正交试验设计方差分析
(整理)正交试验结果的方差分析方法

正交试验结果的方差分析方法计算公式和项目试验指标的加和值=,试验指标的平均值与表4-13一样,第j列的(1) I j”水平所对应的试验指标的数值之和(2) II j——“ 2”水平所对应的试验指标的数值之和(3)……(4) k j——同一水平出现的次数。
等于试验的次数除以第j列的水平数.(5)I j/k j——“水平所对应的试验指标的平均”(6)II j/k j——“2”水平所对应的试验指标的平均值(7)……以上各项的计算方法,与“极差法”同,见4.1.7节(8)偏差平方和(4-1)(9) fj ——自由度.fj第j列的水平数-1.(10)Vj——方差.Vj =Sj/fj(4-2)(11)Ve——误差列的方差。
(4-3)(12)Fj——方差之比(4-4)(13)查F分布数值表(见附录6),做显著性检验。
显著性检验结果的具体表示方法与第3章相同。
(14)总的偏差平方和(4-5) (15)总的偏差平方和等于各列的偏差平方和之和。
即(4-6) 式中,m为正交表的列数。
若误差列由5个单列组成,则误差列的偏差平方和S e等于5个单列的偏差平方和之和,即:S e=S e1+S e2+S e3+S e4+S e5;也可用S e= S总-S’来计算,其中:S’为安排有因素或交互作用的各列的偏差平方和之和应引出的结论。
与极差法相比,方差分析方法可以多引出一个结论:各列对试验指标的影响是否显著,在什么水平上显著。
在数理统计上,这是一个很重要的问题。
显著性检验强调试验误差在分析每列对指标影响中所起的作用。
如果某列对指标的影响不显著,那么,讨论试验指标随它的变化趋势是毫无意义的。
因为在某列对指标的影响不显著时,即使从表中的数据可以看出该列水平变化时,对应的试验指标的数值也在以某种“规律”发生变化,但那很可能是由于实验误差所致,将它作为客观规律是不可靠的。
有了各列的显著性检验之后,最后应将影响不显著的交互作用列与原来的“误差列”合并起来,组成新的“误差列”,重新检验各列的显著性。
实验设计的方差分析与正交试验

实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。
在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。
通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。
1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。
该方法通过比较不同组之间的方差来判断各组均值是否有差异。
步骤如下:(1)确定研究目的,选择合适的因变量和自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差和组间方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。
这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。
步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差、组间方差和交互方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。
1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。
通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。
2. 正交试验设计的步骤(1)确定要研究的因素和水平。
正交试验的方差分析法

C×D
B×D A×D
A
B A×B C A×C D A×D
C×D
B×D
B×C
A
B A×B C A×C D
E
D×E C×D C×E B×D B×E A×E A×B
B×C
(四) 列出试验方案
把正交表中安排原因旳各列(不包括欲考 察旳交互作用列)中旳每个数字依次换成该原 因旳实际水平,就得到一种正交试验方案。
上一张 下一张 主 页 退 出
此例不考察交互作用,可将品种(A)、 密度(B)和施氮量 (C)依次安排在L9(34)旳第1、 2、3列上,第4 列 为空列,见表2-4。
表11-4 表头设计
