DE的中点.试探索FG与DE的关系.
15.平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB⊥PD,垂足为P.求证:四边形ABCD为矩形.
16.如图,BD、CE是三角形ABC的两条高,M、N分别是BC、DE的中点,试说明MN 与DE的位置关系.
17.如图,AC是平行四边形ABCD的对角线,过AC的中点O作AC的垂线EF分别交AB于点E,CD于点F,求证:四边形AECF是菱形.。