液相色谱-质谱联用技术(LC-MS)的各种模式探索1
高效液相色谱质谱联用法实验报告

高效液相色谱质谱联用法实验报告
实验背景
高效液相色谱质谱联用法(LC-MS)是一种结合了高效液相色
谱(HPLC)和质谱(MS)技术的分析方法。
HPLC用于分离混合
物中的化合物,而质谱用于对这些化合物进行鉴定和定量分析。
实验目的
本实验旨在使用LC-MS方法分析给定样品中的化合物,并确
定其组成和含量。
实验步骤
1. 样品准备:将给定样品按照实验要求进行前处理,并将其溶
解于适当的溶剂中。
2. 校准仪器:使用标准品进行仪器的校准,确保LC-MS系统
正常运行,并设定适当的参数。
3. 样品进样:将样品溶液加入进样器中,并设置合适的进样量。
4. HPLC分离:使用合适的色谱柱和流动相进行HPLC分离,
使样品中的化合物逐一分离。
5. MS检测:将HPLC分离后的化合物进入质谱仪中进行检测,获取质谱图谱和相关数据。
6. 数据分析:根据质谱数据进行化合物的鉴定和定量分析。
实验结果
通过LC-MS方法,成功分离和鉴定了样品中的多个化合物。
经定量分析,确定了各化合物的含量范围和相对含量比例。
结论
LC-MS方法是一种可靠和高效的分析技术,在化合物分离和
鉴定方面具有重要应用价值。
通过本实验的结果,我们对所研究样
品的化学组成和含量有了更深入的了解,并为进一步研究提供了参
考依据。
延伸研究
在今后的研究中,可以进一步探索LC-MS方法在不同样品和
化合物类别中的应用,以及进一步提高分析的准确性和灵敏度。
同时,结合其他分析技术,如质谱成像等,可以开展更加全面和深入
的分析研究。
液相色谱-质谱联用(LC-MS)

液相色谱-质谱联用(LC-MS)LCMS分别的含义是:L液相C色谱M质谱S分离(友情赠送:G是气相^_^)LC-MS/MS就是液相色谱质谱/质谱联用MS/MS是质谱-质谱联用(通常我们称为串联质谱,二维质谱法,序贯质谱等)LC-MS/MS与LC-MS比较,M(质谱)分离的步骤是串联的,不是单一的。
色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。
色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。
此时,玻璃管的上端立即出现几种颜色的混合谱带。
然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。
色谱法也由此而得名。
现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。
我们仍然叫它色谱分析。
一、色谱分离基本原理:由以上方法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。
色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。
使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。
当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。
由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。
与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。
二、色谱分类方法:色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。
从两相的状态分类:相色谱和经典液相色谱没有本质的区别。
液相色谱-质谱联用技术(LC-MS)的各种模式探索1

实验七液相色谱-质谱联用技术(LC-MS)的各种模式探索一、实验目的1、了解LC-MS的主要构造和基本原理;2、学习LC-MS的基本操作方法;3、掌握LC-MS的六种操作模式的特点及应用。
二、实验原理1、液质基本原理及模式介绍液相色谱-质谱法(Liquid Chromatography/Mass Spectrometry,LC-MS)将应用范围极广的分离方法——液相色谱法与灵敏、专属、能提供分子量和结构信息的质谱法结合起来,必然成为一种重要的现代分离分析技术。
