正交试验设计及其方差分析
实验设计的方差分析与正交试验

实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。
在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。
通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。
1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。
该方法通过比较不同组之间的方差来判断各组均值是否有差异。
步骤如下:(1)确定研究目的,选择合适的因变量和自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差和组间方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。
这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。
步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差、组间方差和交互方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。
1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。
通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。
2. 正交试验设计的步骤(1)确定要研究的因素和水平。
正交试验设计及其方差分析

第三节正交试验设计及其方差分析在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题.正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果.1.正交试验设计的基本方法正交试验设计包含两个内容:(1)怎样安排试验方案;(2)如何分析试验结果.先介绍正交表.正交表是预先编制好的一种表格.比如表9-17即为正交表L4(23),其中字母L表示正交,它的3个数字有3种不同的含义:(1) L4(23)表的结构:有4行、3列,表中出现2个反映水平的数码1,2.列数↓L4 (23)↑↑行数水平数(2)L4(23)表的用法:做4次试验,最多可安排2水平的因素3个.最多能安排的因素数↓L4 (23)↑↑试验次数水平数(3) L4(23)表的效率:3个2水平的因素.它的全面试验数为23=8次,使用正交表只需从8次试验中选出4次来做试验,效率是高的.L4 (23)↑↑实际试验数理论上的试验数正交表的特点:(1)表中任一列,不同数字出现的次数相同.如正交表L4(23)中,数字1,2在每列中均出现2次.(2)表中任两列,其横向形成的有序数对出现的次数相同.如表L4(23)中任意两列,数字1,2间的搭配是均衡的.凡满足上述两性质的表都称为正交表(Orthogonal table).常用的正交表有L9(34),L8(27),L16(45)等,见附表.用正交表来安排试验的方法,就叫正交试验设计.一般正交表L p(n m)中,p=m(n-1)+1.下面通过实例来说明如何用正交表来安排试验.例9.7 提高某化工产品转化率的试验.某种化工产品的转化率可能与反应温度A,反应时间B,某两种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此考虑对A,B,C,D这4个因素进行试验.根据以往的经验,确定各个因素的3个不同水平,如表9-18所示.表9-18解本题是4因素3水平,选用正交表L9(34).把表头上各因素相应的水平任意给一个水平号.本例的水平编号就采用表9-18的形式;将各因素的诸水平所表示的实际状态或条件代入正交表中,得到9个试验方案,如表9-20所示.从表9-20看出,第一行是1号试验,其试验条件是:反应温度为60℃,反应时间为2.5小时,原料配比为 1.1∶1,真空度为500毫米汞柱,记作A1B1C1D1.依此类推,第9号试验条件是A3B3C2D1.由此可见,因素和水平可以任意排,但一经排定,试验条件也就完全确定.按正交试验表9-20安排试验,试验的结果依次记于试验方案右侧,见表9-21.2.试验结果的直观分析正交试验设计的直观分析就是要通过计算,将各因素、水平对试验结果指标的影响大小,通过极差分析,综合比较,以确定最优化试验方案的方法.有时也称为极差分析法.例9.7中试验结果转化率列在表9-21中,在9次试验中,以第9次试验的指标86为最高,其生产条件是A 3B 3C 2D 1.由于全面搭配试验有81种,现只做了9次.9次试验中最好的结果是否一定是全面搭配试验中最好的结果呢?还需进一步分析. (1) 极差计算在代表因素A 的表9-21的第1列中,将与水平“1”相对应的第1,2,3号3个试验结果相加,记作T 11,求得T 11=151.