列号 1 2 3 4 因素 A B C 空
原因 数 2 3
4
L9(34)表头设计
列
号
1
2
3
4
A A B×C1
C 3 1(3) 2(5) 3(8) 2(5) 3(8) 1(3) 3(8) 1(3) 2(5)
上一张 下一张 主 页 退 出
第二节 正交试验资料旳方差分析
若各号试验处理都只有一种观察值,则称 之为单个观察值正交试验;
若各号试验处理都有两个或两个以上观察 值,则称之为有反复观察值正交试验。
上一张 下一张 主 页 退 出
A原因是氮肥施用量,设A1、A2、A3 3个水平 ; B原因是磷肥施用量,设B1、B2、B3 3个水平 ; C原因是钾肥施用量,设C1、C2、C3 3个水平。 这是一种3原因每个原因3水平旳试验 ,各原因旳 水平之间全部可能旳组合有27种。
上一张 下一张 主 页 退 出
假如进行全方面试验 ,能够分析各原因 旳效应 ,交互作用,也可选出最优水平组合。
正交试验设计及其方差分析

第三节正交试验设计及其方差分析在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题.正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果.1.正交试验设计的基本方法正交试验设计包含两个内容:(1)怎样安排试验方案;(2)如何分析试验结果.先介绍正交表.正交表是预先编制好的一种表格.比如表9-17即为正交表L4(23),其中字母L表示正交,它的3个数字有3种不同的含义:(1) L4(23)表的结构:有4行、3列,表中出现2个反映水平的数码1,2.列数↓L4 (23)↑↑行数水平数(2)L4(23)表的用法:做4次试验,最多可安排2水平的因素3个.最多能安排的因素数↓L4 (23)↑↑试验次数水平数(3) L4(23)表的效率:3个2水平的因素.它的全面试验数为23=8次,使用正交表只需从8次试验中选出4次来做试验,效率是高的.L4 (23)↑↑实际试验数理论上的试验数正交表的特点:(1)表中任一列,不同数字出现的次数相同.如正交表L4(23)中,数字1,2在每列中均出现2次.(2)表中任两列,其横向形成的有序数对出现的次数相同.如表L4(23)中任意两列,数字1,2间的搭配是均衡的.凡满足上述两性质的表都称为正交表(Orthogonal table).常用的正交表有L9(34),L8(27),L16(45)等,见附表.用正交表来安排试验的方法,就叫正交试验设计.一般正交表L p(n m)中,p=m(n-1)+1.下面通过实例来说明如何用正交表来安排试验.例9.7 提高某化工产品转化率的试验.某种化工产品的转化率可能与反应温度A,反应时间B,某两种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此考虑对A,B,C,D这4个因素进行试验.根据以往的经验,确定各个因素的3个不同水平,如表9-18所示.表9-18解本题是4因素3水平,选用正交表L9(34).把表头上各因素相应的水平任意给一个水平号.本例的水平编号就采用表9-18的形式;将各因素的诸水平所表示的实际状态或条件代入正交表中,得到9个试验方案,如表9-20所示.从表9-20看出,第一行是1号试验,其试验条件是:反应温度为60℃,反应时间为2.5小时,原料配比为 1.1∶1,真空度为500毫米汞柱,记作A1B1C1D1.依此类推,第9号试验条件是A3B3C2D1.由此可见,因素和水平可以任意排,但一经排定,试验条件也就完全确定.按正交试验表9-20安排试验,试验的结果依次记于试验方案右侧,见表9-21.2.试验结果的直观分析正交试验设计的直观分析就是要通过计算,将各因素、水平对试验结果指标的影响大小,通过极差分析,综合比较,以确定最优化试验方案的方法.有时也称为极差分析法.例9.7中试验结果转化率列在表9-21中,在9次试验中,以第9次试验的指标86为最高,其生产条件是A 3B 3C 2D 1.由于全面搭配试验有81种,现只做了9次.9次试验中最好的结果是否一定是全面搭配试验中最好的结果呢?还需进一步分析. (1) 极差计算在代表因素A 的表9-21的第1列中,将与水平“1”相对应的第1,2,3号3个试验结果相加,记作T 11,求得T 11=151.同样,将第1列中与水平“2”对应的第4,5,6号试验结果相加,记作T 21,求得T 21=183.