但是,LC是液相分离技术,而MS是在真空条件下工作的方法,因而难以相互匹配。
LC-MS经过了约30年的发展,直至采用了大气压离子化技术(Atmospheric pressure ionization,API)之后,才发展成为可常规应用的重要分离分析方法。
现在,在生物、医药、化工、农业和环境等各个领域中均得到了广泛的应用,在组合化学、蛋白质组学和代谢组学的研究工作中,LC-MS已经成为最重要研究方法之一。
质谱仪作为整套仪器中最重要的部分,其常规分析模式有全扫描模式(Scan)、选择离子监测模式(SIM)。
(一)全扫描模式方式(Scan):最常用的扫描方式之一,扫描的质量范围覆盖被测化合物的分子离子和碎片离子的质量,得到的是化合物的全谱,可以用来进行谱库检索,一般用于未知化合物的定性分析。
实例:(Q1 = 100-259m/z)(二)选择离子监测模式(Selective Ion Monitoring,SIM):不是连续扫描某一质量范围,而是跳跃式地扫描某几个选定的质量,得到的不是化合物的全谱。
主要用于目标化合物检测和复杂混合物中杂质的定量分析。
实例:(Q1 = 259m/z)本实验采用三重四极杆质谱仪(Q1:质量分析器;Q2:碰撞活化室;Q3:质量分析器),由于多了Q2、Q3的存在,在分析测试的模式上又多了四种选择:(三)子离子扫描模式(Product Scan):第一个质量分析器固定扫描电压,选择某一质量离子(母离子)进入碰撞室,发生碰撞解离产生碎片离子,第二个质量分析器进行全扫描,得到的所有碎片离子都是由选定的母离子产生的子离子,没有其它的干扰。
液相色谱-质谱联用仪原理

液相色谱-质谱联用仪原理液相色谱-质谱联用仪(LC-MS)是一种结合了液相色谱(LC)和质谱(MS)的分析技术,用于分离、识别和定量分析复杂样品中的化合物。
它的原理如下:1.液相色谱(LC):LC是一种基于溶液中化合物的分配行为进行分离的技术。
样品通过液相色谱柱,在流动相(溶剂)的作用下,不同的化合物会以不同的速率通过柱子。
这样,样品中的化合物就可以被分离出来。
2.质谱(MS):质谱是一种分析技术,通过测量化合物的质荷比(m/z)和相对丰度来确定化合物的分子结构和组成。
在质谱中,化合物首先被电离形成离子,然后通过一系列的质量分析器进行分离和检测。
3.LC-MS联用原理:LC-MS联用仪将液相色谱和质谱相连接,使得从液相色谱柱出来的化合物可以直接进入质谱进行分析。
联用仪的关键部分是接口,它将液相色谱柱的流出物引入质谱。
接口通常采用喷雾电离技术,将液相中的化合物通过气雾化形成气相离子,并将其引入质谱。
常见的接口类型包括电喷雾离子源(ESI)和大气压化学电离(APCI)等。
4.分析过程:样品首先通过液相色谱柱进行分离,不同的化合物进入质谱前的接口。
接口中的喷雾电离源将液相中的化合物转化为气相离子,并将其引入质谱。
在质谱中,离子会根据其质荷比通过一系列的分析器进行分离和检测,最终生成质谱图谱。
质谱图谱提供了化合物的质荷比和相对丰度信息,可以用于确定化合物的结构和组成。
液相色谱-质谱联用仪的原理使得它能够在分离的同时对样品进行快速、高效的分析。
它在生物医药、环境监测、食品安全等领域具有广泛的应用,可以帮助科学家们解决复杂样品中的化学分析难题。
液相色谱-质谱联用技术

液相色谱-质谱联用技术液相色谱-质谱联用技术(LC-MS)是一种结合了液相色谱和质谱两种技术的分析方法。
它通过液相色谱的分离能力和质谱的物质鉴定能力,可以同时获得化合物的分离和结构信息,适用于复杂样品的定性和定量分析。
液相色谱(LC)是一种基于不同化合物在液相中的分离速度差异来分离化合物的方法。
它具有高分离能力、高选择性和易于操作等特点,广泛应用于生物、制药、环境和食品等领域。
液相色谱的核心是通过固定相和流动相之间的相互作用来实现化合物的分离。
而质谱(MS)则是一种基于化合物的质量与电荷比(m/z)来确定化合物结构和组成的方法。
质谱利用化合物在质谱仪内的质荷比来生成化合物的质谱图谱,从而实现化合物的鉴定和定量分析。
LC-MS联用技术的基本原理是将液相色谱与质谱相连接,通过在液相色谱柱出口处将待分析的化合物分子引入质谱仪中进行分析。