同样,将第1列中与水平“2”对应的第4,5,6号试验结果相加,记作T 21,求得T 21=183.一般地,定义T ij 为表9-21的第j 列中,与水平i 对应的各次试验结果之和(i =1,2,3; j =1,2,3,4).记T 为9次试验结果的总和,R j 为第j 列的3个T ij 中最大值与最小值之差,称为极差.显然T =31iji T=∑,j =1,2,3,4.此处T 11大致反映了A 1对试验结果的影响,T 21大致反映了A 2对试验结果的影响, T 31大致反映了A 3对试验结果的影响,T 12,T 22和T 32分别反映了B 1,B 2,B 3对试验结果的影响, T 13,T 23和T 33分别反映了C 1,C 2,C 3对试验结果的影响, T 14,T 24和T 34分别反映了D 1,D 2,D 3对试验结果的影响.R j 反映了第j 列因素的水平改变对试验结果的影响大小,R j 越大反映第j 列因素影响越大.上述结果列表9-22. 表9-22由极差大小顺序排出因素的主次顺序: 主→次B ;A 、D ;C这里,R j 值相近的两因素间用“、”号隔开,而R j 值相差较大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中控制好因素B ,即反应时间.其次是要考虑因素A 和D ,即要控制好反应温度和真空度.至于原料配比就不那么重要了.选择较好的因素水平搭配与所要求的指标有关.若要求指标越大越好,则应选取指标大的水平.反之,若希望指标越小越好,应选取指标小的水平.例9.7中,希望转化率越高越好,所以应在第1列选最大的T 31=185;即取水平A 3,同理可选B 3C 1D 3.故例9.7中较好的因素水平搭配是A 3B 3C 1D 3.例9.8 某试验被考察的因素有5个:A ,B ,C ,D ,E .每个因素有两个水平.选用正交表L 8(27),现分别把A ,B ,C ,D ,E 安排在表L 8(27)的第1,2,4,5,7列上,空出第3,6列仿例9.7做法,按方案试验.记下试验结果,进行极差计算,得表9-23. 表9-23试验目的要找出试验结果最小的工艺条件及因素影响的主次顺序.从表9-23的极差R j的大小顺序排出因素的主次顺序为 主 → 次A 、B ;D ;C 、E最优工艺条件为A 2B 1C 1D 2E 1.表9-23中因没有安排因素而空出了第3,6列.从理论上说,这两列的极差R j 应为0,但因存有随机误差,这两个空列的极差值实际上是相当小的.3.方差分析正交试验设计的极差分析简便易行,计算量小,也较直观,但极差分析精度较差,判断因素的作用时缺乏一个定量的标准.这些问题要用方差分析解决.设有一试验,使用正交表L p (n m ),试验的p 个结果为y 1,y 2,…,y p ,记T =1pi i y =∑, y =11p i i Ty p p ==∑,S T =21()pii yy =-∑为试验的p 个结果的总变差;S j =222111nn ij ij i i T T T r T r p r p ==⎛⎫-=- ⎪⎝⎭∑∑ 为第j 列上安排因素的变差平方和,其中r =p/n .可证明S T =1mij S=∑即总变差为各列变差平方和之和,且S T 的自由度为p -1,S j 的自由度为n -1.当正交表的所有列没被排满因素时,即有空列时,所有空列的S j 之和就是误差的变差平方和S e ,这时S e 的自由度f e 也为这些空列自由度之和.当正交表的所有列都排有因素时,即无空列时,取S j 中的最小值作为误差的变差平方和S e .从以上分析知,在使用正交表L p (n m )的正交试验方差分析中,对正交表所安排的因素选用的统计量为: F =1jeeS S n f -.当因素作用不显著时, F ~F (n -1,f e ),其中第j 列安排的是被检因素.在实际应用时,先求出各列的S j /(n -1)及S e /f e ,若某个S j /(n -1)比S e /f e 还小时,则这第j 列就可当作误差列并入S e 中去,这样使误差S e 的自由度增大,在作F 检验时会更灵敏,将所有可当作误差列的S j 全并入S e 后得新的误差变差平方和,记为S e Δ,其相应的自由度为f e Δ,这时选用统计量 F =1je eS S n f - ~F (n -1,f e Δ).例9.9 对例9.8的表9-23作方差分析.解 由表9-23的最后一行的极差值R j ,利用公式S j =2211n ij i T T r p=-∑,得表9-24.表9-24中第3,6列为空列,因此S e =S 3+S 6=1.250,其中f e =1+1=2,所以S e /f e =0.625,而第7列的S 7=0.125,S 7/f 7=0.1251=0.125比S e /f e 小,故将它并入误差. S e Δ=S e +S 7=1.375,f e Δ=3.整理成方差分析表9-25. ee由于F 0.05(1,3)=10.13, F 0.01(1,3)=34.12,故因素A ,B 作用高度显著,因素C 作用不显著,因素D作用显著,这与前面极差分析的结果是一致的.F检验法要求选取S e,且希望f e 要大,故在安排试验时,适当留出些空列会有好处的.前面的方差分析中,讨论因素A和B 的交互作用A×B.这类交互作用在正交试验设计中同样有表现,即一个因素A的水平对试验结果指标的影响同另一个因素B的水平选取有关.当试验考虑交互作用时,也可用前面讲的基本方法来处理.本章就不再介绍了.。