一般地,定义T ij 为表9-21的第j 列中,与水平i 对应的各次试验结果之和(i =1,2,3; j =1,2,3,4).记T 为9次试验结果的总和,R j 为第j 列的3个T ij 中最大值与最小值之差,称为极差.显然T =31iji T=∑,j =1,2,3,4.此处T 11大致反映了A 1对试验结果的影响,T 21大致反映了A 2对试验结果的影响, T 31大致反映了A 3对试验结果的影响,T 12,T 22和T 32分别反映了B 1,B 2,B 3对试验结果的影响, T 13,T 23和T 33分别反映了C 1,C 2,C 3对试验结果的影响, T 14,T 24和T 34分别反映了D 1,D 2,D 3对试验结果的影响.R j 反映了第j 列因素的水平改变对试验结果的影响大小,R j 越大反映第j 列因素影响越大.上述结果列表9-22. 表9-22由极差大小顺序排出因素的主次顺序: 主→次B ;A 、D ;C这里,R j 值相近的两因素间用“、”号隔开,而R j 值相差较大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中控制好因素B ,即反应时间.其次是要考虑因素A 和D ,即要控制好反应温度和真空度.至于原料配比就不那么重要了.选择较好的因素水平搭配与所要求的指标有关.若要求指标越大越好,则应选取指标大的水平.反之,若希望指标越小越好,应选取指标小的水平.例9.7中,希望转化率越高越好,所以应在第1列选最大的T 31=185;即取水平A 3,同理可选B 3C 1D 3.故例9.7中较好的因素水平搭配是A 3B 3C 1D 3.例9.8 某试验被考察的因素有5个:A ,B ,C ,D ,E .每个因素有两个水平.选用正交表L 8(27),现分别把A ,B ,C ,D ,E 安排在表L 8(27)的第1,2,4,5,7列上,空出第3,6列仿例9.7做法,按方案试验.记下试验结果,进行极差计算,得表9-23. 表9-23试验目的要找出试验结果最小的工艺条件及因素影响的主次顺序.从表9-23的极差R j的大小顺序排出因素的主次顺序为 主 → 次A 、B ;D ;C 、E最优工艺条件为A 2B 1C 1D 2E 1.表9-23中因没有安排因素而空出了第3,6列.从理论上说,这两列的极差R j 应为0,但因存有随机误差,这两个空列的极差值实际上是相当小的.3.方差分析正交试验设计的极差分析简便易行,计算量小,也较直观,但极差分析精度较差,判断因素的作用时缺乏一个定量的标准.这些问题要用方差分析解决.设有一试验,使用正交表L p (n m ),试验的p 个结果为y 1,y 2,…,y p ,记T =1pi i y =∑, y =11p i i Ty p p ==∑,S T =21()pii yy =-∑为试验的p 个结果的总变差;S j =222111nn ij ij i i T T T r T r p r p ==⎛⎫-=- ⎪⎝⎭∑∑ 为第j 列上安排因素的变差平方和,其中r =p/n .可证明S T =1mij S=∑即总变差为各列变差平方和之和,且S T 的自由度为p -1,S j 的自由度为n -1.当正交表的所有列没被排满因素时,即有空列时,所有空列的S j 之和就是误差的变差平方和S e ,这时S e 的自由度f e 也为这些空列自由度之和.当正交表的所有列都排有因素时,即无空列时,取S j 中的最小值作为误差的变差平方和S e .从以上分析知,在使用正交表L p (n m )的正交试验方差分析中,对正交表所安排的因素选用的统计量为: F =1jeeS S n f -.当因素作用不显著时, F ~F (n -1,f e ),其中第j 列安排的是被检因素.在实际应用时,先求出各列的S j /(n -1)及S e /f e ,若某个S j /(n -1)比S e /f e 还小时,则这第j 列就可当作误差列并入S e 中去,这样使误差S e 的自由度增大,在作F 检验时会更灵敏,将所有可当作误差列的S j 全并入S e 后得新的误差变差平方和,记为S e Δ,其相应的自由度为f e Δ,这时选用统计量 F =1je eS S n f - ~F (n -1,f e Δ).例9.9 对例9.8的表9-23作方差分析.解 由表9-23的最后一行的极差值R j ,利用公式S j =2211n ij i T T r p=-∑,得表9-24.