这样一来,通过液相色谱对样品进行分离,可以避免复杂样品矩阵的干扰,并使待分析化合物逐一进入质谱仪进行离子化和探测。
质谱仪将产生的质谱信号转化为质谱图谱,进而进行化合物的鉴定和定量分析。
整个过程中,液相色谱和质谱的运行参数需要相互匹配和优化,以保证良好的分离效果和质谱信号。
LC-MS联用技术具有许多优点。
首先,它能够提供化合物的分离和结构信息,有效地应对样品复杂性的挑战。
其次,它能够对目标化合物进行快速定性和定量分析,为化合物的鉴定和生物活性评估提供支持。
此外,LC-MS联用技术还具有高灵敏度、高选择性和高分辨率的特点,可以检测并鉴定一些浓度较低的化合物,如药物代谢产物和生物标志物。
此外,LC-MS联用技术还适用于多种化合物类别的分析,如有机物、无机物、生物大分子和药物等。
在实际应用中,LC-MS联用技术被广泛用于药物研究和开发、环境监测、食品安全和生物科学等领域。
例如,在药物研究中,LC-MS联用技术可以用于药物的代谢研究、药物动力学研究、药物质量控制和药物残留分析等。
液相色谱-质谱联用技术及使用注意事项

第一章 LC-MS技术简 介
• ESI
离子源与液相色谱的流速
• APCI
1 μL/min - 1mL/min
200 μL/min - 2mL/min
最佳使用流速: 200 μL/min
最佳使用流速: 500 μL/min
一般来说, 高流速需要高的 毛细管温度和鞘气、辅助气 流量。
液相色谱-简介 • 我们的仪器 • 测试准备阶段的注意事项 • 结果的解读
第一章 液相色谱-质谱联用技术
• 质谱基本原理
简介
质谱分析法是通过对被测样品离子质荷比的测定来进
行分析的一种分析方法。
电离装置把样品电离为离子
质量分析器把不同质荷比的离子分开
大气
液质联用仪的离子源
第一章 LC-MS技术简 介
• 离子源的作用
去溶剂
液相色谱与质谱的接口
离子化
真空过渡
去除干扰
• 大气压电离源(Atmosphere pressure ionization,API)
电喷雾电离源(Electrospray ionization,ESI)
大气压化学电离源(Atmosphere pressure chemicel ionization,APCI)
液质联用仪的离子源
第一章 LC-MS技术简 介
正离子模式:ESI(+)或APCI(+)
适合于碱性样品,可用乙酸或甲酸对样品加以酸化。样品中含有仲氨 或叔氨时可优先考虑使用正离子模式。
负离子模式:ESI(-)或APCI(-)
适合于酸性样品,可用氨水或三乙胺对样品进行碱化。样品中含有较 多的强负电性基团,如含氯、含溴和多个羟基时可尝试使用负离子模 式。
液相色谱-质谱联用仪的原理及应用

要点二
多组学分析
未来,液相色谱-质谱联用技术将更 多地应用于多组学分析,如代谢组学 、蛋白质组学等。这些分析需要高通 量、高灵敏度和高准确性的技术支持 ,为液相色谱-质谱联用技术的发展 提供了新的机遇。
要点三
临床医学应用
液相色谱-质谱联用技术在临床医学 领域的应用将不断增加,如疾病诊断 、药物代谢研究等。这些应用需要快 速、准确和可靠的分析方法,为液相 色谱-质谱联用技术的发展提供了新 的挑战和机遇。
更灵敏的检测器
质谱检测器的灵敏度不断提高,将使得液相色谱-质谱联用技术能 够检测到更低浓度的分析物,提高分析的准确性和可靠性。
自动化和智能化
随着自动化和人工智能技术的不断发展,液相色谱-质谱联用仪的 操作将更加简便,数据分析将更加快速和准确。
未来挑战与机遇分析
要点一
复杂样品分析
随着生命科学、环境科学等领域的不 断发展,对复杂样品的分析需求将不 断增加。液相色谱-质谱联用技术需 要不断提高分离效能和检测灵敏度, 以满足这些领域的需求。
广泛的应用领域
LC-MS在化学、生物、医学、环境等领域 中具有广泛的应用,如药物分析、代谢组 学、蛋白质组学、环境污染物分析等。
高灵敏度
质谱技术具有高灵敏度,可以对痕量组分 进行检测。
高通量
随着技术的发展,LC-MS已经实现了高通 量分析,可以同时处理多个样品。
宽检测范围
LC-MS可以检测多种类型的化合物,包括 极性、非极性、挥发性以及大分子化合物 等。
环境毒理学研究
通过液相色谱-质谱联用仪对环境中的有毒有害物质进行 分析,可研究其对生物体的毒性作用机制和生态风险。