正交试验设计中的方差分析

免。
QT
m i 1
p j 1
xij
x
2
m i 1
p
xi2j
j 1
1 mp
m i 1
p
2
xij
j1
按照差方和的加和性,总差方和等于各因素形成的差方和的 总和。
QT QA QB QN Qe
其中Qe为残差平方和,即误差的差方和。
3) 试验误差的差方和Qe:
试验误差的差方和是所有试验结果在不同水平下的指标值与该 水平下的均值之间的差的平方和。它是由随机误差引起的,故 叫误差的差方和。
Qe QT ( QA QB QN )
2.计算自由度:
试验的总自由度: fT n 1
各因素自由度: f因 m 1
如果有交互作用,则交互作用的自由度为两因素自由度之积:
明该因素对试验结果(试验指标)的影响显著,两个数差别 越大,说明该因素的显著性越大。
一.几个数据处理中常用的数理统计名词:
首先对几个数理统计名词进行回顾
1. 平均值 x
就是所有数据的和除以数据的个数。
x
1 n
n i 1
xi
1 n
x1
x2
xn
总体平均值:
1 n
n
xi
i 1
n
总体:数理统计学中指的是研究对象的某一特性值的全体; 样本:从总体中随机抽出的一组测量值。
2.极差 R: 就是一组数据中的最大值减去最小值得到的差值。 3.差方和Q: 测量值对平均值的偏差的平方n 1 i1
2
xi x
Q n 1
7.标准偏差s: 方差的平方根。
1 n
第4讲5(1) 正交试验设计(方差分析)

处理号 1 2
第1列(A) 1 1
表 L9(34)正交表
第2列 1 2
第3列 1 2
第4列 1 2
因素A第1 试验结果y水i 平3次
重复测定 y1 值 y2
3
1
3
3
3
y3
单4 因素 2
1
2
3
y4
试5 验数 2
2
3
1
y5
因素A第2
SS据A6=资13(料y1 y22
格式 78=13(K12
3 K322
y3)2 (y43y5
K32)-
T2 9
1 2
y6)2 ( 1 y7 3 1
y 82y 9)2 2 3
(y1yy62 ...
9
y7 y8
y水9)平2(修 3次正重项) 复测定值
9
3
3
2
1
y9
分析第1列因素时,其它列暂不考虑,将其看做条件因因素素A。第3
因素 重复1 重复2 重复3
显著影响
(6)列方差分析表
(1)偏差平方和分解:
总偏差平方和=各列因素偏差平方和+误差偏差平方和
SST SS因素 SS空列(误差)
(2)自由度分解:
dfT df因素 df空列( 误列(
(3)方差:MS因素=
SS因素 df因素
,MS误差=
SS误差 df误差
(4)构造F统计量:
F因素=
MS因素 MS误差
(5)列方差分析表,作F检验
若计算出的F值F0>Fa,则拒绝原假设,认为 该因素或交互作用对试验结果有显著影响;若 F0≼Fa,则认为该因素或交互作用对试验结果 无显著影响。
高级篇 第二章 正交试验设计及统计分析-方差分析

0.415
(2)显著性检验
根据以上计算,进行显著性检验,列出方差分析表,结果见表10-24
变异来源
A B C△ 误差e 误差e△ 总和
平方和 45.40 6.49 0.31 0.83 1.14 53.03
自由度 2 2 2 2 4
表10-24 方差分析表
均方 F值
Fa
22.70 79.6 F0.05(2,4) =6.94
油温℃A 1 1 2 2 3 3 4 4
1.8 4.5 9.8 6.8 3.24 20.25 96.04 46.24
表10-27 试验方案及结果分析
含水量%B 油炸时间s C
1
1
空列 1
2Hale Waihona Puke 2211
2
2
2
1
1
2
1
2
1
2
1
2
2
2 11.4
1 10.2
1 12.1
11.5
12.7
10.8
空列 1 2 2 1 2 1 1 2
3.24 11.4 F0.01(2,4)=18.0
0.16
0.41
0.285
显著水平 ** *
因素A高度显著,因素B显著,因素C不显著。 因素主次顺序A-B-C。
(3)优化工艺条件的确定
本试验指标越大越好。对因素A、B分析,确定优 水平为A3、B1;因素C的水平改变对试验结果几乎无影
响,从经济角度考虑,选C1。优水平组合为A3B1C1。 即温度为58℃,pH值为6.5,加酶量为2.0%。
K2k2 SST=QT CT
…
Kmk2 SSk
Q
=
j
1 r
正交试验设计直观分析法和方差分析法

正交试验设计直观分析法和方差分析法:
自溶酵母提取物是一种多用途食品配料,为探讨外加中性蛋白酶的方法,需作啤酒酵母的最适自溶条件试验,为此安排如下试验,试验指标为自溶液中蛋白质含量(%),取含量越高越好。
因素水平表如下:
试验结果如下,试进行直观分析和方差分析,找出使产量为最高的条件。
A B C e df df df df ====3-1=2
2A A A SS MS df =
=45.422.72=,2B B B SS MS df ==6.49
3.232=, 2C C C SS MS df =
=0.310.1552=,2e e e SS MS df ==0.83
0.4152
= 因为22
2C e MS MS <,所以因素C 的偏差平方和、自由度并入误差的偏差平方和、自由
度
因素A 高度显著,因素B 显著,因素C 不显著。
本试验指标越大越好。
对因素A 、B 分析,确定优水平为3A 、1B ;因素C 的水平改变对试验结果几乎无影响,从经济角度考虑,选1C 。
优水平组合为311A B C 。
即温度为58℃,pH 值为6.5,加酶量为2.0%。
第6章-正交试验设计结果的方差分析

(4)计算F值
• 各均方除以误差的均方,例如:
FABiblioteka VA Ve或FA
VA V e
FAB
VAB Ve
或
FAB
VAB Ve
(5)显著性检验
• 例如: • 若 FAF(fA,f,e)则因素A对试验结果有显著影
响 • 若 F A BF (fA B,fe,)则交互作用A×B对试验结
果有显著影响
(6)列方差分析表
设:
QT
n
x
2 i
i1
n
T xi i1
②各因素引起的离差平方和
• 第j列所引起的离差平方和 :
Sj
1( m r p1
Kp2j
)T2 n
k
ST S j Se j 1
③交互作用的离差平方和
• 若交互作用只占有一列,则其离差平方和就等于 所在列的离差平方和
• 若交互作用占有多列,则其离差平方和等于所占 多列离差平方和之和,
• 例:3时
S S S AB ( AB ) 1 ( AB ) 2
④试验误差的离差平方和
• 方差分析时,在进行表头设计时一般要求留有空 列,即误差列
• 误差的离差平方和为所有空列所对应离差平方和 之和 :
Se S空列
(2)计算自由度
①总自由度 :=n-1 ②任一列离差平方和对应的自由度 :
=m-1 ③交互作用的自由度 :(以A×B为例) ×B= × ×B=(m-1 ) 若m = 2, ×B= 若m = 3, ×B= 2 + ④误差的自由度:
• 方差分析的基本步骤如下: • (1)计算离差平方和 • (2)计算自由度 • (3)计算平均离差平方和(均方) • (4)计算F 值 • (5)显著性检验
第三章正交试验设计中的方差分析2例题分析

第三章_正交试验设计中的方差分析2-例题分析第三章中的例题分析是关于正交试验设计中的方差分析的。
本例题分析主要涉及到两个因素和一个响应变量,通过正交试验设计的方法,对这两个因素的影响进行分析。
首先,我们需要了解正交试验设计的基本原理。
正交试验设计是一种实验设计方法,通过选择合适的试验因素和水平,使得每个试验条件都能够得到充分的信息,从而降低试验误差,提高试验效率。
在正交试验设计中,试验因素之间是相互独立的,这样可以更好地分析每个因素对响应变量的影响。
在本例题中,我们有两个因素,分别记作因素A和因素B,每个因素有两个水平。
我们还有一个响应变量Y,需要确定因素A、因素B和Y之间的关系。
接下来,我们需要进行方差分析。
方差分析是一种用于比较不同因素对响应变量的影响的统计方法。
在本例题中,我们可以使用两因素方差分析来分析因素A和因素B对响应变量Y的影响。
首先,我们需要计算总平方和(SST),表示响应变量的总变异。
然后,我们需要计算因素A的平方和(SSA),表示因素A对响应变量的影响,以及因素B的平方和(SSB),表示因素B对响应变量的影响。
同时,我们还需要计算交互作用的平方和(SSAB),表示因素A和因素B之间的交互作用对响应变量的影响。
接下来,我们可以计算各个平方和的自由度和均方差,从而得到F值。
F值可以用来判断因素对响应变量的影响是否显著。
如果F值大于临界值,则说明该因素对响应变量的影响是显著的。
最后,我们可以进行多重比较,比较每个因素水平之间的差异。
多重比较可以帮助我们确定哪些因素水平之间的差异是显著的。
通过以上的分析,我们可以得出因素A、因素B和响应变量Y之间的关系。
同时,我们还可以根据多重比较的结果,确定哪些因素水平之间的差异是显著的。
总结起来,本例题分析主要涉及到正交试验设计中的方差分析。
通过对两个因素和一个响应变量进行分析,我们可以确定因素对响应变量的影响是否显著,并确定哪些因素水平之间的差异是显著的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节正交试验设计及其方差分析
在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题.正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果.