表9-24中第3,6列为空列,因此S e =S 3+S 6=1.250,其中f e =1+1=2,所以S e /f e =0.625,而第7列的S 7=0.125,S 7/f 7=0.1251=0.125比S e /f e 小,故将它并入误差. S e Δ=S e +S 7=1.375,f e Δ=3.整理成方差分析表9-25. ee由于F 0.05(1,3)=10.13, F 0.01(1,3)=34.12,故因素A ,B 作用高度显著,因素C 作用不显著,因素D作用显著,这与前面极差分析的结果是一致的.F检验法要求选取S e,且希望f e 要大,故在安排试验时,适当留出些空列会有好处的.前面的方差分析中,讨论因素A和B 的交互作用A×B.这类交互作用在正交试验设计中同样有表现,即一个因素A的水平对试验结果指标的影响同另一个因素B的水平选取有关.当试验考虑交互作用时,也可用前面讲的基本方法来处理.本章就不再介绍了.。
正交试验方差分析

1(50) 1(6.5) 1(2.0) 1 1 2 2 2(7.0) 2(2.4) 3(7.5) 3(2.8 2 3 1 3 2 3
2(55) 1
3(58) 1
8பைடு நூலகம்
9 K1j
3
3 15.76
2
3 25.18
1
2 22.65
3
1 20.74
10.9
8.95
T 65.58
K2j
K3j K1j2 K2j2 K3j2
n
对上式做如下变换
SST ( X ij X ) 2 ( X ij X i. X i. X ) 2
i 1 j 1 i 1 j 1
r
n
r
n
( X ij X i. ) ( X i. X ) 2 (X ij X i. )( X i. X )
各式的物理意义
X
所有数据的平均值称为总平均 值 第i个水平的数据平均值称为组平均值 随机误差,又称为组内离差平方和
X i.
SSE 表示每一个数据与其组平均值的离差平方和,反映了实验中的
SS A
表示组平均值与总的平均值得离差平方和,反映了由于因素不同水平引 起的差异又称为组间离差平方和
再稍做整理
X 总和 2 2 SST ( X ij X ) ( X ij ) N i 1 j 1 i 1 j 1 X 总和 校正项CF N
2 2 i 1 j 1 r n i 1 j 1 r n i 1 j 1
r
n
r
n
r
n
( X ij X i. ) ( X i. X ) 2
2 i 1 j 1 i 1 j 1
高级篇 第二章 正交试验设计及统计分析-方差分析

0.415
(2)显著性检验
根据以上计算,进行显著性检验,列出方差分析表,结果见表10-24
变异来源
A B C△ 误差e 误差e△ 总和
平方和 45.40 6.49 0.31 0.83 1.14 53.03
自由度 2 2 2 2 4
表10-24 方差分析表
均方 F值
Fa
22.70 79.6 F0.05(2,4) =6.94
油温℃A 1 1 2 2 3 3 4 4
1.8 4.5 9.8 6.8 3.24 20.25 96.04 46.24
表10-27 试验方案及结果分析
含水量%B 油炸时间s C
1
1
空列 1
2Hale Waihona Puke 2211
2
2
2
1
1
2
1
2
1
2
1
2
2
2 11.4
1 10.2
1 12.1
11.5
12.7
10.8
空列 1 2 2 1 2 1 1 2
3.24 11.4 F0.01(2,4)=18.0
0.16
0.41
0.285
显著水平 ** *
因素A高度显著,因素B显著,因素C不显著。 因素主次顺序A-B-C。
(3)优化工艺条件的确定
本试验指标越大越好。对因素A、B分析,确定优 水平为A3、B1;因素C的水平改变对试验结果几乎无影
响,从经济角度考虑,选C1。优水平组合为A3B1C1。 即温度为58℃,pH值为6.5,加酶量为2.0%。
K2k2 SST=QT CT
…
Kmk2 SSk
Q
=
j
1 r
正交试验设计(方差分析)

子
A 罗拉加压 10×11×10 (原工艺) 11×12×10 13×14×13
B 后区牵伸 1.80 (原工艺) 1.67 1.50 6 8 10
C 后区隔距 (原工艺)
返回
首先要选择一个合适的正交表,选 L9 (34 ) 来制定试验 方案. 其次,将A、B、C三个因素随机地填在表的三列上, 如A、B、C依次放在1,2,3列,第4列为空列,这个过 程叫表头设计.