生物医学领域应用
代谢组学研究
液相色谱-质谱联用仪可用于生物体液中代谢产物的定性和定量分析,从而揭示生物体 的代谢状态和疾病机制。
液质联用分析实验报告

液质联用分析实验报告液质联用分析实验报告一、实验目的本实验旨在掌握液质联用(LC-MS)分析方法,了解其在实际样品分析中的应用。
通过液质联用技术,对目标化合物进行定性和定量分析,提高分析的灵敏度、准确性和可靠性。
二、实验原理液质联用(LC-MS)是一种将液相色谱(LC)与质谱(MS)技术相结合的分离分析方法。
液相色谱主要用于分离复杂的混合物,通过选择合适的色谱条件,将目标化合物与干扰物分离。
质谱则用于鉴定和测量化合物的分子量和分子结构,通过离子化样品并测量其质荷比,获得样品的分子信息。
液质联用技术将液相色谱的高分离能力与质谱的高鉴别能力相结合,适用于复杂混合物中目标化合物的定性和定量分析。
三、实验步骤1.样品准备:称取适量样品,进行适当处理(如萃取、浓缩等),制备成适合液质联用的溶液。
2.液相色谱条件设置:根据目标化合物的性质选择合适的色谱柱、流动相、流速等条件。
3.质谱条件设置:调整质谱仪的参数,如扫描范围、离子源温度、碰撞能量等,以获得最佳的检测效果。
4.液质联用分析:将样品溶液通过液相色谱与质谱联用系统进行分离和检测,获取样品的色谱图和质谱图。
5.定性分析:根据获得的质谱图,通过对比标准品或查阅文献等方法,确定目标化合物的分子结构和分子量。
6.定量分析:根据目标化合物的色谱峰面积或峰高,结合标准曲线或标准品浓度,计算样品中目标化合物的含量。
四、实验结果及数据分析1.定性分析结果:通过对比标准品和查阅文献等方法,确定目标化合物为XXX(分子量:XXX)。
其质谱图如下:(请在此处插入目标化合物的质谱图)2.定量分析结果:根据目标化合物的色谱峰面积或峰高,结合标准曲线或标准品浓度,计算得出样品中目标化合物的含量为XXX%。
具体数据如下:(请在此处插入定量分析数据表)3.结果分析:通过液质联用技术,成功地分离和检测了样品中的目标化合物XXX。
定量分析结果表明,该化合物在样品中的含量为XXX%。
该方法具有较高的灵敏度和准确性,为复杂混合物中目标化合物的分析提供了有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七液相色谱-质谱联用技术(LC-MS)的各种模式探索一、实验目的1、了解LC-MS的主要构造和基本原理;2、学习LC-MS的基本操作方法;3、掌握LC-MS的六种操作模式的特点及应用。
二、实验原理1、液质基本原理及模式介绍液相色谱-质谱法(Liquid Chromatography/Mass Spectrometry,LC-MS)将应用范围极广的分离方法——液相色谱法与灵敏、专属、能提供分子量和结构信息的质谱法结合起来,必然成为一种重要的现代分离分析技术。
但是,LC是液相分离技术,而MS是在真空条件下工作的方法,因而难以相互匹配。
LC-MS经过了约30年的发展,直至采用了大气压离子化技术(Atmospheric pressure ionization,API)之后,才发展成为可常规应用的重要分离分析方法。
现在,在生物、医药、化工、农业和环境等各个领域中均得到了广泛的应用,在组合化学、蛋白质组学和代谢组学的研究工作中,LC-MS已经成为最重要研究方法之一。
质谱仪作为整套仪器中最重要的部分,其常规分析模式有全扫描模式(Scan)、选择离子监测模式(SIM)。
(一)全扫描模式方式(Scan):最常用的扫描方式之一,扫描的质量范围覆盖被测化合物的分子离子和碎片离子的质量,得到的是化合物的全谱,可以用来进行谱库检索,一般用于未知化合物的定性分析。
实例:(Q1 = 100-259m/z)(二)选择离子监测模式(Selective Ion Monitoring,SIM):不是连续扫描某一质量范围,而是跳跃式地扫描某几个选定的质量,得到的不是化合物的全谱。
主要用于目标化合物检测和复杂混合物中杂质的定量分析。
实例:(Q1 = 259m/z)本实验采用三重四极杆质谱仪(Q1:质量分析器;Q2:碰撞活化室;Q3:质量分析器),由于多了Q2、Q3的存在,在分析测试的模式上又多了四种选择:(三)子离子扫描模式(Product Scan):第一个质量分析器固定扫描电压,选择某一质量离子(母离子)进入碰撞室,发生碰撞解离产生碎片离子,第二个质量分析器进行全扫描,得到的所有碎片离子都是由选定的母离子产生的子离子,没有其它的干扰。