1.正交试验设计的基本方法
正交试验设计包含两个内容:(1)怎样安排试验方案;(2)如何分析试验结果.先介绍正交表.
正交表是预先编制好的一种表格.比如表9-17即为正交表L4(23),其中字母L表示正交,它的3个数字有3种不同的含义:
(1) L4(23)表的结构:有4行、3列,表中出现2个反映水平的数码1,2.
列数
↓
L4 (23)
↑↑
行数水平数
(2)L4(23)表的用法:做4次试验,最多可安排2水平的因素3个.
最多能安排的因素数
↓
L4(23)
↑↑
试验次数水平数
(3) L4(23)表的效率:3个2水平的因素.它的全面试验数为23=8次,使用正交表只需从8次试验中选出4次来做试验,效率是高的.
L4(23)
↑↑
实际试验数理论上的试验数
正交表的特点:
(1)表中任一列,不同数字出现的次数相同.如正交表L4(23)中,数字1,2在每列中均出现2次.
(2)表中任两列,其横向形成的有序数对出现的次数相同.如表L4(23)中任意两列,
数字1,2间的搭配是均衡的.
凡满足上述两性质的表都称为正交表(Orthogonal table).
常用的正交表有L9(34),L8(27),L16(45)等,见附表.用正交表来安排试验的方法,就叫正交试验设计.一般正交表L p(n m)中,p=m(n-1)+1.下面通过实例来说明如何用正交表来安排试验.
例9.7 提高某化工产品转化率的试验.
某种化工产品的转化率可能与反应温度A,反应时间B,某两种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此考虑对A,B,C,D这4个因素进行试验.根据以往的经验,确定各个因素的3个不同水平,如表9-18所示.
分析各因素对产品的转化率是否产生显著影响,并指出最好生产条件.
解本题是4因素3水平,选用正交表L9(34).
把表头上各因素相应的水平任意给一个水平号.本例的水平编号就采用表9-18的形式;将各因素的诸水平所表示的实际状态或条件代入正交表中,得到9个试验方案,如表9-20所示.
从表9-20看出,第一行是1号试验,其试验条件是:
反应温度为60℃,反应时间为2.5小时,原料配比为1.1∶1,真空度为500毫米汞柱,记作A1B1C1D1.依此类推,第9号试验条件是A3B3C2D1.
由此可见,因素和水平可以任意排,但一经排定,试验条件也就完全确定.按正交试验表9-20安排试验,试验的结果依次记于试验方案右侧,见表9-21.
2.试验结果的直观分析
正交试验设计的直观分析就是要通过计算,将各因素、水平对试验结果指标的影响大小,通过极差分析,综合比较,以确定最优化试验方案的方法.有时也称为极差分析法.
例9.7中试验结果转化率列在表9-21中,在9次试验中,以第9次试验的指标86为最高,其生产条件是A3B3C2D1.由于全面搭配试验有81种,现只做了9次.9次试验中最好的结果是否一定是全面搭配试验中最好的结果呢?还需进一步分析.
(1)极差计算
在代表因素A的表9-21的第1列中,将与水平“1”相对应的第1,2,3号3个试验结果相加,记作T11,求得T11=151.同样,将第1列中与水平“2”对应的第4,5,6号试验结果相加,记作T21,求得T21=183.
一般地,定义T ij为表9-21的第j列中,与水平i对应的各次试验结果之和(i=1,2,3; j=1,2,3,4).记T为9次试验结果的总和,R j为第j列的3个T ij中最大值与最小值之差,称为极差.
显然T=
3
1ij
i
T =
∑,j=1,2,3,4.
此处T11大致反映了A1对试验结果的影响,
T21大致反映了A2对试验结果的影响,
T31大致反映了A3对试验结果的影响,
T12,T22和T32分别反映了B1,B2,B3对试验结果的影响,
T13,T23和T33分别反映了C1,C2,C3对试验结果的影响,
T14,T24和T34分别反映了D1,D2,D3对试验结果的影响.