A1 1、 2、 3、 4、
A2 5、 6 7、
A3 8、 9
各水平所在的试 验号
各水平所在试验 号的试验数据
1.5、1.3、-0.2
2.6、1.4、-0.3
2.8、 0.4、 0
在因素A每个水平的三次试验中,因素B、C三个水平 都分别各出现一次,因此,可以理解为因素A有三个水平, 每个水平重复做三次试验,按照单因子方差分析:
第4 列 1 2 3
因素A第1 水平3次 试验结果yi 重复测定 y1 值 y2 y3
单因素 4 2 1 2 3 y4 5 2 2 3 1 y5 因素A第2 试验数 1 (y1 y2 ... y9 ) SS 6 = ( y1 y22 y3 ) (y4 3y5 y6 ) (y7 y8 2y9 ) (修正项) 水平 3次重 1 y6 据资料 3 9 复测定值 7 1 3 1 3 2 y7 T 格式 = (K K K ) 8 3 2 1 3 y8
,
,
同理可选出因素B和因素C的最好条件分别为B3、C1。 于是通过 “算一算”得到一个较优的水平组合A1 B3C1.称为 “算一算” 的好条件. 比较“直接看”的好条件A2B3C1与 “算一算”的好条 件A1 B3C1,除了因素A的水平不同外,其它两个因素所取 的好条件是一致的。又因为第一列的极差与误差列的极差 接近,认为因素A对条干不匀率的影响不显著,为方便操作 选取原工艺A1.最后确定最优工艺为A1B3C1.
5-2正交试验设计(方差分析)

正交表
选择部分条件进行试验,再通过数据分析来 寻找好的条件,这便是试验设计问题。通过 少量的试验获得较多的信息,达到试验的目 的:发现那些因子对试验结果确有影响,因 子的什么水平组合是最好的。
第五章 正交试验设计
一、试验设计的基本概念与正交表
多因素试验遇到的最大困难是试验次数太 多,若十个因素对产品质量有影响,每个因素 取两个不同状态进行比较,有210=1024、 如 果每个因素取三个不同状态310=59049个不同 的试验条件
在多因素试验中,有人采用“单因素轮换 法”,但是这种方法不一定能找到好的条件 譬如:考察两个因子,先固定A在A1,发 现B3好,再固定B3,发现A1好,但是实际上好 的条件是A2B2。 B1 B2 B3 A1 50 56 62 A2 56 70 60 A3 54 60 58
利用正交表进行试验设计的方法就是正交试 验设计。
表 4 .1 试验号 1 2 3 4 5 6 7 8 9 列号 1 1 1 1 2 2 2 3 3 3
L 9 (3 ) 2 1 2 3 1 2 3 1 2 3 3 1 2 3 2 3 1 3 1 2 4 1 2 3 3 1 2 2 3 1
4
“L”表示正交表,“9”是行数,在试验中表示试 验的条件数,“4”是列数,在试验中表示可以安排 的因子的最多个数,“3”是表的主体只有三个不同 数字,在试验中表示每一因子可以取的水平数。
二、无交互作用的正交设计与数据分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
表2.实验方案及实验结果的直观分析
列号 实验号
1 A wH2SO4 (%) 1 B mCuSO4· 5H2O(g) 1 C mZn (g) 1 空白列 2 10min内H2的 产率 32.62
2
3 4
2
3 1
1
1 2
2
3 3
1
3 1
40.40
41.07 34.97
5
6 7 8 9
2
3 1 2 3
此,因素水平变化所引起的波动,即因素A的偏差平方和SA应为:
SA=∑(yi-y总)2= (34.74-39.08)2+(38.71-39.08)2+(43.78-39.08)2
=123.37 上述计算结果我们可以通过S总=SA+ Se式来检验SA和 Se 计算正确与否。
(4)自由度和平均偏差平方和的计算 为了消除个数不同对实验指标所产生的影响,
S总 ( yi y总 )2
i 1
n
由表3知:
y总=1/9(32.62+34.97+36.62+40.40+…+44.53)=39.08
则:S总=(32.62-39.08)2+(34.97-39.08)2+…+(44.5339.08)2=151.08 S总反映了实验数据总的波动情况,如果硫酸质量分