主要用于化合物结构分析。
实例:(Q1 = 259m/z;Q3 = 100-259m/z)(四)母离子扫描模式(Precursor Scan):第一个质量分析器扫描电压选择母离子(如分子离子),进入碰撞室碰裂后,第二个质量分析器固定扫描电压,只选择某一特征离子质量,该特征离子是由所选择的母离子产生的,由此得到所有能产生该子离子的母离子谱。
主要用于同系物的分析。
实例:(Q1 = 100-300m/z;Q3 = 259m/z)(五)中性丢失扫描模式(Neutral Loss):第一个质量分析器扫描所有离子,所有离子进入碰撞室碎裂后,第二个质量分析器以与第一个质量分析器相差固定质量联动扫描,检测丢失该固定质量中性碎片(如质量数15、18、45)的离子对,得到中性碎片谱。
主要用于中性碎片的分析。
实例:(Q1 = 100-300m/z;Q3 = 82-282m/z)(六)多反应监测模式(MRM):第一个质量分析器选择一个(或多个)特征离子,经过碰撞解离,到达第二个质量分析器再进行选择离子检测,只有符合特定条件的离子才能被检测到,因为是两次选择,比单四极质量分析器的SIM 方式选择性、排除干扰能力、专属性更强,信噪比更高。
主要用于定量分析。
实例:(Q1 = 259m/z;Q3 = 138m/z)2、实验内容简介邻苯二甲酸酯(简称PAEs)是一类重要的环境内分泌干扰物,常被用作塑料的增塑剂,也可用作农药载体。
近年来,随着工业生产和塑料制品的广泛使用,邻苯二甲酸酯不断进入环境,普遍存在于土壤、底泥、大气、水体和生物体等环境样品中,成为环境中无所不在的污染物。
据报道,邻苯二甲酸酯类具有较弱的环境雌激素成分,具有影响生物体内分泌和导致癌细胞增殖的作用。
环境内分泌干扰物是指能改变机体内分泌功能,并对机体、后代或(亚)种群产生有害效应的环境物质。
由于环境内分泌干扰物对人和动物有种种不良影响,对环境内分泌干扰物的研究已成为国际关注的焦点。
我国也正在逐渐重视有关环境内分泌干扰物的研究。
三、仪器与试剂1、仪器液相系统:Varian Pro Star;自动进样器:Varian 410自动进样器;质谱仪:Varian 310 LC-MS/MS三重四极杆质谱仪(ESI离子源);色谱柱:Varian Inertsil 3 ODS-3(150mm×2mm,3μm)。
2、试剂甲醇:HPLC色谱纯;超纯水:Millipore Express超纯水系统制备;标准溶液:用甲醇配制邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)混合标准溶液(0.1ppm)。
四、实验步骤1、条件设置色谱条件:流动相(90%甲醇+10%水);流速(0.2ml/min);扫描时间(7min);离子源模式:电喷雾电离(ESI),正离子模式;扫描条件:Detector:1000V;Needle:5000V;Shield:600V;Spray Chamber Temperature:50℃;Nebulizing Gas Pressure:55psi;Drying Gas Pressure:18psi,Drying Gas Temperature (℃):250℃,Capilary Voltage 30(V),Coll.Energy 30(v);质量分析器:三重四极杆;进样体积:10ul。
2、实验测定按实验操作规程完成仪器开机、参数设置及测定。
根据表1中的数据,设置m/z,选择各种扫描模式(全扫描、选择离子扫描、子离子扫描、母离子扫描、多反应监测模式)进行测定。
表1 待测物质的母离子和主要子离子DMP DEP DBP母离子(m/z)195.1 223.1 279.1子离子(m/z)163.1 149.1 149.1五、数据处理SCAN模式:从图中可以看出,各峰没有很好的分开,峰形也过宽。
一方面是由于色谱柱坏掉了,另一方面色谱流动相为100%甲醇,是等度洗脱,极性变小,峰流出时间变快,导致没有很好的分开。