R j反映了第j列因素的水平改变对试验结果的影响大小,R j越大反映第j列因素影响越
大.上述结果列表9-22.
(2) 极差分析(Analysis of range)
由极差大小顺序排出因素的主次顺序:
主→次
B;A、D;C
这里,R j值相近的两因素间用“、”号隔开,而R j值相差较大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中控制好因素B,即反应时间.其次是要考虑因素A和D,即要控制好反应温度和真空度.至于原料配比就不那么重要了.
选择较好的因素水平搭配与所要求的指标有关.若要求指标越大越好,则应选取指标大的水平.反之,若希望指标越小越好,应选取指标小的水平.例9.7中,希望转化率越高越好,所以应在第1列选最大的T31=185;即取水平A3,同理可选B3C1D3.故例9.7中较好的因素水平搭配是A3B3C1D3.
例9.8某试验被考察的因素有5个:A,B,C,D,E.每个因素有两个水平.选用正交表L8(27),现分别把A,B,C,D,E安排在表L8(27)的第1,2,4,5,7列上,空出第3,6列仿例9.7做法,按方案试验.记下试验结果,进行极差计算,得表9-23.
表9-23
j 的大小顺序排出因素的主次顺序为
主→次
A、B;D;C、E
最优工艺条件为A2B1C1D2E1.
表9-23中因没有安排因素而空出了第3,6列.从理论上说,这两列的极差R j应为0,但因存有随机误差,这两个空列的极差值实际上是相当小的.
3.方差分析
正交试验设计的极差分析简便易行,计算量小,也较直观,但极差分析精度较差,判断
因素的作用时缺乏一个定量的标准.这些问题要用方差分析解决.
设有一试验,使用正交表L p (n m ),试验的p 个结果为y 1,y 2,…,y p ,记
T =1
p
i i y =∑, y =11p i i T
y p p ==∑,
S T =
2
1
()
p
i
i y y =-∑
为试验的p 个结果的总变差;
S j =2
2
2111n
n ij ij i i T T T r T r
p r p ==⎛⎫-=- ⎪⎝⎭∑∑ 为第j 列上安排因素的变差平方和,其中r =p/n .可证明
S T =
1
m
i
j S
=∑
即总变差为各列变差平方和之和,且S T 的自由度为p -1,S j 的自由度为n -1.当正交表的所有
列没被排满因素时,即有空列时,所有空列的S j 之和就是误差的变差平方和S e ,这时S e 的自由度f e 也为这些空列自由度之和.当正交表的所有列都排有因素时,即无空列时,取S j 中的最小值作为误差的变差平方和S e .
从以上分析知,在使用正交表L p (n m )的正交试验方差分析中,对正交表所安排的因素选用的统计量为:
F =
1j
e
e
S S n f -.
当因素作用不显著时,
F ~F (n -1,f e ),
其中第j 列安排的是被检因素.
在实际应用时,先求出各列的S j /(n -1)及S e /f e ,若某个S j /(n -1)比S e /f e 还小时,则这第j 列就可当作误差列并入S e 中去,这样使误差S e 的自由度增大,在作F 检验时会更灵敏,将所
有可当作误差列的S j 全并入S e 后得新的误差变差平方和,记为S e Δ,其相应的自由度为f e Δ
,这时选用统计量
F =1j
e e
S S n f -
~F (n -1,f e Δ
). 例9.9 对例9.8的表9-23作方差分析.
解 由表9-23的最后一行的极差值R j ,利用公式S j =2
211n ij i T T r p
=-∑,得表9-24.
表9-24中第3,6列为空列,因此S e=S3+S6=1.250,其中f e=1+1=2,所以S e/f e=0.625,而第7列的S7=0.125,S7/f7=0.1251=0.125比S e/f e小,故将它并入误差.
S eΔ=S e+S7=1.375,f eΔ=3.整理成方差分析表9-25.
表9-25
由于F0.05(1,3)=10.13, F0.01(1,3)=34.12,故因素A,B作用高度显著,因素C作用不显著,因素D作用显著,这与前面极差分析的结果是一致的.F检验法要求选取S e,且希望f e要大,故在安排试验时,适当留出些空列会有好处的.前面的方差分析中,讨论因素A和B的交互作用A×B.这类交互作用在正交试验设计中同样有表现,即一个因素A的水平对试验结果指标的影响同另一个因素B的水平选取有关.当试验考虑交互作用时,也可用前面讲的基本方法来处理.本章就不再介绍了.。