i 1
i
即除以(n-1),就得到平均偏差平方和。
平均偏差平方和 nS 1
为什么不除以n而要除以(n-1)呢?这是因为n个 数(y1, y2, y3, ……yn)之间并非彼此毫无关系,它们满 足的关系是: 1 n y yi n i 1 即n个数之和的均值为一定值,因此,n个数中 只有(n-1)个可“自由”变动,所以,求平均偏差平 方和时除以(n-1),数学上将这个(n-1)称为S的自由 度。
4.因素的显著性判断 设因素A的F比为FA:
当FA >F0. 01 (n1, n2 )时,说明该因素水平的改变
对实验结果有很显著的影响,记作**。
当FA >F0. 05 (n1, n2 )时,说明该因素水平的改变
对实验结果有显著的影响,记作*。 当FA >F0. 10 (n1, n2 )时,说明该因素水平的改变 对实验结果有一定的影响,记作O。
114.09 117.25 120.34 38.03 39.08 40.11 2.08
C mZn (g)
122.77 115.23 113.68 40.92 38.41 37.89 3.03
空白列
10min内H2的 产率
119.9 117.56 114.22 39.96 39.18 38.07 1.89
为了弥补直观分析方法的不足,可采用方差分析 方法对实验结果进行计算分析。所谓方差分析就是将 因素水平(或交互作用)的变化引起的实验结果间的差 异与误差的波动所引起的实验结果间的差异区分开来 的一种数学方法。 方差分析的中心要点是:把实验数据总的波动分 解成两部分,一部分反映因素水平变化引起的波动, 另一部分反映实验误差引起的波动。即把数据总的偏 差平方和(S总)分解为因素的偏差平方和(SA、SB、SC ……)与误差的偏差平方和(Se),并计算它们的平均偏 差平方和(也称均方和,或均方),然后进行检验,最 后得出方差分析表。
二.方差分析中的一些基本概念
1.偏差平方和
方差分析的关键是对偏差平方和的分解,因此,
充分理解这一概念是至关重要的。
所谓偏差平方和是指一组数据中,各个数(y1, y2, y3……yn)与它们的算术平均数y之差的平方和。用符号 S来表示。即:
1 1 y ( y1 y2 ...... yn ) yi n n i 1
若以S1表示A1水平下实验误差所引起的波动,其值应 为:S1=(32.62-34.74)2+(34.97-34.74)2+(36.62-34.74)2 =8.0870。同理可以求出A2 、A3水平下实验误差所引 起的波动,其值分别为S2=7.8389,S3=11.7875 则,A因素的各个水平下总的偏差平方和应为: Se= S1+ S2+ S3=8.0870+7.8389+11.7875=27.71 (2) S总的计算 总的偏差平方和S总是指全部实验数据中,每个数据(yi) 与总平均值(y总)之差的平方和,即:
应采用平均偏差平方和,其计算公式为:
因素A的平均偏差平方和=SA/fA 误差的平均偏差平方和=Se/fe 式中SA、Se分别代表因素A和误差的偏差平方和 fA=A因素的水平数-1,它代表SA的自由度
fe=f总-fA,它代表Se的自由度
f总=总的实验次数-1,它代表S总的自由度
在本例中f总=9-1=8,fA=3-1=2, fe=8-2=6
F比 = S
f因素
误差
f 误差
为了判断F比值的大小所表明的物理意义(即F比值多大 时,可以认为实验结果的差异主要是由因素水平的 改变所引起的;其值多小时,可以认为实验结果的 差异主要是由实验误差所引起的),这就需要有一个 标准来衡量F比值,此标准就是根据统计数学原理编 制的F分布表,F分布表列出了各种自由度情况下F比 的临界值。
数水平的改变对实验指标不发生影响,而且实验中
也没有误差产生的话,那么全部实验数据理应都一
样,即S总应等于零,但情况并非如此。