在图中,我们可以看到有别于DMP,DEP,DBP的分子离子峰,它们的来源是:DMP DEP加H+(m/z)195 223加Na+(m/z)217 245SIM模式:在上面试验中,我们看到,有DEP的离子峰为223,于是我们就设定了223这个离子来进行SIM扫描。
我们也可以看到它的信噪比为690,比较高!母离子扫描模式(Precursor Scan):由上面两图中,我们可以看到,能产生m/z=149离子的分子有m/z=194,223,279,339,这些离子。
其机理为:OO C OOm/z=223HOO C OOHm/z=195OH Cm/z=149OOOO COOm/z=279H子离子扫描模式(Product Scan ):我们选定了m/z=223的离子,得到由其产生的离子有m/z=149和177的离子。
其机理为:O OC O Om/z=223HOOHCm/z=149Om/z=177OOCOO多反应监测式(MRM):实验时Q1先选择质荷比223的特征离子,然后Q2选择质荷比177的特征离子,这样经过两次选择,比单四极质量分析器的SIM方式选择性、排除干扰能力、专属性更强,信噪比更高,相比于SIM的信噪比(690),本次多反应监测模式的信噪比高达2734.所以其用于定量分析特别准。
六、思考题1、各扫描模式中m/z分别如何设定?1.全扫描模式方式(Scan)全扫描的m/z时Q1设定一个范围,Q2,Q3关闭,扫描这个范围内的离子。
2.选择离子监测模式(Selective Ion Monitoring,SIM)而SIM中m/z的设定,就是如同单重四级杆一样,Q1设定一个值,Q2,Q3关闭只检测你想要的离子。
3.子离子扫描模式(Product Scan)Q1采用SIM扫描模式,设定想要分析的母离子,而Q3采用SCAN模式,扫描Q1所产生的碎片。
4.母离子扫描模式(Precursor Scan)Q1采用SCAN模式,而Q3采用SIM模式,它能获得能产生特定子离子的母离子5.中性丢失扫描模式(Neutral Loss)Q1与Q3设定的值相差一个范围,如A何B的核质比相差18,那我们就可以设定 Q1和Q3之差为18,来检测母离子丢失了哪些中性分子。
6.多反应监测模式(MRM)Q1和Q3都采用SIM模式,设定的值不一定要相等。
这样经过两次SIM 模式选择,这样准确性就非常高。
常用于定量分析。
2、较各模式的测定结果,讨论各模式在测定中的作用。
比全扫描模式方式一般用于未知化合物的定性分析选择离子监测模式主要用于目标化合物检测和复杂混合物中杂质的定量分析子离子扫描模式主要用于化合物结构分析母离子扫描模式主要用于同系物的分析中性丢失扫描模式主要用于中性碎片的分析多反应监测模式主要用于定量分析3、结合HPLC等其它色谱分析技术及实验,讨论LC-MS的优势及在社会中所能起到的作用。
LC-MS把液相色谱和质谱法的优势合二为一,具有灵敏度高,分析速度快,图谱解析简单等优势。
现在LC-MS主要是在生物大分子的分析中起到了强大的作用,为药物分析与生物制品的检测的发展到了很大的作用。
4、若作为开放实验,你认为本实验方法还有哪些方面可以补充或提高的?如果作为开放实验,我想还应当增加梯度洗脱这一程序,由于等度洗脱对于混合物的分离的效果太差,所以在开放实验中必然要用到等梯度洗脱,然后还可以加适当的缓冲溶剂,这样出来的峰会更细。
5,LC-MS的七大禁止:一,禁止高浓度待测样品浓度过高,首先会脏色谱柱和四级杆,导致下次实验时出现“鬼峰”,况且质谱的灵敏度已经很高了,没必要进高浓度样品!二,禁止用洗涤剂清洗玻璃容器表面活性剂容易离子化,在电离时和待测样品产生竞争效应。
三,禁止无机样品进样主要是无法离子化,难溶物易沉寂阻塞喷雾针四,禁止用塑料容器装样品塑料瓶中的塑化剂邻苯二甲酸酯在ESI条件下可以产生很强的信号,造成很高的背景。
目前市场上无论是国产还是进口的试剂都经常会发现有很强的增塑剂信号,需要自己纯化。
五,禁止用不挥发性缓冲盐不挥发的缓冲盐在HPLC中经常使用,但是在LC-MS却是噩梦,由于他不挥发,所以在接口去溶剂过程中,他将严重干扰待测物的出峰。
六,禁止高浓度有机缓冲盐缓冲液一般选择甲酸铵和乙酸铵等,这是由于他们具有:1、显著地质子自递作用,有利于离子在流动相中预先形成,2、适中的介电常数,避免喷口放电,3、强挥发性,易脱去,不易形成溶剂加成物。