(3) S wH2SO4 (SA)的计算 对于因素A来讲,当它取一水平时,3次实验(即1、4、7实验)结 果的均值(y)应为: y1=1/3(y1+y4+y7)=1/3(32.62+34.93+36.62)=34.74 y1代表了3次一水平实验对H2产率的影响。同理: y2=1/3(y2+y5+y8)=38.71 y3=1/3(y3+y6+y9)=43.78 y2、y3分别代表了3次二水平和三水平实验对H2产率的影响。因
则
1 n 1 n X xi yi C n i 1 n i 1 X y C
于是
S ( xi x)2 [( yi C ) ( y C )]2 ( yi y)2
i 1 i 1 i 1
n
n
n
3. F比与F分布表 (1) F比
F比是指因素水平的改变引起的平均偏差平方和与误 S因素 差的平均偏差平方和的比值。即: (2) F分布表及其查阅方法
当实验所测得的n个数(y1, y2, y3, ……yn)数值较 大时,为了简化计算,可将每一个原始数据yi(i=1, 2, 3……n)都减去同一个常数C,这并不影响偏差平方 和的计算结果,但计算的工作量却简化了许多。
上述推论可通过以下简单换算予以证明。 若令Xi=yi-C (i=1, 2, ……n)
但是,极差值仅仅反映了各因素影响实验指标的主次 关系,它不能告诉我们各个因素对实验指标影响的程 度。也就是说,它既不能指明这些因素中哪个是影响 实验指标的关键因素,也不能提供一个标准,用来考 察、判断各个因素的作用是否显著。
第二:就因素A而言(因素B、C也类同),其中k1、k2、 k3值之间的差异是如何产生的?是由于A因素水平不 同引起的呢?还是由于实验误差所造成的呢?还是 两者综合作用的结果?从直观分析角度是无法说清 楚的。 正是由于直观分析存在着上述的缺点,所以需 要采用方差分析的方法来弥补上述的不足。 1.单因素实验的方差分析 为了便于讨论,我们仍以实验室制取H2的因素 之一------A因素(硫酸的质量分数)为例,来说明单个 因素的实验数据的方差分析方法。
2 ( y y ) i i 1 n
n
则
S
为了计算方便,上式可简化为一种更常见的形式:
S yi 2 yi y y yi 2 ny 2
2 2 i 1 n i 1 i 1 i 1 n n n n
若令:
G yi
i 1
CT
ቤተ መጻሕፍቲ ባይዱ
G2 n
n
则
S yi 2 CT
方差分析是把实验数据总的波动(即数据的总的偏差平方 和S总)分解成两部分:一部分反映因素水平变化引起的波动 (即因素的偏差平方和),对本例而言仅为S wH2SO4;另一部分 反映实验误差引起的波动(即误差的偏差平方和Se)。即: (1) Se的计算
表3.实验结果分析 参与wH2SO4某一水平的实验编号 A1(20%) 1 4 7 A2 (25%) 2 5 8 平均值y A3 (30%) 3 6 9 10minH2产率 A1(20%) 32.62 34.97 36.62 34.74 A2 (25%) 40.40 36.53 39.19 38.71 A3 (30%) 41.07 45.75 44.53 43.78
三.正交试验设计的方差分析 现以实验室制取H2为例,来说明正交设计的方 差分析的基本方法。若该实验所考察的因素、水平 如表1和表2所示。
表1. 因素水平
因素 水平 一 二 A wH2SO4 (%) 20 25 B mCuSO4· 5H2O(g) 0.4 0.5 C mZn (g) 4 5
三
30
0.6
2
2 3 3 3
1
2 2 3 1
3
2 3 2 1
36.53
45.75 36.62 39.19 44.53
列号 实验号
K1 K2 K3 k1 k2 k3 R
A wH2SO4 (%)
104.21 116.12 131.35 34.78 38.70 43.78 9.05
B mCuSO4· 5H2O(g)
正交试验设计的方差分析
一.方差分析的意义
前面我们介绍了正交设计方案及其结果的直 观分析,该方法简单明了,通俗易懂,计算工作 量少,便于普及和推广。但直观分析方法不能把 实验中由于实验条件的改变而引起的数据波动同 实验误差引起的数据波动区分开来,也就是说, 不能区分因素各水平所对应的实验结果间的差异, 究竟是由于因素水平不同引起的,还是由于实验 误差引起的。